
7/23/2021

localhost:1234/edit?id=b9647d10-ebf8-11eb-0448-d5ffa24c0c44# 1/11

LQG Control Demo
Aditya Sengupta

I wasn't totally sure of the syntax and logic �low for the general LQG control problem, so this notebook
is meant to help me clarify and present how it works with a toy problem!

There's a couple unintuitive results in here that might indicate unfound bugs, so consider this a dra�t
that I might revise later; for now it's done what I need it to.

This notebook was made with Pluto.jl.

1000

Of the above imports, the only one that might not be standard is the dare function from
ControlSystems.jl . This solves a general discrete algebraic Riccati equation, which will give us our

optimal gain values. This can be done in Python too, with scipy.linalg.solve_discrete_are and
essentially the same syntax.

begin
 using LinearAlgebra , Distributions , Plots , Infinity , Random
 using ControlSystems : dare
 rms = data -> round(sqrt(sum(data .^ 2)), digits=3)
 Random.seed!(4)
 nsteps = 1000
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

7/23/2021

localhost:1234/edit?id=b9647d10-ebf8-11eb-0448-d5ffa24c0c44# 2/11

My main reference is these lecture slides from Stanford's EE 363.

The �rst step is to make a control problem, which I do by randomly choosing matrices (input-to-
state-evolution) and (state-to-measurement), as well as slightly more carefully choosing a matrix
(state-to-state-evolution). has to be stable so that time-evolution without anything else doesn't just
blow up, so I pick some eigenvalues between -1 and +1 and apply a random change-of-basis to it to
ensure none of the eigenvalues are outside the unit circle.

I also �x the same choices of noise and control cost matrices as in the slides.

Reference for what the matrices are:

A, state-to-state-evolution
B, input-to-state-evolution
C, state-to-measurement
W, process noise covariance
V, measurement noise covariance
Q, state penalty weighting (the cost of having a state is)
R, input penalty weighting (the cost of having an input is)

The notes also specify the initial distribution comes from a distribution, but I'm just saying
the initial state is a known random vector and not tuning .

UniformScaling{Bool}
true*I

This cell solves algebraic Ricatti equations for the Kalman gain and the regulator gain . Essentially
what this does is �x the observed state covariance (respectively, the controlled state covariance) so
that it stays constant through a predict-update (respectively, a...state-update and input-update?) cycle.
This is one of the main advantages of the Kalman-LQG method: these gains can be computed up front,
and then controlling the system is just a matter of adding in a couple of matrix multiplications.

begin
 # set up the problem
 s = 5; # state size
 p = 3; # measurement size
 m = 2; # input size
 N = ∞; # control horizon; not working with this as of yet

 lambdas = rand(Uniform(-1, 1), s);
 lambdas = lambdas ./ ((1 + 1e-6) * maximum(abs.(lambdas)));
 M = rand(s, s);
 A = inv(M) * diagm(lambdas) * M;
 B = rand(s, m);
 C = rand(p, s);
 Q = I;
 R = I;
 W = 0.5I;
 V = I;
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

https://stanford.edu/class/ee363/lectures/lqg.pdf

7/23/2021

localhost:1234/edit?id=b9647d10-ebf8-11eb-0448-d5ffa24c0c44# 3/11

2×5 Matrix{Float64}:
 0.117277 -0.146625 -0.203931 -0.0299814 0.0978185
-0.19511 0.0562195 0.218583 -0.0944854 -0.265731

First, we just iterate . Since we chose such that all its eigenvalues were within the unit
circle, this should lead to all state variables reaching a steady-state value as the transients die, and this
does in fact happen...if the dominant eigenvalue is 1. Sometimes your results will be dominated by an
eigenvector with eigenvalue close to -1, which leads to oscillations on short timescales. It'll still settle
over a longer timescale, but it'll look spiky in the meantime. Just increase the number of iterations to
see it settle more in that case!

begin
 Pk = dare(A', C', W, V) # P_Kalman
 L = Pk * C' * inv(C * Pk * C' + R) # Kalman gain
 Pr = dare(A, B, Q, R) # P_regulator
 K = -inv(R + B' * Pr * B) * B' * Pr * A # regulator gain
end

⋅
⋅
⋅
⋅
⋅
⋅

x = rand(s);⋅

uncontrolled path, zero inputs
begin
 local states = zeros(Float64, nsteps, s)
 states[1,:] = x
 for i in 2:nsteps
 x = states[i-1,:]
 states[i,:] = A * states[i-1,:]
 end
 plot(1:nsteps, states, labels=["x1" "x2" "x3" "x4" "x5"], xlabel="Time step",
ylabel="State variable", title="Zero input, rms err = $(rms(states))")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅

7/23/2021

localhost:1234/edit?id=b9647d10-ebf8-11eb-0448-d5ffa24c0c44# 4/11

Adding noise into this, we see why control is necessary; while paths seem relatively stable, they're
veering far o�f and not staying close to 0 at all.

Next, we drive the system with random inputs, and this leads to it going o�f even further, because I
didn't control the action of B the same way I did A. (I'm not really sure how to ensure the stability of a
dynamic system de�ned by a non-square matrix, as there's no concept of an eigenvalue - this would
be intellectually interesting to look at but doesn't really matter.)

uncontrolled path, zero inputs
begin
 local states = zeros(Float64, nsteps, s)
 local process_dist = MvNormal(Matrix(W, s, s))
 states[1,:] = x
 for i in 2:nsteps
 x = states[i-1,:]
 states[i,:] = A * states[i-1,:] + rand(process_dist)
 end
 plot(1:nsteps, states, labels=["x1" "x2" "x3" "x4" "x5"], xlabel="Time step",
ylabel="State variable", title="Zero input with noise, rms err = $(rms(states))")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅

7/23/2021

localhost:1234/edit?id=b9647d10-ebf8-11eb-0448-d5ffa24c0c44# 5/11

Now, we bring in the controller! We �rst run it without any noise. We see here that all the state
variables go to 0 very quickly, as you would expect from no process or measurement noise and full-
state observations.

uncontrolled path, random inputs
begin
 local states = zeros(Float64, nsteps, s)
 local process_dist = MvNormal(Matrix(W, s, s))
 states[1,:] = x
 for i in 2:nsteps
 x = states[i-1,:]
 states[i,:] = A * states[i-1,:] + B * rand(m) + rand(process_dist)
 end
 plot(1:nsteps, states, labels=["x1" "x2" "x3" "x4" "x5"], xlabel="Time step",
ylabel="State variable", title="Random inputs with noise, rms err = $(rms(states))")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅

7/23/2021

localhost:1234/edit?id=b9647d10-ebf8-11eb-0448-d5ffa24c0c44# 6/11

Now we add noise back in. Compare this to the case of no control - we're staying much closer to the
origin now! It's still not as good as it could be, because we've also told the controller it has to
compensate for measurement noise but haven't put any in, causing it to overcorrect. We'll see this
solve itself in a bit, but you could rerun the AREs above with to see how that a�fects it.

full state observation, LQG control
begin
 local states = zeros(Float64, nsteps, s)
 states[1,:] = x
 for i in 2:nsteps
 x = states[i-1,:]
 u = K * x
 states[i,:] = A * x + B * u
 end
 plot(1:nsteps, states, labels=["x1" "x2" "x3" "x4" "x5"], xlabel="Time step",
ylabel="State variable", title="Noiseless LQG control, rms err = $(rms(states))")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅

7/23/2021

localhost:1234/edit?id=b9647d10-ebf8-11eb-0448-d5ffa24c0c44# 7/11

Now, we break the �nal simplifying assumption, that we have noiseless full-state observations. First,
let's just add in measurement noise and do nothing to correct it. With full-state observations, all this
does is changes the system's process noise without telling the LQG controller that you're changing the
process noise (thanks to Gaussian linearity, you're just dealing with instead of

) so in principle, this process could be optimally controlled just by re-solving the controller
ARE. However, that assumption won't hold when we go to partial-state control.

full state observation plus noise, LQG control
begin
 local states = zeros(Float64, nsteps, s)
 local process_dist = MvNormal(Matrix(W, s, s))
 states[1,:] = x
 for i in 2:nsteps
 x = states[i-1,:]
 u = K * x
 states[i,:] = A * x + B * u + rand(process_dist)
 end
 plot(1:nsteps, states, labels=["x1" "x2" "x3" "x4" "x5"], xlabel="Time step",
ylabel="State variable", title="Noisy LQG control, rms err = $(rms(states))")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅

7/23/2021

localhost:1234/edit?id=b9647d10-ebf8-11eb-0448-d5ffa24c0c44# 8/11

Correcting this measurement noise is actually a di�ferent algebraic Riccati equation than the one we
solved above - let's quickly compute a Kalman gain that'll help us solve this problem!

5×5 Matrix{Float64}:
0.383131 0.0329179 0.0173027 0.0281387 0.0645356
0.0329179 0.589193 0.158541 0.173919 0.156087
0.0173027 0.158541 0.489378 0.0826488 0.0465391
0.0281387 0.173919 0.0826488 0.465755 0.128532
0.0645356 0.156087 0.0465391 0.128532 0.515271

From here on out, we store two arrays of the states: the true values in states , so we can keep track of
how well we're controlling them, and our best-estimate values in states_hat , to use as control input.

full state observation plus noise and Kalman correction, LQG control
begin
 local states = zeros(Float64, nsteps, s)
 local process_dist = MvNormal(Matrix(W, s, s))
 local measure_dist = MvNormal(Matrix(V, s, s))
 states[1,:] = x
 for i in 2:nsteps
 x = states[i-1,:]
 u = K * x
 y = A * x + B * u + rand(measure_dist)
 states[i,:] = y + rand(process_dist)
 end
 plot(1:nsteps, states, labels=["x1" "x2" "x3" "x4" "x5"], xlabel="Time step",
ylabel="State variable", title="LQG with measurement noise, rms err = $(rms(states))")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅

begin
 Pk_full = dare(A, I, W, V)
 L_full = Pk_full * inv(Pk_full + R) # Kalman gain with C = I
end

⋅
⋅
⋅
⋅

7/23/2021

localhost:1234/edit?id=b9647d10-ebf8-11eb-0448-d5ffa24c0c44# 9/11

Having built all of this up, let's go to the full machinery with partial-state observations!

full state observation plus noise and Kalman correction, LQG control
begin
 local states = zeros(Float64, nsteps, s)
 local states_hat = zeros(Float64, nsteps, s)
 local process_dist = MvNormal(Matrix(W, s, s))
 local measure_dist = MvNormal(Matrix(V, s, s))
 local C = I
 states[1,:] = x
 states_hat[1,:] = x
 for i in 2:nsteps
 x = states[i-1,:]
 x_hat = states_hat[i-1,:]
 u = K * x_hat
 y = C * (A * x_hat + B * u) + rand(measure_dist)
 innovation = y - C * (A * x + B * u)
 # you could just say innovation = rand(measure_dist) here, but y is separate
for clarity
 states_hat[i,:] = y + L_full * innovation
 states[i,:] = states_hat[i,:] + rand(process_dist)
 end
 plot(1:nsteps, states, labels=["x1" "x2" "x3" "x4" "x5"], xlabel="Time step",
ylabel="State variable", title="LQG with full Kalman, rms err = $(rms(states))")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅

⋅

7/23/2021

localhost:1234/edit?id=b9647d10-ebf8-11eb-0448-d5ffa24c0c44# 10/11

full state observation plus noise and Kalman correction, LQG control
begin
 local states = zeros(Float64, nsteps, s)
 local states_hat = zeros(Float64, nsteps, s)
 local process_dist = MvNormal(Matrix(W, s, s))
 local measure_dist = MvNormal(Matrix(V, p, p))
 states[1,:] = x
 states_hat[1,:] = x
 for i in 2:nsteps
 x = states[i-1,:]
 x_hat = states_hat[i-1,:]
 u = K * x_hat
 y = C * (A * x_hat + B * u) + rand(measure_dist)
 innovation = y - C * (A * x + B * u)
 states_hat[i,:] = A * x_hat + B * u + L * innovation
 states[i,:] = states_hat[i,:] + rand(process_dist)
 end
 plot(1:nsteps, states, labels=["x1" "x2" "x3" "x4" "x5"], xlabel="Time step",
ylabel="State variable", title="LQG with partial Kalman, rms err = $(rms(states))")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅

