
Inner Product Spaces and Adjoints

Aditya Sengupta

December 19, 2019

If you’re reading this for Frenkel’s Math 110, a lot of this is from the textbook (Friedberg-Insel-
Spence), so please also read that!

1 Motivation

When we’re talking about Rn, we have the component-wise-vector view, i.e. that a ∈ Rn consists
of a column with elements a1, a2, . . . , an ∈ R that uniquely specify it, and we’ve done a good job
making that more abstract so far. But we don’t just have to think about it in terms of a collection
of numbers; we also think about them geometrically. They’re objects in some space and they have
lengths and orientations. This is a useful way of thinking about vector spaces, mostly because it’ll
give us the ideas of orthogonality, norms, unitary transformations (ones satisfying Uᵀ = U−1), and
so on, all of which will make it way easier to apply linear algebra in different settings.

In particular, one motivating example is quantum mechanics, in which observable quantities
are eigenvalues of operators: what you measure as momentum is an eigenvalue of the momentum
operator, what you measure as energy is an eigenvalue of the energy operator, and so on. However,
since quantum mechanics is a probabilistic theory, a “state” is a linear combination of different
eigenstates, and according to the coefficients on those eigenstates, you may measure any of the
possible eigenvalues with some probability. Suppose we had some state described by a wavefunction
(the absolute value squared of a wavefunction is a probability density for a particle),

ψ(x) = c1ψ1(x) + c2ψ2(x) + . . .

. Let’s say we’re trying to find the average energy, where each state has energy E1, E2, (For
simplicity, let’s say everything is real.) This is done by computing the following integral:

〈E〉 =

∫ ∞
−∞

ψ(x)Ĥψ(x)dx =

∫ ∞
−∞

(c1ψ1(x) + c2ψ2(x) + . . .) (E1c1ψ1(x) + E2c2ψ2(x) + . . .) dx

=

∫ ∞
−∞

(
E1c

2
1ψ

2
1(x) + (E1 + E2)c1c2ψ1(x)ψ2(x) + E2c

2
2ψ

2
2(x) + . . .

)
dx

= E1c
2
1 +

(∫ ∞
−∞

(E1 + E2)c1c2ψ1(x)ψ(x)dx

)
+ E2c

2
2 + . . .

Intuitively, the answer you want is E1c
2
1+E2c

2
2+ . . . : a sum of all the possible energies, weighted

by the probability of getting each one. The
∫
ψ2
j (x)dx terms behave nicely: they’re probability

1

densities, so if you take them out over all space they go to 1. But you also have the cross terms
like (E1 + E2)c1c2ψ1(x)ψ2(x). There’s no chance you’ll measure E1 + E2 (unless that happens to
be another energy eigenvalue, in which case it’ll have its own term later anyway), so you want that
to go to 0.

It’d be really nice if the theory could guarantee that
∫∞
−∞ ψi(x)ψj(x)dx = 0 whenever i 6= j,

because then we could almost just eyeball things like expected energy or momentum just by looking
at a wavefunction. Actually, you can do this, because the basis ψi(x) is orthonormal: any two
unequal elements integrate to 0, and any two equal elements integrate to 1 (because it’s a probability
density.)

This example might have been a lot, but it’s a good illustration of how we can build up a nice
mathematical theory to make an application much easier. Note that this was an example where we
considered orthogonality over a vector space (of square-integrable functions R → R) that wasn’t
Rn: it helped us to think about this inherently geometric idea over objects that aren’t as naturally
thought of as geometric. When you think about a function, you don’t usually picture it as a vector
- in the sense of a line with a magnitude and direction - in a space. But thinking about it that way
is really helpful! So what we’d like to build is a general way to think about elements of a vector
space geometrically: how long are they, what are they orthogonal to, and so on.

2 Inner Products

We give a vector space V/F a notion of geometry by equipping it with an inner product: a function
〈·, ·〉 : V × V → F that takes in two vectors in V and returns a scalar in F . This scalar, roughly
speaking, indicates how much one vector is along another. In particular, if the two vectors are the
same, we want to get the squared length of the vector.

For Rn/R, the inner product is

〈x, y〉 =

n∑
j=1

xjyj .

If we take 〈x, x〉, we just get the sum of squares of each component, which thanks to Pythagoras
we know is what we want. Also, this inner product has a number of nice properties that we might
want to carry over to more general inner products:

1. it satisfies scaling in both arguments: 〈cx, y〉 = 〈x, cy〉 = c〈x, y〉.

2. it satisfies superposition in both arguments: 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 and 〈x, y + z〉 =
〈x, y〉+ 〈x, z〉.

3. it’s commutative: 〈x, y〉 = 〈y, x〉.

4. it gives non-negative norms (the result of taking an inner product with a vector and itself):
〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = 0.

Unfortunately, we can’t perfectly carry these over if the field of our vector space isn’t R. Suppose
our vector space was C over the field C, and consider the norm of i: 〈i, i〉 = i2 = −1. This is saying
that the i vector has squared length −1, which isn’t geometrically reasonable. Let’s think about
how we can make this work.

2

By making a plot on the complex plane, we can figure out what we want the general norm of a
complex number to be.

1

i

a+ bi

bi

a

We see that the vector a + bi is made up of two perpendicular components, one with length a
and one with length b, so we want our length squared to be a2 + b2. Ideally, we’d like our new inner
product to have something like the form of the inner product of Rn/R, so that it keeps most of
the properties we listed above. Let’s make that more concrete by saying that there is some other
element of C, say c+ di, that we want to construct for each a+ bi, such that

〈a+ bi, c+ di〉 = (a+ bi)(c+ di) = a2 + b2

where c = c(a, b) and d = d(a, b) implicitly. Note that this is still the sum-of-componentwise-
products inner product, just that we have only one component. We get

(a+ bi)(c+ di) = (ac− bd) + i(ad+ bc) = (a2 + b2) + i(0) =⇒ ac− bd = a2 + b2, ad+ bc = 0

We’ve got two equations in two unknowns; you can either solve explicitly, or recognize that in
order to match coefficients in the real-component equation we need c = a and d = −b, and check
that that gives an imaginary component of zero. What we’ve found is the definition of the complex
conjugate:

(a+ bi)∗ = (a− bi)

So the form of our new norm on the complex numbers is 〈x, x〉 =
∑n
j=1 xix

∗
i . (Conventionally

we put the conjugate second, but some definitions put it first). Extending this to the more general
inner product, we get

〈x, y〉 =

n∑
i=1

xiy
∗
i

We’ve built an inner product that works for any vector space over C instead of just R. A nice
thing to notice is that by definition, real numbers are their own complex conjugate, so with a vector
space over R, this new definition is exactly what we had before!

The next question is: do we still satisfy all the nice properties from before?

3

1. scaling in both arguments?

〈cx, y〉 =

n∑
j=1

cxjy
∗
j = c

n∑
j=1

xjy
∗
j = c〈x, y〉

So far so good, but what about the other one?

〈x, cy〉 =

n∑
j=1

xj(cyj)
∗ =

n∑
j=1

xjc
∗y∗j = c∗〈y, x〉

We don’t have perfect linearity in both arguments, but we’re close: we call this a sesquilinear
form.

2. superposition in both arguments?

〈x+ y, z〉 =

n∑
j=1

(xj + yj)z
∗
j =

n∑
j=1

xjz
∗
j +

n∑
j=1

yjz
∗
j = 〈x, z〉+ 〈y, z〉

and the other one,

〈x, y + z〉 =

n∑
j=1

xj(yj + zj)
∗ =

n∑
j=1

xjy
∗
j +

n∑
j=1

xjz
∗
j = 〈x, y〉+ 〈x, z〉

Superposition does work! This is because the complex conjugate satisfies superposition (as
you can verify.)

3. commutativity?

〈x, y〉 =

n∑
j=1

xjy
∗
j 6=

n∑
j=1

x∗jyj = 〈y, x〉

It seems like commutativity isn’t satisfied, but we’re close. We can use the properties that
the complex conjugate satisfies superposition, that (a∗)∗ = a, and that (ab)∗ = a∗b∗ (again,
all of which you can verify), to get

〈x, y〉 =

n∑
j=1

xjy
∗
j =

n∑
j=1

(x∗jyj)
∗ =

 n∑
j=1

x∗jyj

∗ = 〈y, x〉∗

I think there’s a nice term for this like “conjugate commutativity”, but I can’t find the specific
term at the moment.

4

4. non-negative norms?

We built up this definition based on the fact that it would give us non-negative norms, so we
can trust that that’ll work.

We’ve successfully built the inner product for Cn/C, which has given us the general properties
we’d like any vector space over R or C to have (we won’t worry about fields that aren’t those two.)
This is how you get the definition of an inner product as given in Friedberg-Insel-Spence, or Axler,
or any other common text. Note that those definitions will not specifically require distributivity in
the second argument, because that comes out of distributivity in the first combined with “conjugate
commutativity”:

〈x, y + z〉 = 〈y + z, x〉∗ = 〈y, x〉∗ + 〈z, x〉∗ = 〈x, y〉+ 〈x, z〉

Some examples of valid inner products on other spaces are:

• over C([0, 1]) (real-valued continuous functions over [0, 1]): 〈f, g〉 =
∫ 1

0
f(x)g(x)dx.

• over Mn×n(F) (n× n matrices with elements from a field): 〈A,B〉 = tr(B∗A); here B∗ is the
conjugate transpose, (B∗)ij = (Bji)

∗.

3 Orthogonality and Orthonormality

We say that two elements ~v1, ~v2 of an inner product space are orthogonal if 〈~v1, ~v2〉 = 0. Again, this

extends the idea of being orthogonal in R2, where ~a ·~b = |a||b| cos θ, so if θ = 90◦ the dot product
is 0. This matches nicely the idea that an inner product reflects how much one vector is “along”
another one. If two vectors have an inner product of 0, they have no component along one another
- think back to the quantum mechanics example where we wanted ψ1 to be completely separate
from ψ2 so that we wouldn’t measure a “mixed” energy.

Orthogonality is useful because it allows us to use distributivity and kill most of the terms.
Suppose we have a basis of V/F in which all the terms are pairwise orthogonal, i.e. 〈vi, vj〉 = 0
whenever i 6= j. Take an arbitrary element v, and expand it in this basis.

v = c1v1 + c2v2 + · · ·+ cnvn

To get the component along vi, we take their inner product:

〈v, vi〉 = c1〈v1, vi〉+ c2〈v2, vi〉+ · · ·+ ci〈vi, vi〉+ · · ·+ cn〈vn, vi〉

and because of orthogonality, this just reduces to

〈v, vi〉 = ci〈vi, vi〉 =⇒ ci =
〈v, vi〉
〈vi, vi〉

=
〈v, vi〉
‖vi‖2

So based on this, the decomposition in this basis is

5

v =
〈v, v1〉
‖v1‖2

v1 +
〈v, v2〉
‖v2‖2

+ · · ·+ 〈v, vn〉
‖v2‖

To make this even simpler, we can require that every basis element has a norm of 1. This doesn’t
change any linear dependence, because all we’re doing is rescaling. An orthogonal basis in which
every element has unit norm is called an orthonormal basis. The decomposition then becomes

v =

n∑
j=1

〈v, vj〉vj

Given any basis, we can convert it to an orthonormal basis by the Gram-Schmidt process, which
is more than adequately covered elsewhere.

4 Linear Operators over Orthogonal Bases

Recall that a linear transformation is completely determined by how it acts on a basis. Since we
now know how to use inner products to easily decompose vectors into an orthonormal basis, we
can decompose the action of any linear transformation similarly. Suppose we have T : V → V , and
think of T (v) as just another element of V we can decompose:

T (v) =

n∑
i=1

〈T (v), vi〉vi

This also gives us an easy way of computing the matrix of a linear transform with respect to
the orthonormal basis {vi}. We just need to transform each basis element:

T (vj) =

n∑
i=1

〈T (vj), vi〉vi =

n∑
i=1

Aijvi =⇒ Aij = 〈T (vj), vi〉

and so, we can make the matrix A = [T]:

A =


〈T (v1), v1〉 〈T (v2), v1〉 . . . 〈T (vn), v1〉
〈T (v1), v2〉 〈T (v2), v2〉 . . . 〈T (vn), v2〉

. . .

〈T (v1), vn〉 〈T (v2), vn〉 . . . 〈T (vn), vn〉


5 Inner Product Spaces as Dual Spaces

The inner product is a function V × V → F , and we’ve previously seen something similar where
vectors are mapped to scalars, in the dual space. If we fix the second vector (so that we have linearity
instead of conjugate-linearity), then the function f(x) = 〈x, y〉 is a linear functional f : V → F .
For every vector y ∈ V , we’ve now got a linear functional associated with it and vice versa. Let’s
prove this!

6

Theorem. (F-I-S theorem 6.8) Let V/F be a finite-dimensional vector space, and let g : V → F
be a linear transformation. Then there exists a unique y ∈ V such that g(x) = 〈x, y〉 for all x ∈ V .

Proof. g is linear, so its action is completely determined by how it acts on each element of a basis
for V . For ease of working with inner products, let’s require that this basis is orthonormal. From
there, we’ll construct an element of V such that its inner product with each element of a basis
matches g, and we’ll be done!

Let β = {v1, . . . , vn} be an orthonormal basis for V . Then, consider the action of g on each of
these basis elements, g(v1), . . . , g(vn). In our construction of y, we want 〈v1, y〉 = g(v1), 〈v2, y〉 =
g(v2), and so on, by the definition of y. But since β is an orthonormal basis, we can decompose y
as follows:

y =

n∑
i=1

〈y, vi〉vi =

n∑
i=1

〈vi, y〉∗vi

=

n∑
i=1

g(vi)
∗vi.

Let’s verify that this construction works: for any x ∈ V , we can decompose it as

x = a1v1 + a2v2 + · · ·+ anvn,

and since g is linear, we can apply it as follows,

g(x) = g(a1v1 + a2v2 + · · ·+ anvn) = a1g(v1) + a2g(v2) + · · ·+ ang(vn)

=

n∑
i=1

aig(vi).

Next, let’s compute the inner product with y!

〈x, y〉 = 〈
n∑
i=1

aivi, y〉 decomposing x to an orthonormal basis

=

n∑
i=1

ai〈vi, y〉 linearity and distributive properties of inner product

=

n∑
i=1

ai〈vi,
n∑
j=1

g(vj)
∗vj〉 decomposing y to an orthonormal basis

=

n∑
i=1

ai〈vi, g(vi)
∗vi〉 orthonormality means 〈vi, vj〉 = δij

=

n∑
i=1

aig(vi)〈vi, vi〉 second-argument conjugate scaling

=

n∑
i=1

aig(vi).

7

The two results match, so we’re done!

We know that V is isomorphic to V ∗, and we can now write down an explicit form for that
isomorphism - a one-to-one and onto mapping between each element of V and each linear functional
from V !

Recall the following property of dual spaces: define T : V → W,T ᵀ : W ∗ → V ∗, g ∈ W ∗ and
T ᵀ(g) = g ◦ T . If we consider W = V and say g(x) = 〈x, y〉 for some fixed y ∈ F , then this gives us

T ᵀ(〈·, y〉) = 〈T (·), y〉

The notation in this is a little strange: I left out the x from the inner products to indicate
they’re functions of x that we aren’t yet evaluating.

To proceed with this, let’s think about what T ᵀ represents in this context: it’s some map
V ∗ → V ∗. Here, it’s taking in the operation “take the inner product with y” and returning a
different operation. We know this is a linear functional, so there has to be some other fixed element
of V , say T ∗(y), such that this new linear functional can be written as “take the inner product
with T ∗(y)”. Effectively, we can think of T ᵀ as only acting on y, so let’s put it in as some other
operation T ∗ that we’ll have act on y.

〈x, T ∗(y)〉 = 〈T (x), y〉

We refer to T ∗ as the adjoint of T . It’s a transformation V → V , just like T is. Therefore, to
find its matrix representation, we can put in each element of the orthonormal basis over which T
is defined. (We’re also going to start denoting complex conjugation by x̄, so that we don’t confuse
that with the adjoint.)

We previously saw that [T]ij over an orthonormal basis was equal to 〈T (vj), vi〉, so let’s try and
write [T ∗]ij in terms of that.

[T ∗]ij = 〈T ∗(vj), vi〉 = 〈vi, T ∗(vj)〉 = 〈T (vi), vj〉 = [T]ji

Therefore, to get the matrix of T ∗, we take its conjugate transpose, which I’ll denote with a
dagger †: we take the complex conjugate of each element, and transpose the result.

Both the conjugate-transpose representation and the construction by dual spaces can tell us
that adjoints are involutory, that is, they satisfy (T ∗)∗ = T . If you take an adjoint twice, you’re
left with the original transformation.

6 Normal and Self-Adjoint Operators

Suppose T is diagonalizable, and therefore that there exists a basis in which [T] is a diagonal matrix.
In this case, the conjugate-transpose [T ∗] is also diagonal, and so the two commute. We call such
operators normal.

T ∗T = TT ∗.

8

This gives us an easy way to check if an operator is diagonalizable: if it commutes with its
conjugate transpose, that’s because they’re both diagonal under the same basis. This is an easier
condition to satisfy than it might seem, because we’re guaranteed that whenever T is diagonalizable,
its diagonal basis is the same as that of T ∗.

The fact that they’re diagonalized by the same basis is a bit of a leap of faith: how do we know
that they’re not diagonalized by different bases? To answer this, we’ll first have to build up a bit
of machinery.

As a simpler case than the eventual result we want to reach, let’s consider unitary operators,
i.e. U such that U∗U = I. Since we’re only considering transformations from a vector space to
itself, this automatically means they commute, because inverses are unique:

U∗U = I =⇒ U∗ = U−1 =⇒ UU∗ = UU−1 = I.

Further, if we consider matrix representations, we can see that over the reals, det(U) = ±1,
because det(U†) = det(U)∗ (transposes have the same determinant as the original matrix, so we just
have to take the conjugate of everything). Therefore, det(U†U) = det(U†) det(U) = det(U)2 = 1. If
we allow complex elements, we have the more general statement that ‖det(U)‖2 = 1, so det(U) = eiϕ

for some ϕ.
So what’s the point of looking at operators like this? Unitary operators represent transforma-

tions that preserve the inner product. Since their determinant has magnitude 1, they don’t do any
scaling, just some sort of complex rotation.

U unitary =⇒ 〈Ux,Uy〉 = 〈x, y〉.

We can show this using the definition of a unitary operator and properties of the adjoint:

〈Ux,Uy〉 = 〈x, U∗Uy〉 = 〈x, Iy〉 = 〈x, y〉.

Unitary operators allow us to build up to the result of “being normal is equivalent to being
diagonal”, because it makes our change of basis easier. If we have an orthonormal basis that
is not an eigenbasis, and we want to make it an orthonormal eigenbasis, we can show that the
transformation between these two is unitary. It’s possible to do this rigorously, but in a nutshell:
since both bases are orthonormal, any basis element has unit norm both before and after the
transformation, so the transformation has to have a unit scaling factor. This in conjunction with
the definition of an inner product proves it’s unitary.

Now, we can prove being diagonal implies being normal fairly easily by looking at the matrix
forms. Suppose Q is the change-of-basis transformation to an orthonormal eigenbasis β, and D
is the diagonal form. Since the bases we’re translating between are orthonormal, we can say Q is
unitary.

[T] = QDQ−1 =⇒ [T ∗] = [T]† = (QDQ−1)† = (Q−1)†D†Q† = QD†Q−1.

Therefore, to show they commute, we use these matrix representations:

9

T ∗T = Q[T ∗]βQ
−1Q[T]βQ

−1 = Q[T ∗]β [T]βQ
−1

= Q[T]β [T ∗]βQ
−1 = Q[T]βQ

−1Q[T ∗]βQ

= TT ∗.

The last special case of operators we’ll look at under inner products is self-adjoint operators,
or Hermitian operators. These are cases in which T ∗ = T . We automatically get that all such
operators are normal, because everything commutes with itself. For further results on what this
means for diagonalizability, see Friedberg-Insel-Spence; I think I’ve exhausted what I can explain
as effectively than them.

10

