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Theorem (Central Limit Theorem). Given a collection of i.i.d. random variables X1,..., X, all

of which have mean p and variance o2, the distribution of the sample mean S, = Z%ifx in the

. . . . 2
limit n — oo is approxzimately N (,u, %)

We first prove a couple of intermediate results.

Lemma 1. For i.i.d. random variables X1,..., X, each having MGF M(s) = Ele**], the MGF of
their sum is given by (M(s))™.

Proof. of Lemma 1. Let S =>"" | X;.

M(s) = B[] = E[e 1 #Xrt+X0) )

Since the X;s are all independent, we can split them to get

Ms(s) = Be*X1] - BleX?] - E[es] 2)

Since the X;s are all identically distributed, this gives us

Ms(s) = (E[e*™])" = (M(s))". (3)

Lemma 2. The Fourier transform of a Gaussian PDF is a Gaussian in frequency space:

F (\/2;7@) (@) = =55 (@)

Proof. of Lemma 2. Presented better than I can at
http://www.cse.yorku.ca/~kosta/CompVis_Notes/fourier_transform_Gaussian.pdf. (This
is something I just sort of remembered when I had to use it in the proof.) O



Proof. of the Central Limit Theorem.
We're first going to make the simplifying assumption that p = 0. If it isn’t, we can rescale the
X;s so that it is.

To show: S,, approx. ~ N (0,0%/n)

These distributions are approximately equal if the pdf of S, converges pointwise to that of
N(0,0?/n). I'd first like to rescale this so that we only have n dependence on the left (so that I can

apply a limit), so we can equivalently state this as the pdf of \/nS, = Z\/gi converging pointwise

to the pdf of N(0,c?).

To show: lim fZX'/\/E(Z) = 1 =7 /20" (5)
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We have to construct a pdf of a sum of random variables. We can deal with this through
convolution, or through MGFs; since they’re i.i.d., MGF's will be easier because that’ll just reduce
to a power on the MGF of a single variable, by Lemma 1. Therefore, we can start looking at the
MGF of X;//n.

In general, we don’t know anything about what the MGF of X; is, but we do know that n is
large which means that ﬁ is small, so we can Taylor expand the MGF of an arbitrary X;/y/n and

consider all terms of order less than % to be negligible. This is the heart of the proof: as n is driven
high, the sample mean gets closer to the true mean and moments above second-order contribute
less and less to its distribution around the true mean.
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If you'd like you can specify X; as X for clarity, because they’re all the same. We know that
the nth derivative of an MGF evaluated at s = 0 is the nth moment of a distribution. The zeroth
moment is 1, the first moment is the mean which we’ve set to zero, and the second moment is the
variance which we know. Therefore
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We still have the problem of translating this MGF to a pdf. The MGF is essentially a frequency-
domain way of looking at a distribution, so it’s related to the pdf by a Fourier transform:

Mx (s) = Mx (iw) = F(fx(2))(w) = /_Oo fx(z)e™*dx = E[e™7] (8)

(The exact relation may be a Laplace transform, but we’ll get a nice result out of the Fourier
version soon). You can see that the above equation reduces to the usual integral for the MGF, just
with the substitution s — iw.



What we actually want to use now is the inverse Fourier transform, which gives us the pdf from
the MGF.

Fxe(@) = F~L(My (i) (x) = [ T My (iw)e— " d ()

We substitute in the MGF that we’re interested in, that of > X;//n, and apply Lemma 1:

= (o () - O () - (o) oo

We send s — iw to match the form of a Fourier transform.
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This is the limit definition for e®, and since we’re working in the limit n — oo, this is valid for
us to use.
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My, ym(iw) = e7=

(12)

As we saw in Lemma 2, this is the Fourier transform of a Gaussian A(0,02), so the pdf

corresponding to this MGF must be that of a normal distribution with variance o?. Therefore,
‘,EZ

nh_}rr;o Isxivn = ﬁ(fﬁ, which is what we wanted! O

Comments

I first tried to prove this using an ¢ — N argument, i.e. if we choose the cdf Fg (z) of the sample
mean of any distribution, then for any € > 0 there exists an N € R such that n > N implies
|Fs, (2) —®(z | p,0?/n)| < e. Unfortunately, this was awful, because the cleanest way to define the
cdf sample mean was by integrating a pdf that I got through an MGF argument similar to what’s
in the eventual proof, which produces a double or triple integral whose exact form isn’t known and
so can’t be readily simplified or approximated.

Further, after I'd finished the proof below, I was shown a counterexample to any possible
€ — N argument: for any N, select X; ~ Gamma (47,1). (The Gamma(k, #) distribution has PDF

N
%; I haven’t yet verified that this counterexample works.) The sample mean then goes to

an exponential distribution. This means it’s impossible to come up with a generalized bound that
works for any distribution, i.e. there does not exist a function N(e) that is guaranteed to give us a
certain confidence interval on a sample-mean distribution regardless of the underlying distribution
from which we drew the X;s.

I also presented the FT and IFT equations even though I didn’t end up using them (the Fourier
work was done in Lemma 2 which I didn’t prove myself); I figured this would be nicer than a
black-box transform from an MGF that looks roughly right. You could also recognize the final
expression as the usual MGF for a Gaussian, which wouldn’t require the s — iw transform but
which I would find less satisfying.



