Accretion timescale calculation

We want to find $\dot{M}=\rho \sigma v$.

- $\rho=\Sigma / 2 H(r)=0.01 \times 2000 \mathrm{~g} / \mathrm{cm}^{2} \cdot(r / \mathrm{au})^{-3 / 2} / 2 H(r)=10 \mathrm{~g} / \mathrm{cm}^{2} \cdot(r / \mathrm{au})^{-3 / 2} / H(r) . \quad H(r)$ cancels later on so I'll leave it like this for now.
- $\sigma=\pi R^{2}=\pi\left(\frac{3 M_{\text {planet }}}{4 \pi \rho_{\text {internal }}}\right)^{2 / 3}$; we take the cross-sectional area in terms of the planet radius and convert it so it's in terms of the planet mass and density.
- $v=2 \pi H(r) / P$. I'll say we're working with our solar system so $P /$ year $=(r / a u)^{3 / 2}$, and our factor of $1 / P$ will end up as $1 / P=\left(\frac{r}{\mathrm{au}}\right)^{-3 / 2}$ year $^{-1}$. So we have $v=2 \pi H(r) \times(r / \mathrm{au})^{-3 / 2}$ year $^{-1}$. (This is a velocity because we have a distance term in $H(r)$, divided by a time from the year ${ }^{-1}$.)

Multiplying these together, cancelling the $H(r) \mathrm{s}$, and combining the $(r / a u) \mathrm{s}$, we get

$$
\dot{M}=10 \cdot(r / \mathrm{au})^{-3} \cdot \pi\left(\frac{3\left(M_{\text {planet }} /[g]\right)}{4 \pi\left(\rho_{\text {internal }} /\left[g / \mathrm{cm}^{3}\right]\right)}\right)^{2 / 3} \cdot 2 \pi \mathrm{~g} / \text { year }
$$

Combining all the constants gives us $20 \pi^{2}(3 / 4 \pi)^{2 / 3}=75.96$, so call it 100 .

$$
\dot{M}=100(r / \mathrm{au})^{-3}\left(\frac{M_{\text {planet }} /[g]}{\rho_{\text {internal }} /\left[g / \mathrm{cm}^{3}\right]}\right)^{2 / 3} \mathrm{~g} / \text { year }
$$

The timescale is

$$
t=M / \dot{M}=0.01\left(M_{\text {planet }} /[g]\right)^{1 / 3}\left(\rho_{\text {internal }} /\left[\mathrm{g} / \mathrm{cm}^{3}\right]\right)^{2 / 3}(r / \mathrm{au})^{3}
$$

For Earth, which has $M \sim 6 \times 10^{27} \mathrm{~g}$ (for order-of-magnitude estimation and convenience with the $1 / 3$ I said it's just $10^{27} \mathrm{~g}$) and $\rho_{\text {internal }} \sim 5.5 \mathrm{~g} / \mathrm{cm}^{3}$ (also for convenience I said this is 1), we get

$$
t_{\text {Earth }}=5.66 \times 10^{7} \text { years }
$$

And for Neptune, which has $M \sim 10^{29} \mathrm{~g}, \rho_{\text {internal }} \sim 1.6 \mathrm{~g} / \mathrm{cm}^{3}$ and $r \sim 30 \mathrm{au}$, we get

$$
t_{\text {Neptune }}=1.71 \times 10^{12} \text { years }
$$

The age of the Universe is 13.8 billion years, or 1.38×10^{10} years, so this process provides a timescale that is too long to describe the formation of Neptune.

