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Theorem (Central Limit Theorem). Given a collection of i.i.d. random variables X1, . . . , Xn all

of which have mean µ and variance σ2, the distribution of the sample mean Sn =
∑n
i=1Xi
n in the

limit n→∞ is approximately N
(
µ, σ

2

n

)
.

We first prove a couple of intermediate results.

Lemma 1. For i.i.d. random variables X1, . . . , Xn each having MGF M(s) = E[esx], the MGF of
their sum is given by (M(s))n.

Proof. of Lemma 1. Let S =
∑n
i=1Xi.

MS(s) = E[esS ] = E[es(X1+X2+···+Xn)] (1)

Since the Xis are all independent, we can split them to get

MS(s) = E[esX1 ] · E[esX2 ] · · · · · E[esXn ] (2)

Since the Xis are all identically distributed, this gives us

MS(s) =
(
E[esXi ]

)n
= (M(s))n. (3)

Lemma 2. The Fourier transform of a Gaussian PDF is a Gaussian in frequency space:

F
(

1√
2πσ2

e
−x2

2σ2

)
(ω) = e−

ω2σ2

2 (4)

Proof. of Lemma 2. Presented better than I can at
http://www.cse.yorku.ca/~kosta/CompVis_Notes/fourier_transform_Gaussian.pdf. (This
is something I just sort of remembered when I had to use it in the proof.)
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Proof. of the Central Limit Theorem.
We’re first going to make the simplifying assumption that µ = 0. If it isn’t, we can rescale the

Xis so that it is.

To show: Sn approx. ∼ N (0, σ2/n)

These distributions are approximately equal if the pdf of Sn converges pointwise to that of
N (0, σ2/n). I’d first like to rescale this so that we only have n dependence on the left (so that I can

apply a limit), so we can equivalently state this as the pdf of
√
nSn =

∑
Xi√
n

converging pointwise

to the pdf of N (0, σ2).

To show: lim
n→∞

f∑Xi/
√
n(z) =

1√
2πσ2

e−z
2/2σ2

(5)

We have to construct a pdf of a sum of random variables. We can deal with this through
convolution, or through MGFs; since they’re i.i.d., MGFs will be easier because that’ll just reduce
to a power on the MGF of a single variable, by Lemma 1. Therefore, we can start looking at the
MGF of Xi/

√
n.

In general, we don’t know anything about what the MGF of Xi is, but we do know that n is
large which means that 1√

n
is small, so we can Taylor expand the MGF of an arbitrary Xi/

√
n and

consider all terms of order less than 1
n to be negligible. This is the heart of the proof: as n is driven

high, the sample mean gets closer to the true mean and moments above second-order contribute
less and less to its distribution around the true mean.

MXi

(
s√
n

)
≈MXi(0) +

M ′Xi(0)

1!

s√
n

+
M ′′Xi(0)

2!

s2

n
+ . . . (6)

If you’d like you can specify Xi as X1 for clarity, because they’re all the same. We know that
the nth derivative of an MGF evaluated at s = 0 is the nth moment of a distribution. The zeroth
moment is 1, the first moment is the mean which we’ve set to zero, and the second moment is the
variance which we know. Therefore

MXi

(
s√
n

)
≈ 1 +

σ2s2

2n
(7)

We still have the problem of translating this MGF to a pdf. The MGF is essentially a frequency-
domain way of looking at a distribution, so it’s related to the pdf by a Fourier transform:

MX(s) = MX(iω) = F(fX(x))(ω) =

∫ ∞
−∞

fX(x)eiωxdx = E[eiωx] (8)

(The exact relation may be a Laplace transform, but we’ll get a nice result out of the Fourier
version soon). You can see that the above equation reduces to the usual integral for the MGF, just
with the substitution s→ iω.
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What we actually want to use now is the inverse Fourier transform, which gives us the pdf from
the MGF.

fX(x) = F−1(MX(iω))(x) =

∫ ∞
−∞

MX(iω)e−iωxdω (9)

We substitute in the MGF that we’re interested in, that of
∑
Xi/
√
n, and apply Lemma 1:

M∑
Xi/
√
n(s) =

(
MXi

(
s√
n

))n
=

(
MXi

(
s√
n

))n
=

(
1 +

σ2s2

2n

)n
(10)

We send s→ iω to match the form of a Fourier transform.

M∑
Xi/
√
n(iω) =

(
1− σ2ω2

2n

)n
(11)

This is the limit definition for ex, and since we’re working in the limit n→∞, this is valid for
us to use.

M∑
Xi/
√
n(iω) = e−

σ2ω2

2 (12)

As we saw in Lemma 2, this is the Fourier transform of a Gaussian N (0, σ2), so the pdf
corresponding to this MGF must be that of a normal distribution with variance σ2. Therefore,

lim
n→∞

f∑Xi/
√
n = 1√

2πσ2
e−

x2

2σ2 , which is what we wanted!

Comments

I first tried to prove this using an ε −N argument, i.e. if we choose the cdf FSn(z) of the sample
mean of any distribution, then for any ε > 0 there exists an N ∈ R such that n > N implies
|FSn(z)−Φ(z | µ, σ2/n)| < ε. Unfortunately, this was awful, because the cleanest way to define the
cdf sample mean was by integrating a pdf that I got through an MGF argument similar to what’s
in the eventual proof, which produces a double or triple integral whose exact form isn’t known and
so can’t be readily simplified or approximated.

Further, after I’d finished the proof below, I was shown a counterexample to any possible
ε−N argument: for any N , select Xi ∼ Gamma

(
1
N , 1

)
. (The Gamma(k, θ) distribution has PDF

xk−1e−x/θ

θkΓ(k)
; I haven’t yet verified that this counterexample works.) The sample mean then goes to

an exponential distribution. This means it’s impossible to come up with a generalized bound that
works for any distribution, i.e. there does not exist a function N(ε) that is guaranteed to give us a
certain confidence interval on a sample-mean distribution regardless of the underlying distribution
from which we drew the Xis.

I also presented the FT and IFT equations even though I didn’t end up using them (the Fourier
work was done in Lemma 2 which I didn’t prove myself); I figured this would be nicer than a
black-box transform from an MGF that looks roughly right. You could also recognize the final
expression as the usual MGF for a Gaussian, which wouldn’t require the s → iω transform but
which I would find less satisfying.
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