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1 Introduction

Many years ago, someone decided to drop the summation sign
∑

from expressions that would normally need
it, and trust that everyone would be smart enough to recognize there would have to be a summation there
without writing it. That man’s name? Albert Einstein. (No, really.)

2 Usage

Einstein notation essentially drops the summation sign from a sum over a dummy variable:

n∑
i=1

ai → ai (1)

We consider the summation to be implicit based on knowing that i has no external meaning, and knowing
that n is the dimension of the vector a. This is useful when representing the elements of a vector coupled
with the unit vectors in each direction,

~r =


x1
x2
...
xn

 = x1ê1 + x2ê2 + · · ·+ xnên =

n∑
i=1

xiêi = xiêi (2)

This notation allows us to represent the idea of different coordinate systems compactly:

~r = xiêi = x′iê
′
i (3)

In conventional notation, we would represent the transformation êi → ê′i by a transformation matrix,

~r′ = Λ~r (4)
x′1
x′2
...
x′n

 =


λ11 λ12 . . .
λ21 . . .

... . . .
λnn



x1
x2
...
xn

 (5)

The matrix is a compact way of representing this transformation, but given how regular the component
naming is, it could be made much more so. We can do this by considering that the matrix is just encoding
a series of linear combinations of variables:
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x′1 = λ11x1 + λ12x2 + · · ·+ λ1nxn (6)

x′2 = λ21x1 + λ22x2 + · · ·+ λ2nxn (7)

...

x′n = λn1x1 + λn2x2 + · · ·+ λnnxn (8)

We can write each of these as a summation, and then drop the summation sign,

x′1 =

n∑
i=1

λ1ixi = λ1ixi (9)

x′2 =
∑
i=1

λ2ixi = λ2ixi (10)

...

x′n =

n∑
i=1

λnixi = λnixi (11)

which we can write all as one expression by denoting the arbitrary index on the new variable by j,

x′j = λjixi (12)

Since we drop the summation signs that make some aspects more explicit, we often rely on the indices
to provide both information about the sum and to keep track of whether the sum is valid. It is typically
required, for example, that each index appears twice in a summation expression; if you do not see each index
twice, it became invalid somewhere.

3 Dot and Cross Products

The logical jump in using Einstein notation is not really in dropping the sum. It is in representing with a
summation what would otherwise be represented with vector-specific notation. For example, the dot product
of two vectors is usually written as a property of vectors, ~a ·~b, and switching only to the summation notation
to represent dot products feels like a stretch, doubly so without the summation sign itself. In Einstein
notation, this would become

~a ·~b =


a1
a2
...
an

 ·

b1
b2
...
bn

 = a1b1 + a2b2 + · · ·+ anbn =

n∑
i=1

aibi = aibi (13)

This is a slightly informal but usually accepted use of the notation. Properly, because we are summing
over two sets of variables, we would write this using the Kronecker delta function, defined as follows:
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δij =

{
1 i = j

0 i 6= j
(14)

With the Kronecker delta, we compute the dot product by individually summing over all the components
of the vector, and selecting only the desired components:

~a ·~b =

n∑
i=1

n∑
j=1

aibjδij = aibjδij (15)

Note that as per convention, we see two of each index in this expression.
Similarly to the dot product, we can write the cross product of two vectors in Einstein notation. This

requires a slightly more involved starting coefficient. Explicitly, the cross product is written in terms of a
determinant, but a determinant is just a specific type of summation rule, which we will develop from here.

~a×~b =

∣∣∣∣∣∣
ê1 ê2 ê3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ (16)

where we use numbered coordinates rather than the usual x̂, ŷ, ẑ so that numbered coordinates are more
intuitive. We evaluate this determinant and find

~a×~b = ê1 (a2b3 − a3b2)− ê2 (a1b3 − a3b1) + ê3 (a1b2 − a2b1) (17)

Note that none of the numerical coefficients in any individual expression are the same, but we iterated
through all 3! = 6 possibilities for permutations of 1, 2, 3 without repetition. The most general statement
we can make about the positioning of the plus and minus signs is based on the number of inversions (number
of swaps you would have to do to restore the order) in the order 123: if it is even (including zero), the
coefficient ends up being +1, and if it is odd, the coefficient is -1.

Order Number of inversions Coefficient
123 0 +1
132 1 -1
213 1 -1
231 2 +1
312 2 +1
321 3 -1

Instead of looking at inversions, it is also possible to look at rotations: if the order is 123 or a rotation
of 123, the coefficient is +1, and if it is 321 or a rotation thereof, the coefficient is -1.

This allows us to define the Levi-Civita tensor, a 27-element rank-three tensor which, thanks to Einstein
notation, we only have to interact with as if it were a function of indices rather than through tensor properties
or rules. 21 of its elements are zeroes, and 6 of its elements follow the above rotation/inversion rules:

εijk =


0 i = j or j = k or k = i

1 even orientation: 123, 231, 312

−1 odd orientation: 132, 213, 321

(18)

Based on this, we can write a general expression for a determinant,
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∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ =
∑
i

∑
j

∑
k

εijkaibjck (19)

and therefore the cross product is given by

~a×~b = εijkaibj êk (20)

4 Divergence and Curl

The divergence and curl of a vector can easily be represented in Einstein notation, as they can be represented
easily as dot or cross products:

~∇ · ~a =
∂

∂ei
ajδij (21)

~∇× ~a = εijk
∂

∂ei
bj êk (22)

(Note that this section is very short: see how easy everything is with Einstein notation?)

5 Levi-Civita Tensor Combinations

The Levi-Civita tensor can be combined with itself with different indices, with one index matching up:

εijkεilm

The result can be written in terms of a combination of Kronecker deltas. First consider the case where
j = l; when it is also the case that k = m, we get complete symmetry and therefore an output of 1.
(Complete symmetry means ijk and ilm must have the same sequence of corresponding numbers, i.e. if the
first Levi-Civita tensor term yields 1, then the other must as well, and if the first term yields -1, then the
same goes for the second, so either way their product is 1.) This corresponds to the delta term δjlδkm. When
it is not the case that k = m, the output must be zero, therefore no delta terms need to be added to account
for this. Then, consider the case j = m; when it is also the case that k = l, we get complete antisymmetry
and therefore an output of -1. This can be shown through a case-by-case analysis; there is a summation over
five terms, but most of them are zero. The method here is much easier, though.

εijkεilm = δjlδkm − δjmδkl (23)

6 The Advantage

Einstein notation makes it easy to manipulate vectors and prove identities that would otherwise be essentially
impossible due to how impractical it is to manipulate an arbitrary component-specific vector (e.g. take an
arbitrary ~r = aî + bĵ + cẑ, take its curl, . . . ) For example, consider the well-known fact in vector calculus
that the divergence of the curl is zero. We will prove it here with Einstein notation.

Proof.

~∇ ·
(
~∇× ~a

)
= ~∇ ·

(
εijk

∂

∂ei
aj êk

)
=

∂

∂ek
εijk

∂

∂ei
aj (24)

4



Often, in this notation, partial derivatives are also written more compactly. Here, since the Levi-Civita
tensor is invariant under the derivative, we get

~∇ ·
(
~∇× ~a

)
= εijk∂k∂iaj (25)

We can rewrite this to exploit the antisymmetry of the Levi-Civita tensor,

~∇ ·
(
~∇× ~a

)
=

1

2
(εijk∂k∂iaj + εijk∂k∂iaj) (26)

We create one inversion in the second tensor expression, in the two variables denoting the derivatives,

~∇ ·
(
~∇× ~a

)
=

1

2
(εijk∂k∂iaj − εkji∂k∂iaj) (27)

Switching i and k in the second part of the expression,

~∇ ·
(
~∇× ~a

)
=

1

2
(εijk∂k∂iaj − εijk∂i∂kaj) (28)

Because of Clairaut’s theorem, we can switch the order of the derivatives, and we get

~∇ ·
(
~∇× ~a

)
=

1

2
(εijk∂k∂iaj − εijk∂k∂iaj) = 0 (29)

Similarly, we can analyze the vector triple product, in which the Levi-Civita interchange rule will become
useful due to two cross products.

~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b) (30)

Proof.

~b× ~c = εijkbicj êk =⇒ ~a× (~b× ~c) = εlknal(εijkbicj)ên (31)

Note here that k appears twice; we first drop it from the êk as it becomes implicit that in a sum in which
i and j appear twice but k appears once that the output is in k, which is then matched by the k in εlkn. We
reorder the terms and permute the Levi-Civita tensors,

~a× (~b× ~c) = εknlεkijalbicj ên (32)

Applying the Levi-Civita product identity,

~a× (~b× ~c) = (δniδlj − δnjδli)albicj ên (33)

We can split this,

~a× (~b× ~c) = δniδljalbicj ên − δnjδlialbicj ên (34)

Then, we group the deltas with the components of the corresponding indices,
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~a× (~b× ~c) = (biênδin) (alcjδlj)− (cj ênδjn) (albiδli) (35)

We can group together indices that are guaranteed to be the same by the Kronecker deltas attached to
them,

~a× (~b× ~c) = (biêi) (ajcj)− (cj êj) (aibi) (36)

By definition, this becomes

~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b) (37)
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