Astr 118, Physics of Planetary Systems Discussion Week 6: Formation

Aditya Sengupta, adityars@ucsc.edu, ISB 127

1 Centrifugal and gravitational balance

The material in disks around stars does not undergo gravitational freefall because of the centrifugal force. Suppose a test particle on a wide (circular) orbit moved radially inwards while maintaining a constant angular momentum. How does the centrifugal force vary with r ? Find the critical radius at which the two forces balance.

2 Scale heights

We often describe the density of something that falls off exponentially in terms of a scale height: the vertical distance over which the density decreases by a factor of e. This can be encapsulated in an expression like $\rho(z)=\rho(0) \exp (-z / H)$.
a. The scale height of Earth's atmosphere is about 10 km . Where we are now (Social Sciences 2/generally around the highest point of UCSC), we're about 250 m above sea level. What is the air pressure up here relative to sea level? How about at Lick Observatory, which is about 1300 m above sea level?
b. The densities of disks drop off as $\rho(z)=\rho(0) \exp \left(-z^{2} / 2 H^{2}\right)$. Justify why we can approximate this decently well as $\rho(z)=\left\{\begin{array}{ll}\rho(0) & |z| \leq H \\ 0 & |z|>H\end{array}\right.$. Use whatever method you find easiest (sketching, hand calculations, Python, Desmos, WolframAlpha, etc.)

3 How long does a planet take to form?

Let's estimate a mass accretion rate, and from there estimate how long it'll take to form a planet. The mass accretion rate we're looking for is $\dot{M}=\rho \sigma v$: the density of particles in the disk, times the cross-sectional area we're collecting onto, times the velocity of a typical particle.
a. Find ρ : The surface density of a disk is about $\Sigma(r)=2000(r / \mathrm{au})^{-3 / 2} \mathrm{~g} / \mathrm{cm}^{2}$ (amount of mass per unit area), about 1% of which is solid particles that can coagulate to form a planet. Write down an expression for $\rho(r)$, using the scale height as a variable $H(r)$.
b. Find σ : Write down an expression for σ for a planet of mass M and internal density about $1 \mathrm{~g} / \mathrm{cm}^{3}$. (This is varying throughout the accretion process, but we're working to order of magnitude so we'll just use the final value.)
c. Find \boldsymbol{v} : We're interested in the relative velocity between two particles: they're all co-orbiting, so their orbit doesn't induce collisional motion. Instead, we'll say that on average a particle traces out a circle of radius $H(r)$ in the vertical (out-of-disk) direction every period. Find the out-of-disk particle velocity, which we'll say is about the relative velocity we're interested in. You can assume the star is the Sun, so $(P / \mathrm{yr})^{2}=(r / \mathrm{au})^{3}$.
d. Multiply your answers to $\mathrm{a}, \mathrm{b}, \mathrm{c}$ together to get $\dot{M}(r)$.
e. Estimate a timescale for formation via accretion as a function of separation: $t_{\text {accr }}=M_{\text {planet }} / \dot{M}(r)$. You should have $M_{\text {planet }}$ and r as parameters.
f. What is this timescale for Earth and for Neptune?

