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Disclaimer: this is not at all (could not possibly be) comprehensive. I just wanted to see if I could get the basics into one page!

1 Motivation

Consider time-series data (ti,yi)
N
i=1 to which we want to fit a model y=N (fθ(t),Σ). The overall (maximum-likelihood) problem

is to find the θ̂ that maximizes the probability that the yis actually are from that model. In practice, covariance matrices Σ that
users provide can only be diagonal; it’s difficult to provide a physically-motivated covariance between each pair of datapoints. The
idea of Gaussian process regression is to provide a fit to a general framework like this, that will achieve this aim of covariance
and fit time-series data better without needing more physical information than is really possible.

2 Math

The Gaussian pdf is p(y;µ,Σ)=(2π)−
N
2 det(Σ)−

1
2 exp

(
−1

2(~y−µ)Σ−1(~y−µ
)
). Plugging in our mean model fθ(t) for µ, evaluating this

over our datapoints, and taking a log (for numerical stability, to convert products to sums) we get a likelihood function to maximize:

L(θ)=log p({yn}|θ)=−1

2

N∑
n=1

[
(yn−fθ(tn))2

σ2n+s2
+log2π(σ2n+s2)

]
,

where we describe the covariance matrix as being σ2n+s2 down the diagonal and 0 elsewhere. Here, σ2n parameterizes modeled
(physically-known) variance, while s2 parameterizes unmodeled independent variance and can be tuned. In general s can also vary
with time.

We can define this more compactly in vector form: let ~rθ =
[
y1−fθ(t1) y2−fθ(t2) ... yN−fθ(tN)

]ᵀ
and let C =[

(σ2i +s2)δij
]
1≤i,j≤N . Then the form of the log-likelihood we can work with is

log p({yn}|θ,s)=−1

2
~rᵀθC

−1~rθ−
1

2
logdetC−N

2
log2π.

Here we bring in the Gaussian process part by defining a covariance relationship. Currently, C lacks any covariance information,
i.e. we’re assuming every (ti,yi) is independent of every other (tj,yj), which is not physically true as it is a time-series and they’re
influenced by the same systematics. To fix that, let the new covariance matrix K be parameterized by a set of parameters α:

Kα=C+
[
kα(ti,tj)

]
1≤i,j≤N .

α is a set of hyperparameters that we want to fit, ideally with low dimension – if you allowed a joint fit to every element of
the new covariance matrix, you’d have N2−N parameters and would just overfit. The function kα is a kernel function, and is also
a radial basis function: it only depends on the distance between its inputs. This aligns with what we might want with time-domain
covariance, as closer points are more highly correlated. Some common forms of useful kernel functions are:

Squared exponential kα(ti,tj)=α2exp
(
−1

2
(ti−tj)2

l2

)
Squared exponential + sinusoid kα(ti,tj)=α2exp

(
−1

2
(ti−tj)2

l2

)
cos
(
2π(ti−tj)

p

)
Periodic kα(ti,tj)=α2exp

(
−2sin2(π|ti−tj|/p)

l2

)
Gaussian process regression is just optimizing collectively (using nonlinear optimization or MCMC) over (θ,s,α): respectively,

mean model parameters, the unmodeled noise parameter, and the covariance parameters. Formally, the optimization problem comes
straight out of the Gaussian likelihood with the new covariance definition:

(θ̂,ŝ,α̂)=arg max
θ,s,α

[
−1

2
~rᵀθK

−1
α,s~rθ−

1

2
logdetKα,s−

N

2
log2π

]
3 Further Issues to Investigate

• Precisely computing covariance becomes costly: it’s O(N3). Subsample data, get a better computer, approximately compute results.
• Choice of the best kernel function and/or way to characterize s; varies by the science case and systematics!
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