Astr 118, Physics of Planetary Systems Discussion Week 8: Atmospheres

Aditya Sengupta, adityars@ucsc.edu, ISB 127

1. The possible shapes of temperature structures

An approximate expression for the temperature structure of an atmosphere is

$$
T(\tau)^{4}=\frac{3}{4} T_{\text {int }}^{4}\left(\tau+\frac{2}{3}\right)+\frac{3}{4} T_{\text {irr }}^{4}\left[\frac{2}{3}+\frac{1}{\gamma \sqrt{3}}+\left(\frac{\gamma}{\sqrt{3}}-\frac{1}{\gamma \sqrt{3}}\right) \exp (-\gamma \tau \sqrt{3})\right]
$$

This is a mess, so let's try and get something sensible out of it!

- τ is "optical depth": this is about proportional to pressure - it's small high up and large lower down. When coding, we'll just pretend this is pressure whenever it's convenient.
- $T_{\text {int }}$ and $T_{\text {irr }}$ are the internal and irradiation temperatures of the atmosphere: the amount of heating we get from the planet interior and the stellar radiation respectively.
- γ is something like "efficiency of planet heating"/ "efficiency of star heating". If it's <1, star heating permeates the atmosphere more, and if it's >1, planet heating permeates more.
In pairs, implement and plot this in Python. Let τ range from 10^{-8} to $10^{3} \log$-spaced, and use $T_{\mathrm{int}}, T_{\mathrm{irr}}, \gamma$ (gamma) as free parameters. I highly recommend implementing this as a function that takes in the three free parameters and returns the T array, so you can overplot many results at once. Use this visualization to answer the following questions.
a. In a free-floating planet, what does the temperature structure look like?
b. In a highly irradiated atmosphere where $T_{\text {irr }} \gg T_{\text {int }}$, what happens for $\tau \ll 1$ (upper atmosphere) and $\tau \gg 1$ (lower atmosphere)?
c. What's likely to be true about planets that exhibit thermal inversions, where the atmosphere gets colder and then warmer again as you're going up?

2. Horizontal wind speed

There's a lot to cover in 1D analysis of atmospheres, but there are also some effects that need us to consider the 3D structure. Let's look at just one: zonal winds. These are described by the partial differential equation

$$
\frac{2 \pi}{P_{\text {rotation }}} \frac{\partial u}{\partial \ln p}=-\frac{\partial(R T)}{\partial x}
$$

where the wind speed is u, the length of the planet's day is $P_{\text {rotation }}$, and p, T, x describe variation across the planet in the horizontal direction. Approximating $\frac{\partial y}{\partial x} \approx \frac{\Delta y}{\Delta x}$ for reasonable choices of $\Delta y, \Delta x$, how fast are Earth's winds? Plug this into WolframAlpha ($R=$ "specific gas constant of air") to avoid a bunch of tedious unit-chasing! What might change in the exoplanet context?

3. Converting to $T(z)$ with pair programming!

I have a Jupyter notebook with a P-T profile loaded. Talk me through the steps I need to do to convert the independent axis from pressure $[T(P)]$ to altitude $[T(z)]$! The ideal gas law $P=\rho R T / \mu$ and hydrostatic equilibrium $\mathrm{d} P / \mathrm{d} z=-\rho g$ may be useful.

