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1 Einstein’s Principles of Relativity

1. The laws of physics are the ”same” in all reference frames.

2. The speed of light in a vacuum is equal to c in all reference frames.

2 Galilean Transformations

Consider the system of two observers, A and B, undergoing relative motion (say in A’s
reference frame he is standing still and B is moving away from him, but B could make
the equivalent statement that she is still and A is moving away with the same velocity in
the opposite direction) and observing the positions of an object over time. Both of them

tabulate a sequence of positions ~rA(ti) and ~rB(ti), for which we can set up a relation by
vector addition:

~rA = ~rB/A + ~rB

We differentiate this twice,

~aA = ~aB/A + ~aB

We now make the observation that for Newton’s laws to work correctly in both A’s
reference frame and B’s, their relative acceleration must be zero. We can use F = ma by
multiplying both sides of the above relation by m, the mass of the object, but this gives
different values for the force on the object, which is clearly independent of the observer.
This apparent discrepancy is resolved if we recognise that Newton’s laws only work correctly
in inertial reference frames, i.e. we have to set ~aB/A = 0. Relative velocity, not relative
acceleration, can exist between A and B.

We take the specific case in which B is moving only along the x−axis. We can do this
without loss of generality, since in a specific case it is easy to set the coordinate system so
that relative motion of the observers is only along the x−axis. Then, we can convert the
observations from one frame to those of the other using the following:
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tA = tB

xA = xB + vtB

yA = yB

zA = zB

We can take the time derivative,

vxB = vxA − v

vyB = vyA

vzB = vzA

where v is the relative velocity between A and B.
Suppose the observed object is a beam of light, which has a known speed v = c. Then,

from the above relations, we get

vxA = cB + v

vxB = cA − v

This seems to violate Einstein’s second principle of relativity, that the speed of light
should be a constant. Maxwell’s equations suggest that the speed of light, or that of any
electromagnetic wave, is dependent on certain natural constants:

c =
1

√
εoµo

This suggests that something needs to be corrected in either Newton’s theory that ve-
locities and positions can be linearly compared from reference frames as a consequence of
F = ma, or Maxwell’s theory that the speed of light is invariant and dependent on natural
constants.

Nor is this a problem that can be resolved with a specific choice of reference frame. In
any real-world system, relative motion will exist due to the motion of the Earth, galaxies,
galactic clusters, etc. and this can often happen at speeds that make this effect significant.
The theory of special relativity is aimed at resolving this apparent contradiction.
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3 Trains get struck by lightning twice all the time

Consider a train in motion with velocity ~v = vî, and length L. Observer A is located outside
the train at x = 0, and Observer B is located inside the train also at x = 0. At t = 0, the
train is struck by lightning twice: at x = L

2
and at x = −L

2
.

From A’s frame of reference, the light ray from the front travels a distance L
2

in a time
tF , which we can calculate easily:

xA(t) =
L

2
− ct

xA(tF ) = 0 =⇒ L

2
= ctF =⇒ tF =

L

2c

And similarly for the light ray from the back,

0 = −L
2

+ ctB =⇒ tB =
L

2c

Therefore, we can define the time difference between these two observations,

∆t = tF − tB = 0

i.e. simultaneity is preserved for A.
In order to convert between A’s measurements and B’s, while still preserving the con-

dition that c must be constant, we introduce an unknown even function γ(v), so that the
transformation between reference frames becomes

xA = γ(v)(xB + vtB)

In general, for v << c, γ → 1. We can do this in reverse,

xB = γ(v)(xA − vt)

Therefore, we can substitute this into the expression for xA,

xA = γ(v)(γ(v)(xA − vtA) + vtB)

∴ xA − γ2xA + γvtA = γvtB

∴ tB = γ
(
tA −

1− γ2

vγ
xA

)
tA = γ

(
tB +

1− γ2

γv
xB

)
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4 Finding γ (Pixar, 2003) and the Lorentz Transfor-

mation

In order to find γ, we use the property that c is constant in all reference frames. Therefore,
for a light wave moving outwards,

rA = ctA

x2
A + y2

A + z2
A = c2t2A

and

x2
B + y2

B + z2
B = c2t2B

As we are taking (without loss of generality) motion only in the x−direction,

x2
A − x2

B = c(t2A − t2B)

Then, we use the transformation formula,

x2
A − γ2(xA − vt)2 = c2

(
t2A − γ2(tA −

1− γ2

vγ
xA)2

)

x2
A − γ2(x2

A − 2vxAtA + v2t2A) = c2
(
t2A − γ2(t2A −

2(1− γ2)

γv
tAxA + γ

(1− γ2)2

γ2v2
x2
A)
)

We can then compare coefficients of t2A:

−γ2v2t2A = c2(1− γ2)t2A

−γ2v
2

c2
= 1− γ2

∴ γ =
1√

1− v2

c2

Now that we have found γ, we substitute this into the previously-obtained time relation
to get:

tA = γ
(
tB +

vxB
c2

)
, tB = γ

(
tA −

vxA
c2

)
This is called a Lorentz transformation.
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5 Applying Lorentz Transformations

We are now in a position to analyse what B sees in the train-lightning example.
From the front,

x
(F )
B = γ

(L
2
− 0
)

t
(F )
B = γ

(
0− v

c2

L

2

)
and from the back,

x
(B)
B = γ

(
− L

2
− v · 0

)
t
(B)
B = γ

(
0 +

v

c2

L

2

)

6 Length Contraction

Our Newtonian conception of length as being invariant (absent any external forces on it that
might stretch or compress the object) is only valid when simultaneity holds true, i.e. lengths
are measured simultaneously in the frame doing the measuring. For relativistic velocities,
this no longer holds true, and we have to apply the Lorentz transformation.

Say the two ends of the object are defined by positions xB1 and xB2 as measured in frame
B, which, relative to frame A, is moving at a velocity v. Then,

xB1 = γ(xA1 − vtA1), xB2 = γ(xA2 − vtA2)

Therefore

Lp = xB2 − xB1 = γ(xA2 − xA1 − v(tA2 − tA1)

where Lp = xB2 − xB1 refers to the proper length as measured in a frame in which there
is no relative motion. When we apply the condition for simultaneity, that tA1 = tA2 , this
reduces to

L =
Lp
γ

where L = xA2−xA1 is the contracted length as measured in the relatively moving frame.

7 Time Dilation

Consider, as before, two frames of reference A and B, in which B’s frame is moving away
from A’s with a velocity v. B then throws a ball upward and catches it after some time. We
characterise positions in time as (t, x); then,
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When B throws the ball: (tB1 , xB1)
When B catches the ball again: (tB2 , xB1)
No net displacement has occurred in B’s frame of reference, over a time interval ∆tB =

tB2 − tB1 .
Now, we apply the Lorentz transformation and analyse this situation in A’s frame of

reference:

tA1 = γ(tB1 +
vxB1

c2
)

tA2 = γ(tB2 +
vxB2

c2
)

∴ ∆tA = γ(tB2 − tB1 +
v

c2
(xB2 − xB1))

= γ(∆tB +
v

c2
∆xB)

Because there is no net displacement in B’s frame of reference, we have the time dilation
factor

∆tA = γ∆tB

8 Representing 4D Space

We can represent a point in four-dimensional space uniquely with four coordinates (x, y, z,
t), but this has a unit mismatch. Therefore we instead use ct as a coordinate, and shift its
position in the set, to obtain

(ct, x, y, z)

We can then change known equations into this form, and we see some simplification:

ctA = γ(ctB +
v

c
xB), xA = γ(xB +

v

c
(tBc))

ctB = γ(ctA −
v

c
xA), xB = γ(xA −

v

c
(tAc))

We can introduce the parameter β := v
c

to simplify this further.

9 Spacetime Diagrams and Light Cones

If we first define an event as a specific combination of the regular three-dimensional position
vector and an instant in time, i.e. a unique set of coordinates (ct, x, y, z), then we can
represent an event on a plot of ct against x (or against any other spatial coordinate - we
restrict it to x for simplicity). This is referred to as a spacetime diagram.
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For instance, consider a setup that involves three people, A, B and C. We set B at the
origin, with A at x = −d and C at x = +d. A has a ball that he throws to B at u1 = c

2
and

which B then throws to C at u2 = 2c
3

. The presence of the ball at a point in space at each
time in this interval is an event that shows up on the spacetime diagrams. The positions
of A, B, and C are also events, but ones that never move in space, i.e. they are constant
relative to the ct axis.

The slope of the spacetime diagram involving the motion of a particular object is the
inverse of its β parameter, or c

v
.

Light is therefore characterised by a slope of 1 on the spacetime diagram (v = c). Since
nothing can go faster than light, we can use this to define a section of the diagram within
which events can affect one another. This region is referred to as the light cone, and its edges
are defined by the lines ct = x and ct = −x.
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For every point within the light cone shown, centered at (0, 0, 0, 0) which is B’s position
at ct = 0, B can have some causal effect on an event in that region. If it is in the forward
light cone, i.e. ct > 0, then B can affect or cause an event within the cone. If it is in
the backward light cone, i.e. ct < 0, then B can be affected by an event within the cone.
Therefore the light cone constitutes what is called a causally connected space.

For points lying outside the area defined by the light cone, there can be no causal con-
nection to the light cone’s center at that particular moment in time and space. For example,
consider C at t = 0. It lies outside the light cone of B, therefore it cannot have a causal
connection to B. If C decides to do something, such as shine a laser at B, there will be a delay.
Until B’s position in space comes into C’s light cone, or vice versa, B cannot experience any
effect from C’s actions at t = 0. Put another way, B cannot know what C is doing at t = 0.

10 The Spacetime Interval ∆s

When translating between reference frames, we would like to be able to define a quantity
analogous to length in 3D space that is invariant between reference frames. This turns out
to be the spacetime interval defined as follows:

∆s2 = (∆x)2 + (∆y)2 + (∆z)2 − (c∆t)2

We can prove that this is invariant under a Lorentz transformation.

Proof.
∆s2 = (∆xA)2 + (∆yA)2 + (∆zA)2 − (c∆tA)2

= γ2(∆xB + βc∆tB)2 + (∆yB)2 + (∆zB)2 − γ2(c∆tB + β∆xB)2
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= γ2
(

(∆xB)2+2βc∆xB∆tB+β2(c∆tB)2
)
−γ2

(
(c∆tB)2+2βc∆xB∆tB+(β∆xB)2

)
+(∆yB)2+(∆zB)2

At this point we can group terms,

= (γ2 − β2γ2)(∆xB)2 − γ2(1− β2)(c∆tB) + (∆yB)2 + (∆zB)2

We can simplify the coefficients:

(γ2 − β2γ2) =
1

1− v2

c2

− v2

c2

1

1− v2

c2

=
c2

c2 − v2
− v2

c2 − v2
= 1

γ2(1− β2) =
1

1− v2

c2

·
(

1− v2

c2

)
=
c2 − v2

c2 − v2
= 1

Therefore, the expression simplifies to

∆s2 = (∆xB)2 + (∆yB)2 + (∆zB)2 − (c∆tB)2

The spacetime interval allows us to characterise three different kinds of separation be-
tween events, depending on their relative causality.

Case 1: ∆s2 > 0

From the definition of ∆s, this suggests that(∆~r

∆t

)2

> c2

This implies that the events cannot be causally connected (the signal required for causal-
ity would have to travel faster than light), or that there is a spacelike interval between the
two events.

Case 2: ∆s2 < 0 (∆~r

∆t

)2

< c2

This implies that the events can have a causal connection; there is a timelike interval
between them.

Case 3: ∆s2 = 0 (∆~r

∆t

)2

= c2

This is lightlike separation an edge case of timelike separation, in which a causal connec-
tion is possible but only if the signal is light, or travels at exactly the speed of light.

Because the type of separation is characterised by the spacetime interval, it is indepen-
dent of the reference frame. If two events are timelike/spacelike/lightlike separated in one
reference frame, then that is the case in all reference frames.
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11 Velocity Transformations

We define the velocity of an object in a reference frame A in a certain direction simply as
follows:

uAx = lim ∆tA → 0
∆xA
∆tA

and similarly for y and z, only replacing the coordinates. This allows us to obtain a
relation between velocities in the same directions in different reference frames:

uAx = lim
∆tA→0

γ(∆xB + βc∆tB)/∆tB
γ
c
(c∆tB + β∆xB)/∆tB

We get this by applying the Lorentz transformation on both ∆xA and ∆tA, and dividing
the numerator and denominator by ∆tB. We can simplify this to

uAx = lim
∆tB→0

uBx + βc

1 + β
c
uBx

=
uBx + v

1 +
vuBx

c2

We can set up similar relations for the other spatial dimensions, with the exception that
the βc term will not make an appearance (we are taking the case in which the frames are
only moving away from one another in the x−direction). These relations in reverse become:

uBx =
uAx − v
1− vuAx

c2

uBy =
uAy

γ(1− vuAy

c2
)

uBz =
uAz

γ(1− vuAz

c2
)

We note that the first relation, for the case v << c, reduces to uBx = uAx − v, which is
exactly what we would expect from Newtonian physics.

This causes an apparent incongruity with how positions change. uB is not a linear
function of uA, like the spatial coordinates are. We would prefer a setup in which this
property is preserved.

12 Arc Length Characterisation

It is possible to characterise the motion of a particle in multiple ways. For regular motion
in two or three dimensions, this is often restricted to parameterising equations of motion in
time, as follows:

x(t) = v0xt, z(t) = v0zt−
1

2
gt2

However, this can also be expressed in terms of one of the spatial coordinates:
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z(x) =
v0z

v0x

x− 1

2

gx2

v2
0x

This is the difference between specifying a position in terms of the coordinates (x(t), z(t))
and (x, z(x)). We can characterise motion in a third way: by the distance that the particle
has travelled along its path s, with coordinates (x(s), z(s)).

We can apply this to motion in four dimensions, to characterise the path without pre-
ferring one coordinate over another. The incongruity associated with the non-linearity of
uB relative to uA can be resolved by using this characterisation of the path, rather than
characterising by the parameter ct.

We define as the characterising coordinate ∆τ 2 = −∆s2

c2
= ∆t2 −

(
∆~r
c

)2

, the ratio of the

proper time to the distance travelled. This is also independent of the frame of reference.
We can define a four-velocity u = (ut, ux, uy, uz) in which the individual components

in a particular frame of reference are defined as

u = lim
∆τ→0

∆R

∆τ

where R is also a four-vector with the components (ct, ~r) in which ~r can be split further.
We can define this four-velocity in two different frames of reference A and B, and carry

out a Lorentz transformation using this characterisation:

uAt = lim
∆τ→0

c∆t

∆τ
= lim

∆τ→0

γv(c∆tB + β∆xB)

∆τ

= γv(cuBt + βuBx)

Therefore the transformation with this characterisation is linear.

uAx = lim
∆τ→0

∆xA
∆τ

= lim
∆τ→0

γv(∆xB + βc∆tB)

∆τ
= γv(uBx + βuBt)

Instead of carrying out a Lorentz transformation, we can simplify the above expression
as follows:

uAx = lim
∆τ→0

∆x

∆τ
= lim

∆τ→0

∆x√
(∆t)2 −

(
∆~r
c

)2

= lim
∆t→0

∆x/∆t√
1−

(
~r

∆t

)2
1
c2

=
uAx√
1− v2x

c2

where vx is the relative velocity between the two reference frames. We have an inconsis-
tency in notation here, as uAx is being used to denote either the component of the 3-velocity
or the 4-velocity. Therefore we set the notation for the 4-velocity as
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u = (ũt, ũx, ũy, ũz)

Then, we can simplify the above relation to

˜uAx = γuAx

13 4-momentum

We can define a 4-momentum from the definition of the 4-velocity:

P = mu =

(
E

c
, ~p

)
= m

(
γc, γ~u

)
Therefore we can define the energy and momentum of a relativistic particle,

E = mγc2, ~p = mγ~u

in which m is the rest mass, which does not imply that mγ should be called the moving
mass because a particle does not gain mass as it moves.

We use the relation defining the invariant quantity (analogous to length) of the 4-velocity
covered in the definition of the spacetime interval:

P2 = ~P 2 −
(E
c

)2

= m2γ2~u2 −m2γ2c2 = m2γ2c2
(~u2

c2
− 1
)

In a rest frame, this reduces to

P2 = −m2c2 = ~P 2 −
(E
c

)2

which we can rearrange to get

E2 = (~pc)2 +m2c4

When ~u = 0 (set a frame in which ~p = 0), this reduces further to

E = mc2

14 Energy and Momentum Transformations

Because of the arc-length characterisation, we can transform energy and momentum just like
positions:

EA
c

= γv

(EB
c

+ βPBx

)
=⇒ EB

c
= γv

(EA
c
− βPAx

)
PAx = γv

(
PBx + β

EB
c

)
=⇒ PBx = γv

(
PAx − β

EA
c

)
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This suggests that energy is not invariant between reference frames, which has strange
implications for how basic laws of mechanics work relativistically.

15 Developing Relativistic Mechanics

We expect that Newton’s second law
∑ ~F = m~a should still be valid, but we cannot use

this without a rigorous definition of relativistic acceleration. Therefore we use the definition∑ ~F = d~p
dt

. Then, the work over a path characterised by position vectors a and b is:

W =

∫ b

a

~F · d~r =

∫ b

a

d~p

dt
d~r

=

∫ b

a

d~p

dt
~udt =

∫ b

a

~ud~p =

∫ b

a

(
d(~u · ~p)− d~u · ~p

)
= ~u · ~p

∣∣∣b
a
−
∫ b

a

~pd~u = mγ~u2
∣∣∣b
a
−
∫ b

a

mγ~ud~u

= mγ~u2
∣∣∣b
a
−m

∫ b

a

~ud~u

1− ~u2

c2

=

(
mγ~u2 +mc2

√
1− u2

c2

)∣∣∣∣∣
b

a

= mc2γ

(
u2

c2
+

1

γ2

)∣∣∣∣∣
b

a

= γmc2

∣∣∣∣∣
b

a

Therefore the work done is path-independent, and the answer suggests the form of the
work-energy theorem W = ∆K. This in turn suggests that we should define K = γmc2,
which we shift by −mc2 so that when a relativistic body is at rest it does not have a positive
KE.

K = mc2(γ − 1)

which suggests E = K +mc2.
We can confirm this by taking v << c:

K = mc2

(
1√

1− ~u2

c2

− 1

)

whereupon we use a Taylor approximation (1 + x)p ≈ 1 + px, which suggests(
1− ~u2

c2

)−1/2

= 1 +
1

2

~u2

c2

∴ K = mc2
(1

2

~u2

c2

)
=

1

2
m~u2
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16 Velocity/Momentum as Independent Variable

Under the velocity-as-independent-variable formalism (Lagrangian mechanics), we charac-
terise energy and momentum as follows:

E(~u) = mγ(~u)c2, ~p = mγ~u

The formalism in which E and ~p are functions of ~u turns out to be limited. So, we use
the Hamiltonian formalism in which momentum is the independent variable, and we take:

E =
√

(~pc)2 +m2c4 =⇒ ~uc =
~pc

E

The advantage of this is that it is independent of the rest mass, i.e. it allows for a massless
particle such as a photon having a nonzero energy or momentum. In this formalism, if we
take lim

m→0
E, we get

E = ~pc =⇒ ~u

c
=
~p

p
= 1

which suggests that the velocity of a particle without mass is u = c.
Lagrangian mechanics cannot give us these conclusions.
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