
EE 118: Introduction to Optical Engineering Spring 2019

Lecture 1: Introduction
Lecturer: Laura Waller January 23 Aditya Sengupta

Note: LATEX format adapted from template courtesy of UC Berkeley EECS dept.

1.1 Logistics

This class will cover optical physics, imaging systems, and optical devices. Laura Waller Office Hours: Cory
514, Wed 10-11am; Gautam: Cory 504, Mon 5-6PM.

Problem sets to be submitted under the door (Cory 514) on the day (1/30 for the first one which is already
out).

Quizzes (basically midterms) on March 4 and April 24. Final project in groups of 3-4 - do either simulations
or experiments. Give a short presentation in class. Level of reproducing a journal paper result. Grad student
or postdoc mentor will be assigned.

1.2 Optics Abstraction Layers and Basic Terminology

Paraxial ray optics ⊂ geometrical optics (ray tracing) ⊂ wave optics ⊂ electromagnetic optics ⊂ quantum
optics. Use the approximation that fully describes what you want to do. Geometric optics is ray optics
without the small angle approximation. Wave optics is for light interference. Electromagnetic optics is wave
optics with “vector effects” such as polarization.

The speed of light is independent of the wavelength of light. It is a constant 299,792,000 m/s. Light exists
at many wavelengths, of which only a narrow band is visible.

Wave motion: a wave travels along a line of propagation, and individual particles move perpendicular to the
line (up and down). The shape of a wave is described by a function f(x − vt). At any instant, the shape
can be found by setting time constant: ψ(x, t)|t=0 = f(x, 0) = f(x).

A wave is defined by several parameters. The amplitude is the height of a crest or trough from the line
of propagation. The wavelength is the length along the line of propagation that covers one crest and one
trough. Waves are described in time by their frequency f , their period T , and their velocity v = λf . Waves
do not have to be sinusoidal or periodic; a valid wave only has to be of the form f(x− vt).

1.3 Deriving the 1D Wave Equation

Consider a wave of the form

ψ(x, t) = f(x− vt) (1.1)

and let x′ = x− vt. Hold time constant and differentiate with respect to space.
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∂ψ

∂x
=

∂f

∂x′
∂x′

∂x
=

∂f

∂x′
(1.2)

where the second term goes to 1 because of ∂x′

∂x = ∂(x−vt)
∂x = 1 for constant v and t. Now, take a derivative

with respect to time:

∂ψ

∂t
=

∂f

∂x′
∂x′

∂t
= −v ∂f

∂x′
(1.3)

because ∂x′

∂t = −v. Take a second derivative in space (we’ll discuss why afterwards):

∂2ψ

∂x2
=

∂

∂x

(
∂f

∂x′

)
=
∂2f

∂x′2
(1.4)

and in time:

∂2ψ

∂t2
=

∂

∂t

(
−v ∂f

∂x′

)
= −v ∂

∂t

(
∂f

∂x′

)
(1.5)

∂2ψ

∂t2
= −v ∂

∂x′

(
∂f

∂t

)
(1.6)

Note that ∂f
∂t = ∂f

∂x′
∂x′

∂t = −v ∂f
′

∂x′ , and therefore we can get

∂2ψ

∂t2
= v2 ∂

2f

∂x′2
(1.7)

Combining these two second derivatives, we get the wave equation:

∂2ψ

∂x2
=

1

v2

∂2ψ

∂t2
(1.8)

If a function ψ satisfies this, it is a valid wave. We took the second derivative so that there was no ambiguity
in direction, as in the end we get a v2 factor which is necessarily positive.

If we had speed as a function of time v(t), there would be more partial derivative terms.

1.4 Harmonic waves

Most waves are sinusoidal, i.e. ψ(x, t)|t=0 = A sin(kx). k is the propagation number, with units of radians
per spatial unit (such as rad/m). k is inversely related to λ. Now, we include time:
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ψ(x, t) = A sin(k(x− vt)) = f(x− vt) (1.9)

We can explicitly show a relationship between k and λ by adding a phase factor to x. Shifting x by a
wavelength should not affect the equation:

sin(k(x− vt)) = sin (k(x± λ)− vt) = sin (k(x− vt)± 2π) (1.10)

which shows us that

|kλ| = 2π =⇒ k =
2π

λ
(1.11)

We can derive the wave equation for the specific case of this harmonic wave by taking partial derivatives, as
with the more general case:

ψ = A sin(k(x− vt)) =⇒ ∂2ψ

∂x2
= k

∂

∂x
(A cos(kx− kvt)) = −k2A sin(kx− kvt) (1.12)

∂2ψ

∂t2
=

∂

∂t
(A cos(kx− kvt)) (−kv) = −k2v2A sin(kx− kvt) (1.13)

Therefore the two second derivatives are off by a factor of v2, as desired.

We can define the temporal frequency ν = 1/τ , where τ is the temporal period of the wave. It is related to
the velocity by v = νλ. Angular temporal frequency ω = 2πν is also sometimes used.

1.5 Phases

The phase is the argument of the sinusoid. We can write the sinusoid as

ψ(x, t) = A sin(kx− ωt) (1.14)

We see that the phase is a function of x and t. The velocity of a constant phase is called the phase velocity,
ω
k , but that will not be used much.

We can use the wave equation to check whether a wave is valid as well as to find its velocity. Examples:

ψ(z, t) = (az − bt)2 = a2z2 − 2azbt+ b2t2 (1.15)

This satisfies the wave equation; we see that 2a2 is the second spatial derivative, and 2b2 is the second time
derivative. Therefore
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2a2 =
1

v2
2b2 =⇒ v = ± b

a
(1.16)

Since we see that the wave is travelling in the +z direction, the velocity is b
a .

Similarly, shifting this by a constant still satisfies the wave equation: (ax + bt + c)2 also satisfies the wave
equation. Waves have to have both spatial and time dependence, so 1

ax2+b is not a valid wave because its
second time derivative is zero which in general does not satisfy the wave equation.

1.6 Transverse and Longitudinal Waves

Particles in a wave can either move perpendicular to the wave direction, or parallel to it - transverse and
longitudinal. In the second case, instead of crests and troughs, the wave will consist of compressions and
rarefactions, e.g. a sound wave.

Light is a transverse electromagnetic wave, with two fields transverse to the direction of motion: electric and
magnetic. These fields are in phase (they have the same time dependence of phase). The wave travels at the
speed of light in a vacuum.

In general, we describe only the E field:

E = E0 cos(ωt− kz) = Re
(
E0e

i(ωt−kz)
)

(1.17)

It is necessary to know how to work with phasors (exponential representations of complex numbers), how
to add them, etc. The two representations of complex numbers are connected by Euler’s identity eiθ =
cos θ + i sin θ.

We can combine solutions using complex numbers by E1 + iE2, which we can convert to polar form. Let
E1 = E0 cos(kz − ωt) and let E2 = E0 sin(kz − ωt). Then

E1 + iE2 = E0e
ikzeiωt (1.18)

Only the eikz part of this is significant for linear media (everything we will deal with).

1.7 Plane waves

Plane waves are one-dimensional waves travelling in 2D or 3D. They are observed as wavefronts (lines) on a
plane or in free space, and use trigonometry to characterize them. For instance, if a wavefront is propagating
with wavelength λ at an angle θ from an optical axis (say the z-axis), its wavelength with respect to the
optical axis is λz = λ

cos θ , and with respect to the y-axis (assuming the y-z plane) is λy = λ
sin θ .

We represent plane waves either with real or phasor notation. Real notation is of the form

ψ(~r, t) = A cos

(
2π

λ
(z cos θ + y sin θ − ωt)

)
(1.19)
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and phasor notation is

ψ(~r) = Aexp

(
i

(
2π

λ
(z cos θ + y sin θ − ωt)

))
(1.20)

These are essentially the kx − ωt factor in multiple dimensions, with components of different directions
adding together.

5



EE 118: Introduction to Optical Engineering Spring 2019

Lecture 2: Rays and Refraction
Lecturer: Laura Waller January 28 Aditya Sengupta

2.1 Recap

Last time, we saw that light is a harmonic electromagnetic wave, described by the equation

E = E0 cos(ωt− kz) = Re
(
E0e

i(ωt−kz)
)

(2.1)

and we derived the wave equation:

∂2E

∂x2
=

1

v2

∂2E

∂t2
(2.2)

2.2 Spherical Waves

A spherical wave is created by waves coming out spherically from a point source, e.g. a small oscillating
electric field. To describe this in an equation, we denote a surface of constant phase as having a constant
kr, where r is the radial distance. The wave expression becomes

~E(~r, t) =
E0

r
cos(kr − ωt) (2.3)

This field drops off as r even though spheres usually drop off as r2, because the energy (which is the squared
magnitude of the field) drops off as r2.

Wavefronts either radiate away from or travel toward a point - these are diverging or converging waves.

In the limit as z →∞ (if the point source is on a fixed small point on the z axis and spherical waves diverge
from it) spherical waves become plane waves.

Huygens’ principle states that every point on a wavefront serves as a source of spherical secondary wavelets.
This means that every single point on a spherical wavefront would have its own spherical wave representation
centered there, and their electric fields can be added. These secondary wavelets whose fields are added up
constructively combine to make the next primary spherical wavefront.
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2.3 Refractive Index

The refractive index is how we describe how optically dense a material is. It is the ratio of the speed of light
in a vacuum c to that in a medium v.

n =
c

v
(2.4)

Colour is determined by the wavelength in free space, not in the medium. The frequency remains the same
(because E = hf and energy remains invariant), so we can think of colour being determined by frequency,
but the wavelength changes because the speed of the wave changes (v = λf).

The refractive index varies slightly with the wavelength of the incident light. Conventionally, refractive
indices are described at a specific middle wavelength, but in general they are a function of wavelength. The
canonical example of dispersion, in which different colours are bent by different amounts because of the
slightly different refractive index, is a prism.
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If two strings (one thick and one thin) are connected and a wave crosses the connection point, then the
propagation speed and wavelength change at the point, but not the frequency or period. The wavelength
increases when the string goes from thick to thin.

2.4 Optical Path Length

The optical path length is the integral of the refractive index over the path that the light travels. The time
required for a ray to traverse a path is the OPL/c.

OPL =

∫
path

n(r)ds (2.5)

Suppose there is an irregularly-shaped object whose thickness is described by s(x). The OPL is then given by
∆n · s(x). It is related to phase delay (where the phase is the argument to the cosine of the wave expression)
because k varies with different refractive index. Recall that k = 2π

λ , and λ varies. Therefore the phase delay
due to the different medium is given by

φ(z) =
2π

λ
OPL (2.6)

2.5 Fermat’s Principle and Snell’s Law

A ray of light is defined as any path for which the total OPL is stationary. A formal definition of stationary
requires calculus of variations, which is beyond the scope of this class. Fermat’s principle means that a

8



ray must always follow a path for which no other path is optically shorter. Immediately, from this, we can
conclude that in a homogeneous medium light travels in a straight line.

Rays of light bend when the index of refraction changes. The shortest path in both media individually is a
straight line, where the angle varies at the interface between the two. The relationship between these two
angles is given by Snell’s law,

n1 sin θ1 = n2 sin θ2 (2.7)

Imagine a lifeguard running to save someone in the water. On sand, she runs at speed v and in the water
she travels at speed v/n. To minimize her travel time, what angle should she start out with?

Assume the lifeguard starts at (0, 0) and wants to get to (a, b), where the sand/water interface is parallel to
the y axis at some x distance s. Suppose she crosses the interface at (s, c). The time taken is

t =

√
s2 + c2

v
+

(a− s)2 + (b− c)2

v/n
(2.8)

which can be minimized by taking a derivative with respect to c, the variable quantity (the crossing point),
and setting it to zero:

dt

dc
=

c

v
√
s2 + c2

+ n
c− b

v
√

(a− s)2 + (b− c)2
= 0 (2.9)

The angle between the origin and (s, c) is given by θ = arctan s
c , and that between (s, c) and (a, b) is

θ′ = arctan c−b
s−a . Converting to sines, we get

sin θ =
c√

c2 + s2
sin θ′ =

c− b√
(c− b)2 + (s− a)2

(2.10)

which we can substitute into the derivative equation,

sin θ

v
− sin θ′

v/n
= 0 (2.11)

or

sin θ = n sin θ′ (2.12)

which is Snell’s law.

With Snell’s law, we can ask questions like: A laser beam impinges on the top surface of a 2cm thick parallel
glass (n = 1.5) plate at an angle of 35 degrees. How long is the actual path through the glass?
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We first find the angle in the glass,

sin 35 = 1.5 sin θg =⇒ θg = 22.48◦ (2.13)

which allows us to find the length via trigonometry,

L =
2cm

cos 22.48◦
= 2.164cm (2.14)

In the wave optics view, a refracted beam is the sum of many spherical wavelets at the interface.

2.6 Total internal reflection, partial reflection, transmission

Total internal reflection (TIR) occurs when light does not refract at all, when the angle of incidence is above
some critical angle, and light entirely bounces off the interface.

Ray optics is insufficient in explaining partial reflection and transmission. Rays bend toward the normal
when entering a medium of higher optical density, but when the relative index is very high, say on the order
of 1000, taking the inverse sine (as required by Snell’s law) is not possible. At this point, ray optics cannot
predict the behaviour of the light, but by wave optics, we see that light reflects off the interface. The critical
angle is the angle of incidence θ1 for which

n1 sin θ1 = n2 =⇒ θ1 = arcsin
n2

n1
(2.15)

The internet runs on total internal reflection, by a system of “planar” waveguides, a high-index dielectric
material sandwiched between lower index dielectrics. Repeated cases of total internal reflection let the light
bounce up and down the high-index material and in this way the light propagates. There is a tradeoff in the
selection of the refractive index for optical fibers; for high-speed propagation, n should be low, but for TIR,
n should be high.

Prisms can be structured so that TIR occurs at multiple interfaces to cause a net angle change. A retrore-
flector, for example, is a prism designed to return the light to the source, and a pentaprism causes incoming
light to go off at a right angle.

2.7 Fermat’s Principle in inhomogeneous media

In materials where n is not a constant, i.e. n = n(r), the path in general is given by an integral rather than
a linear relationship,

L =

∫
s

n(r)ds (2.16)
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EE 118: Introduction to Optical Engineering Spring 2019

Lecture 3: ABCD Matrices
Lecturer: Laura Waller January 30 Aditya Sengupta

Last time, we covered refraction. Note that refraction from lower to higher n bends towards the normal, and
higher to lower bends away from the normal. This is a quick way to figure out the relative indices of two
materials.

3.1 Spatial frequency

Consider a ray of light with wavefronts transverse to it, at an angle θ from an optical axis (chosen as z).
The spatial frequency of this wave is described by part of the electric field equation,

E(x) = sin

(
2π

λx
x

)
(3.1)

The spacing between two consecutive wavefronts corresponds to a phase shift of 2π. The spatial period is
given by λx = 1

kx
. The angle of the ray (with the optical axis) relates the wavelength to the spatial frequency

in the x direction,

sin θ = λkx (3.2)

At small angles, we get

θ ≈ λkx (3.3)

In words, the direction is proportional to the spatial frequency. This is true for monochromatic light at small
angles. Note that this definition allows for a negative spatial frequency (with a negative angle); physically,
this represents the direction being reversed.

3.2 ABCD matrices

In homogeneous media, rays move in straight lines. To define a ray, we therefore need an initial point and

a direction; a ray is parameterized by an initial y and its angle of propagation,

[
y0

θ

]
. Conventionally, we

represent the y point at which x = 0.

ABCD matrices give us a systems approach to modelling imaging systems. A 2D matrix takes in and returns
a (y, θ) ray matrix:
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gout = Hgin (3.4)[
yout
θout

]
=

[
A B
C D

] [
yin
θin

]
(3.5)

Since this is a linear operator, it is easy to deal with, but not that widely applicable. It involves the paraxial
approximation (sin θ ≈ θ, etc.)

For example, consider free-space propagation in air. A ray starts at some xin with some θin initial angle,
and after propagation over distance d, it becomes (xout, θout). We can write an ABCD matrix to represent
this. The angle does not change, but the x position does:

[
xo
θo

]
=

[
1 d
0 1

] [
xi
θi

]
(3.6)

Conventionally, we call counterclockwise angles positive, movement to the right along the optical axis +z,
and we call curvature to the left positive.

We can construct the ABCD matrix for Snell’s law. We linearize the equation, to make it n1θ1 = n2θ2.
Here, the x does not change at the interface, so the top row of the matrix would be 10, and Snell’s law gives
us the relation on the angle:

[
xo
θo

]
=

[
1 0
0 n1

n2

] [
xi
θi

]
(3.7)

Multi-element systems can cascade ABCD matrices because they are all linear operators. Matrix multipli-
cation is not commutative, so operations have to be applied in reverse order: if a ray goes through matrices
O1, O2, O3 in that order, we write

[
xf
θf

]
= O3O2O1

[
xi
θi

]
(3.8)

Lenses can be complicated. We have to be aware of the limitations of ray optics, for example, if we cascade
together multiple magnifying systems to get a net magnification on the order of 108, we would not see atoms
even though these are on the order of the magnification, because wave optics does not allow this.

If the position and angle variations are small, we can think of each ABCD matrix element as a derivative:

[
xo
θo

]
=

 ∂xo
∂xi

∂xo
∂θi

∂θo
∂xi
∂θo
∂θin

[xiθi
]

(3.9)

A and D are, respectively, the magnification and angular magnification. B and C do not have intuitive
meanings but we will see their effects later.
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3.3 Law of reflection

A ray departing some point P at some angle θ is reflected symmetrically at the same angle θ. The symmetric
path POP ′, where O is the point of incidence and P ′ is a point reached by the reflected ray, is a reflection
of Fermat’s principle; POP ′ has a stationary value of the path length.

3.4 Curved reflecting surfaces

A common type of optical device is a reflective dish, such as a radio dish. These take in radiation from a
far-away source (at infinity) and reflect each ray at precise angles to land on a detector. (This was done
accidentally by skyscrapers made of metal with curved sides.) We can focus light with parabolic reflectors
better than spherical ones. We can find the optimal shape. Say this is given by s(x), and say that we want
all the rays to focus at a point F , on the z axis (on an x-z plane) at a distance f from the origin.

For all the paths to focus on the same point, their optical path lengths should all be the same. Consider
the distance between F and the origin, which is 2f . We want this to be the same as some other path; this
is given by f − s for the distance from the same vertical as the focus to the surface, and by

√
x2 + (f − s)2

for the path from the arbitrary point on the reflector to the focus (by Pythagoras’ Theorem).

2f = f − s+
√
x2 + (f − s)2 (3.10)

f + s =
√
x2 + (f − s)2 (3.11)

x2 = f2 + 2fs+ s2 − f2 + 2fs− s2 (3.12)

x2 = 4fs (3.13)

s =
x2

4f
(3.14)

which is the definition of a parabola.

Often, we make spherical lenses rather than parabolic ones, because they are much easier to manufacture,
and because sometimes the point source approximation is not quite accurate. This induces a spherical
aberration due to the deviation from the ideal curve. In curved mirrors, f = R

2 . These have an ABCD
matrix as follows:

[
1 0
− 2
R 1

]
(3.15)

Here, the x does not change at the point of reflection, and the angle changes as a function of the x as well
as the incident θ. We can derive this as follows:

(s+R)2 + x2 = R2 (3.16)

(derivation skipped for time; see lecture slides)
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3.5 Lenses

Lenses are the refractive analogue to mirrors, where they are like “unfolded” mirrors. Light comes to a focus
on the other side, but geometrically, they are similar. We can see this by finding the s(x) for perfect focusing
in a lens, going from air to glass. We set it up the same way, but the difference here is optical path length
varies with n. We get the ellipsoidal refractor,

(
s− n

n+ 1
f

)2

+
n2

n2 − 1
x2 =

(
n

n+ 1
f

)2

(3.17)

To get this, we start from the optical path length on the axis, which is nf . Off the axis, this is s +
n
√
x2 + (f − s)2. So we set these equal:

nf = s+ n
√
x2 + (f − s)2 (3.18)

(n2 − 1)s2 − 2n(n− 1)fs+ n2x2 = 0 (3.19)

This gives us the above equation.

We usually make spherical lenses instead because they are easier to make and in the paraxial approximation
they are correct for all angles.

Spherical lenses are defined by their radius of curvature. All rays passing through a spherical lens come to
a focal point F . We can find an ABCD matrix to represent this.

[
xo
θo

]
=

[
1 0

n1−n2

Rn2

n1

n2

] [
xi
θi

]
(3.20)

There is no change in the x, as we expect. The n1

n2
term is similar to Snell’s law, as we expect. If R → ∞,

this just becomes Snell’s law. (Complete derivation in the slides).

3.6 Optical power

The paraxial refraction equation is

θo =
n1

n2
θi +

n1 − n2

Rn2
h (3.21)

When θi = 0, where is the focus? The difference in the refractive index will determine whether it is before
or after the center of curvature. We can find the focal length expression, f = −h/θo = n2R

∆n . The optical
power is defined based on this as φ ≡ n2−n1

R . This has units of inverse meters.
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EE 118: Introduction to Optical Engineering Spring 2019

Lecture 4: ABCD matrices and imaging
Lecturer: Laura Waller February 4 Aditya Sengupta

4.1 Administrative

Note: I was going over the previous lectures to do the homework and noticed I’ve got a few more errors than
I thought. Sorry about this! I’ll start proofreading before I compile and upload these, and if I get the chance
I’ll go back and fix the previous lectures.

Hecht uses a different ABCD matrix convention than the normal one; instead of

[
x
θ

]
, they use

[
α
x

]
, so it is

necessary to be aware of which components are being operated on by which input variables.

4.2 Describing lenses with ABCD matrices

Consider a thick lens with thickness d (a block of glass between two curved surfaces), radii for the two curved
surfaces R1, R2, and refractive index going from n1 to n2. We can create an ABCD matrix for the thick lens
by multiplying together three ABCD matrices for, in the order left to right, the second curved surface, the
propagation through the block, and the first curved surface:

[
xout
θout

]
=

[
1 0

n2−n1

R2n1

n2

n1

] [
1 d
0 1

] [
1 0

n1−n2

R1n2

n1

n2

] [
xin
θin

]
(4.1)

This can be simplified by approximating d as going to zero. This is called the thin-lens approximation. We
find the net ABCD matrix by multiplying together the two matrices, and we get

[
1 0

n2−n1

R2n1
+ n2

n1

(
n1−n2

R1n2

) ]
=

[
1 0

n2−n1

n1

(
1
R2
− 1

R1

) ]
(4.2)

Intuitively, we see that the bigger the difference in refractive index, the greater the bending (the change in
θ), which makes sense.

The lens maker’s formula is a slightly different statement of this, which gives us the focal length of a lens:

1

f
=
n2 − n1

n1

(
1

R1
− 1

R2

)
(4.3)

This lets us simplify the ABCD matrix to
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[
xout
θout

]
=

[
1 0
− 1
f 1

] [
xin
θin

]
(4.4)

A typical exam question might be to find the focal length of an optical system by cascading several ABCD
matrices, and looking at the C component of the resulting matrix.

4.3 Converging and diverging lenses

A converging lens is one in which the focus is in front of the lens, and the lens brings rays of light that come
in parallel to a focus. A diverging lens has the focus behind the lens, and the lens takes rays of light that
come in parallel so that they are diverging to infinity, as if they come from a focal point.

Converging or positive lenses have R1 > 0 and R2 < 0 (biconvex). R1 can be taken to infinity, which
corresponds to one side being flat; these are plano-convex lenses. Plano-concave and biconcave lenses have
the opposite signs on radii. An interesting case is a meniscus lens, which has R1 > 0, R2 > 0 and their
relative magnitudes ddetermine whether it is converging or diverging.

4.4 Consecutive Lenses

Consider a thin biconvex lens next to a thin plano-convex lens. The ABCD matrix is

[
1 0

−1/f2 1

] [
1 0

−1/f1 1

]
=

[
1 0

−1/f1 − 1/f2 1

]
(4.5)

This tells us that the inverse focal length is additive. The optical power (inverse focal length) of a thin lens
is the sum of the optical powers of the two surfaces.

4.5 Determinants of ABCD Matrices

The determinant of an ABCD matrix has some physical meaning. To find out what this is, we can write the
ABCD matrix for Snell’s law and take its determinant, as an example:

[
1 0
0 n1

n2

]
=⇒

∣∣∣∣1 0
0 n1

n2

∣∣∣∣ =
n1

n2
(4.6)

For a lens, this is

[
1 0
− 1
f 1

]
=⇒

∣∣∣∣ 1 0
− 1
f 1

∣∣∣∣ = 1 (4.7)
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This is also the refractive index change, n1

n1
. Therefore the determinant is the ratio of initial to final n.

When A = 0, we can write the relationship in terms of linear relationships:

xout = Bθin (4.8)

θout = Cxin +Dθin (4.9)

Physically, this means that only the input angle determines the output position. This makes physical sense
for a converging lens, where all the rays meet at a point. The focusing is only a function of the input angle.

When D = 0, we get

xout = Axin +Bθin (4.10)

θout = Cxin (4.11)

Physically, this means the input plane is the input focal plane. Both A = 0 and D = 0 can happen at the
same time.

4.6 2f and 4f systems

A lens can carry out a Fourier transform. Consider a biconvex lens between planes P1 and P2, with a distance
f between the lens and the plane on either side. We write an ABCD matrix by combining the propagations
through f with the lens matrix,

[
xo
θo

]
=

[
1 f
0 1

] [
1 0
− 1
f 1

] [
1 f
0 1

] [
xi
θi

]
(4.12)

[
xo
θo

]
=

[
0 f
− 1
f 0

] [
xi
θi

]
(4.13)

Here, we see that xo = fθi and θo = − 1
f xin. Angle and position switch places. This is related to a Fourier

transform because the angle is related to a spatial frequency, θx ≈ λfx. Based on this, real space was
switched with frequency space, which is what a Fourier transform does.

Consider a 4f system, which is similar to the 2f system but with two lenses with focal lengths f1 and f2.
We multiply together the two 2f system matrices to get

[
0 f2

− 1
f2

0

] [
0 f1

− 1
f1

0

]
=

[
− f2f1 0

0 − f1f2

]
(4.14)

If f1 = f2, we get the negative of the identity matrix. That is, we get back the original image, but inverted.
If f1 6= f2, we get a magnified image (with magnification given by the A parameter). Microscopes have a
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low f1 and a high f2 so that their magnification is high; telescopes have a high f1 and a low f2 so that they
can scale down the night sky to the scale of a lens. The D parameter gives angular magnification.

Consider a 4f system with the distances between the planes and the closer lenses changed; instead of f1,
there is a distance so to the first lens from the input plane, and instead of f2, there is a distance si from
the second lens to the output plane. The changed ABCD matrix can be written as the combination of three
propagations between two lenses. We get

[
− f2f1 f1 + f2 − f1si

f2
− f2so

f1

0 − f1f2

]
(4.15)

4.7 Interpreting ABCD Matrices, contd.

Consider the case where C = 0. Here, the rays must be collimated and parallel, because the angle does not
vary with x. If B = 0, then xo = Axi. This represents a measure of how in focus an image is.

4.8 Ideal imaging requirements

In an ideal case, every point object is represneted as a point source of light that goes into an imaging system,
and that imaging system yields a point image. This is rarely the case, which is why software such as Zemax
exists. Anything that deviates from this ideal is called an aberration.

Consider a biconvex lens with lengths so and si separating the lens from the two planes. The ABCD matrix
is

[
1 si
0 1

] [
1 0
− 1
f1

1

] [
1 so
0 1

]
=

[
1− 1

f so − siso
f − si

− 1
f − sof + 1

]
(4.16)

For what choices of so and si is this lens in focus, i.e. when is B = 0?

so + si =
siso
f

=⇒ 1

si
+

1

so
=

1

f
(4.17)

This gives us a condition that allows us to change the focal distance. If an object is far away from a lens,
the image will come into focus close to the lens; as the object is moved closer and closer, the image is formed
farther and farther away.

With this constraint, we can find the A component which gives us the magnification:

Mtransverse = − si
so

(4.18)

At si = so = 2f , we have a magnification of 1.

A pinhole camera always has all of its light in focus, but they block out most of the light while doing so.
Lenses can be thought of as a series of pinholes that shifts an image due to refraction.
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4.9 Ray tracing for thin lenses

There are three rules to be followed for tracing rays through a thin lens: a ray through the center of a lens
is not diverted, a ray through the focus emerges parallel to the optical axis, and a ray parallel to the optical
axis passes through the focus.
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Last time, we saw the condition for successful imaging, 1
so

+ 1
si

= 1
f . This can also be stated as xixo = f2,

where xi and xo are the distances from the object or the image to the focal plane.

When si < 0, the rays are diverging and an image is formed behind the lens. This is a virtual image; if a
screen were placed at the position we calculate, behind the lens, we would not see anything. That occurs
when so < f and f > 0, or when so > f and f < 0. An example of a virtual image is the image we see in a
mirror.

There are four possible cases in which we would see real or virtual images. If the lens is positive, then if
the object is outside the focal length, we get a real and inverted image, and if the object is inside the focal
length, we get a virtual and erect image. If the lens is negative, then if the object is outside the focal length,
(moved on too fast but here’s a picture explaining it)

5.1 Multi-element imaging systems

Sometimes, it helps to trace rays through a system rather than find out the effect of the system through an
ABCD matrix, which is a long process. Consider two convex lenses with f = 10 spaced a distance 5 apart,
and consider an object a distance 5 to their left. For the first propagation, we get an image formed at si:

1

si
+

1

so
=

1

f
=⇒ 1

si
=

1

10
− 1

5
=⇒ si = −10 (5.1)

which we see from the rays as well. The magnification is +2, confirming that the image is magnified and
erect. The virtual image is then the object for the second lens, and it is beyond the focus of the second lens
(it is at a distance of 15), so we get a real inverted image.

1

15
+

1

si
=

1

10
=⇒ si = 30 (5.2)
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The magnification is −30
15 = −2. In total, Mtotal = M1M2 = −4.

5.2 Front and back focal planes

The back focal plane is the z position where a ray entering parallel to the optical axis passes through it, and
the front focal plane is the z position where a ray that exits parallel to the optical axis initially crosses the
axis.

The front and back focal distances do not have to be the same. These define the first and second principal
planes. They have new ray tracing rules. These are:

1. trace a ray from infinity through object to the second PP, then bend to go through BFP and meet the
image tip.

2. trace a ray from the object tip through the FFP, then bend at the first PP to go to infinity.

3. the intersection of the traced rays is the image point.

4. (this is the weird part) the ray from the object through the intersection of the first PP with the optical
ais should emerge at the intersection of the second PP and the optical axis, then go through the image
point.

The principal planes tell you where to cut the system to treat it as if it were a thin lens.
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Introducing the principal planes allows us to keep the imaging condition and magnification relations the
same as for a thin lens.

We can combine focal lengths and principal planes. The distance between two principal planes is the thickness
of the lens, in addition to the thin-lens approximation on either side.

This is an important diagram for exams.
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5.3 Photography

5.3.1 Stops

A field stop limits the field of view. The sensor in a camera cuts out unnecessary parts of the field. An
aperture stop limits the quantity of light that is collected. Both can be due to the physical limits of the lens
or sensor, or can be controlled with a diaphragm. Stops can be used to kill strong light sources that are not
desired, or to limit stray reflections (such as in a microscope).

Field stops affect the field of view, and is directly determined by the focal length. If we zoom in on a camera,
the field of view is limited, and there is not much angular spread. It is convenient to talk about a field of
view in terms of angles.

5.3.2 Field of view

For a fixed sensor size, decreasing the focal length increases the field of view. They are related by

FOV ∝ arctan
1

f
(5.3)

(there was a more specific formula on the slides up for about 5 seconds)

Lenses can be constructed to provide wide angles, such as fisheye lenses and gigapixel cameras.

5.3.3 Pupils

The effective size of a stop may be larger or smaller due to refraction, so we define pupils in order to see
how it will affect the object. The entrance pupil is defined as the image of the aperture stop as seen from
an axial point on the object through the elements preceding the stop. The exit pupil is defined similarly on
the other side.

The entrance and exit pupils determine the cone of light that enters or leaves the system. Some rays from
an object hit the stop and are therefore blocked, meaning that the image can be partially impeded. In
photography, the aperture stop controls exposure; a smaller aperture stop is less light throughput. Aperture
stops also control the depth of field and resolution.

5.3.4 Chief and marginal rays

These represent the center and edge cases for the bundle of rays that pass through the system. The chief
ray is the ray from the maximum object height that passes through the center of the stop, and the marginal
ray is the most extreme ray angle allowed by the optical system coming from the object base (the highest
angle that doesn’t get clipped by the aperture stop).

To find the limiting aperture stop and entrance pupil, we image each component leftwards and find which is
the most limiting one.
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6.1 Recap

Quick reminders: suppose we have a multi-element imaging system. The aperture stop is the most limiting
stop. To get the entrance pupil, we start from the aperture stop and image it to the left. To get the exit
pupil, do the same to the right. It is possible to have many apertures, but only one aperture stop.

The field stop limits the angular acceptance of chief rays, where the chief ray is the one that goes through
the center of the aperture stop. If the object is made larger, then the ray just above the chief ray would
be clipped by the field stop, and so it would not make it to the aperture stop. The field stop defines the
field of view. Colloquially, this is sometimes described as the height of the tallest object that makes it
through the system, but this is dependent on object position; a better description would be based on the
angle determining the view. Formally, the field of view is the angle between the pair of chief rays that just
make it through the edges of the field stop. Entrance and exit windows are analogous to entrance and exit
pupils for the field stop instead of for the aperture stop. The pupils are images of the aperture stop, and the
windows are images of the field stop.

6.2 Example

Consider the optical system shown below,
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To find the stop, we image each object backwards to the observing point. For lens 1, we get

tan θ1 =
3cm

12cm
=⇒ θ1 = 14◦ (6.1)

For the diaphragm, we image backwards using x0xi = f2. f = 9 and x = −6, so xi = −13.5cm. This is
4.5cm to the right of L1. The magnification is −13.5/ − 9 = 1.5, so the diaphragm image is magnified and
to the right of the aperture. The angle subtended by this image is given by its height above and below the
optical axis (0.75cm) over the distance of 16.5cm from the observer. Therefore

tan θ2 =
0.75

16.5
=⇒ θ2 = 2.6◦ (6.2)

This is the most limiting object so far. Now, we need to image L2 all the way back through the entrance. To
image it back through, we ignore the aperture, because if the aperture is blocking rays, it will end up being
the more limiting factor. Put another way, if the aperture were significant, then we would automatically
know that θ3 > θ2. By imaging through L1 in the same way as for the diaphragm, we get θ3 = 7.6◦.
Therefore the diaphragm is the aperture stop.

Now, we can find the entrance and exit pupils. The entrance pupil is the image of the aperture stop through
L1, which we found in order to get the angle θ2. The exit pupil is the image through L2. It turns out that
the exit pupil is before the entrance pupil. This potentially makes optical systems more compact.
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6.3 Definitions

6.3.1 Numerical aperture

The numerical aperture describes the range of angles subtended by the imaging system from an axial object.
It is given by NA = n sin θ, where θ is the half-angle subtended, from the optical axis to the extent of the
system, and n is the refractive index of the surrounding medium.

For a given lens diameter, NA is related to focal length. Dry objective lenses are limited to NA = 0.95. Higher
NAs are accessible in different immersion media. The aperture stop in photography, which is determined by
the f number which is inversely related to the NA, controls the size of the aperture.

6.3.2 Depth of focus

For a given object distance, the depth of focus is the range of image distances for which the image is in
focus. This is the effect that blurs out anything unwanted

6.3.3 Depth of field

For a given image distance, the depth of field is the range of object distances for which the object is in focus.
Our eyes use the depth of field as a clue as to the sizes of objects and their distances from the camera/point
of view (the depth).

Depth of field is inversely proportional to numerical aperture squared.

(Activity)
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(guest lecturer who didn’t name himself)

7.1 Pupils

7.1.1 Recap

An aperture stop is an object that limits the cone angle of light accepted from some object. The chief ray
passes through the center of the aperture stop. If we extend the object space version of the chief ray (without
any effect from the lens), we get the entrance pupil. The aperture stop and entrance pupil are images of each
other. To find the height, we find the marginal ray, which starts from the optical axis and passes through
the extent of the aperture stop. The entrance pupil’s highest point is located where the object-space version
of the marginal ray would end up. Image formation is determined entirely by the chief and marginal rays.

The imaging equation 1
tA

+ 1
tE

= 1
f can be used to locate the aperture stop. We use tA, the distance from

the lens to the aperture, as the image distance, so the convention for the image distance has to be used. For
a lens to the left of the aperture stop, tA is positive and tE is negative.

7.1.2 Circle of confusion

The circle of confusion is the largest diameter circular spot we are willing to tolerate in an imaging system.
If something is defocused by a distance d, i.e. the image is observed at so + d, then by similar triangles, we
can find the radius of the circle of confusion.

7.1.3 Calculating depth of field

DoF ≈ 2D2
sNC

f2
(7.1)

This can be derived using similar triangles; we consider a far and near point for the object distance and
corresponding near and far points that determine the depth of focus.

The sensor size is also a significant factor in determining the depth of field. A DSLR with a larger sensor
than an iPhone 6 has a 20x smaller depth of field (which helps to focus the subject of a picture), even with
the same field of view and f number.

The circular shape of the circle of confusion comes from the aperture. The circle of confusion can be made
sharp, and a blurry effect is sometimes desired. The shape and quality of an out-of-focus blur is referred to
in photography as “bokeh”. Changing the shape of the aperture changes the shape of confusion.
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7.2 Vignetting

Vignetting refers to when a lens is small enough that it cuts off rays. It refers to a field-varying numerical
aperture. We can derive the conditions on lens size to avoid vignetting; this is the same angular size as the
aperture stop, as we can see by propagating the marginal ray through the system (assuming aperture stop
to the left of the lens) and using similar triangles. Say this height is |ya|. We can do the same with the chief
ray to get a height |yb|. Then, the condition on element height is C = |ya|+ |yb|.

Vignetting causes space-varying bokeh. (See images from slides for examples)

A system is vignetted if any rays from off-axis object points that are aimed to pass through the entrance
pupil instead get cut off by some surface in the system that is not the aperture stop. On-axis vignetting is
not possible; if a lens were shrunk sufficiently to cause on-axis vignetting, it would become the new aperture
stop.

7.3 Common imaging systems

7.3.1 Single-lens camera

An example of this is the human eye. The entrance pupil and the aperture stop are the same, and so it is
easy to trace a ray of light through. The iris is the aperture stop, and the cornea does most of the focusing.
In nature, chambered eyes are common (unsure of the definition). Reflection-based eyes are also possible.
Compound eyes are made up of many little imaging systems.

7.3.2 Eye defects and their correction

There are two major types of defects of the eye: myopia (nearsightedness) and hypermetropia (farsighted-
ness). Nick (I think that’s his name) had an accident but it’s all okay now.

7.4 Telecentricity

Telecentricity means that the entrance pupil is at infinity. If this is the case, the system is telecentric in
object space. If the exit pupil is at infinity, the system is telecentric in image space. If both are at infinity,
the system is doubly telecentric, which is a 4f system. This consists of (for example) two positive lenses of
focal lengths f1 and f2. The magnification is M = − f2f1 .

4f systems are afocal, meaning that they have no focal length. This means a collimated beam comes out
collimated as well. It has images, without having a focal length (don’t think about it too hard). The real
answer is to try and locate the principal planes; the two rays that intersect to form the principal plane are
parallel.

In telecentric systems, magnification does not depend on defocusing. The size of an object is invariant after
imaging. This makes telecentric systems useful for measurement.
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8.1 What are aberrations?

Aberrations can affect all optical systems, including imaging systems. The goal of an imaging system is to
perfectly map a plane to a plane; all points in a plane in object space map to points on a plane in image
space. But, as showed by Maxwell, this is impossible. For example, a spherical lens cannot bring light to a
perfect focus.

Aberration theory is the study of the systematic ways in which a system of lenses corrupts an image, and
how to fix it. We cannot make a perfect image, but we can come close.

8.2 Chromatic aberrations

Chromatic aberration is caused by the dependence of refractive index on the wavelength of light. Every
wavelength sees a slightly different optical system. This causes light to disperse, causing effects like rainbows.

Chromatic aberration can be quantified in terms of the Abbe number, which is a scalar measure of dispersion.
It describes the curvature of the wavelength vs. refractive index plot. We measure this by taking three points
along the curve (conventionally, F - 486nm, D - 589nm, C - 656nm) and taking a second derivative by taking
two measures of slope, then a slope between them.

V =
1/FD

1/fF − 1/fC
=

nD − 1

nF − nC
(8.1)

A high Abbe number corresponds to low dispersion, and a low Abbe number corresponds to high dispersion.

Usually, lenses are rated to somewhere in the middle of the wavelength range, around green light. This
means when light deviates from this, chromatic aberration becomes significant. For example, when there is
red and blue light not coming perfectly into focus, they may combine to form purple fringe effects.

Axial chromatic aberration (or longitudinal colour) is the specific name for this aberration due to different
focal length for different colours. This can be seen in the lensmaker’s formula, where we let n = n(λ),

1

f
=
n(λ)− n0

n0

(
1

R1
− 1

R2

)
(8.2)

The change in focal length is

∆f(λ) =
n(λ0)− n(λ)

n(λ)− 1
fG (8.3)
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In terms of optical power, φF − φC ≡ ∆φ = φD
V .

8.3 Correcting chromatic aberrations

A lens that corrects chromatic aberration is called an achromat. It consists of placing a lens with high
dispersion (say, flint glass) with negative curvature on the left-facing surface and a flat right surface. This
is next to a converging lens made of a material with lower dispersion (such as crown glass).

To have red and blue focus to the same plane, given the Abbe numbers of the two materials, we can choose
these lenses so that they focus well. We know that optical power adds,

φtot = φ1 + φ2 (8.4)

and dispersion,

φ1

V1
+
φ2

V2
= 0 (8.5)

We can solve for φ1 and φ2.

Suppose we wanted to correct for three wavelengths. We would be able to find a solution for φ1 through
φ3, but this begins to stretch the thin lens approximation. More wavelengths would definitely break the
approximation. It is possible to make corrections for any number of wavelengths, but this would induce
many other aberrations.

In general, we can design for no axial colour in other ways. We can design a system such that all light comes
to the same back focal plane in ways other than adding more optical elements. (Missed out on the method,
or if there was one explained)

Due to the different focal lengths for different wavelengths of light, chromatic aberration can be used as a
depth sensor. A lens can be designed to intentionally have bad chromatic effects, so that it is sensitive to
changes in depth.

8.4 Axial and lateral colour

The other type of chromatic aberration is lateral or transverse. This is a change in the size or height of an
image with colour. Axial colour affects the chief ray, and lateral colour affects the marginal ray. If a system
has axial colour, then the choice of the stop position determines the amount of lateral colour, and if a stop
is at the single lens there is no lateral colour. An achromat can correct both.

What is the optimal separation between two lenses of focal lengths f1 and f2 to minimize lateral chromatic
aberration?

We can set up the equation for the power and the aberration. To find the power, we need to find the
composite focal length, which we do via the ABCD matrix representation,
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[
1 0
− 1
f2

1

] [
1 L
0 1

] [
1 0
− 1
f1

1

]
=⇒ φ(L) =

1

f1
+

1

f2
− L

f1f2
(8.6)

Using the lens maker’s formula, we can rewrite this,

1

f1
= C1(n− 1),

1

f2
= C2(n− 1) (8.7)

We eventually get (derivation done fully in the slides)

L =
1

2
(f1 + f2) (8.8)

8.5 Anomalous dispersion

Anomalous dispersion bends light the other way, i.e. having red bend more than blue. This is usually done
by causing dispersion off a diffraction grating. This is the method that modern spectrometers use (over
prisms) because it is much more space efficient.

8.6 Monochromatic aberrations, quantifying aberrations

Next time: monochromatic aberrations. These either cause blurring or distortion. A distorted image is still
sharp, but with positioning errors. This can be fixed digitally. Blurring refers to when the image is no longer
sharp, and this cannot be fixed digitally.

These aberrations come from the higher-order terms in the small angle approximation. So far we have only
worked with first-order theory, but now we will study third-order theory, in which the approximation is

sin θ ≈ θ − θ3

3 . If the third-order aberrations can be corrected, the image is likely to be fine.

Aberrations can be characterized by a spot diagram, the ray mapping from a single point object, and by a
point spread function, a map of intensity distribution imaged from a single point object across the image
plane. Aberrations can be reduced by using a higher refractive index, decreasing the angle of incidence, or
creating aspheric surface.

8.7 Third-order geometric optics

It is possible to write equations governing the third-order approximation to geometric optics. For example,
refraction at a curved surface has the following equation in third order,

n1

s0
+
n2

si
=
n2 − n1

R
+ αh2 (8.9)

where α is a coefficient depending on the radii of curvature and refractive indices (the important part is the
h2 dependence.)
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9.1 Logistics

Problem Set 4 is due Wednesday, and Exam 1 is on Monday March 4. One hand-written double sided cheat
sheet is allowed.

9.2 Monochromatic Aberrations

Last time, we introduced aberrations. An ideal 4f system, as an example, maps a point to a point. In-
troducing aberrations means points are no longer ideally mapped to points, because rays are not perfectly
collimated. Today, we will study aberrations from the lens (haha) of third-order theory. These are called
Seidel aberrations. These can be characterized by spot diagrams or by point-spread functions, both defined
last time.

There are five primary Seidel aberrations:

1. Spherical aberrations

2. Coma

3. Astigmatism

4. Field curvature

5. Distortion

9.3 Spherical aberrations

This arises from lenses not being paraxial near the edges of lenses. There is an aplanatic point, with no
spherical aberrations, only at r = R/nlens. Spherical aberrations can be reduced using an asphere, or by
using multiple elements. Spherical aberrations are space-invariant (like time-invariance of LTI systems),
meaning that the PSF is the same no matter where the object is. The aberration comes from the lens, so
it does not depend on space. This also means that spherical aberration is present both at the center and at
the edges of the image.

9.4 Coma

This causes a comet or teardrop shape in a point image (it has an apparent tail). It is like spherical aberration
for off-axis sources, due to their having different effective focal lengths and magnifications. This is a function
of wavelength.
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9.5 Astigmatism

This is characterized by an asymmetric PSF. If light is put through a system starting from a horizontal
vs. a vertical plane, and the horizontal light is in focus but the vertical light is out of focus (for example).
Non-axisymmetric systems are astigmatic even for on-axis points.

9.6 Field curvature

The problem that field curvature is associated with is that a lens maps curved surfaces to curved surfaces. In
the small-angle approximation, this is fine, but at short focal lengths, the image seems curved. This means
the image is out of focus at the edges, that is, some of the field of view is out of focus.

Is it possible to choose two thin lenses to cancel field curvature? To do this, we use the equation

∆x =
y2
i

2

m∑
j=1

m
1

njfj
(9.1)

∆x = 0 =⇒ n1f1 + n2f2 = 0 (9.2)

This is called Petzval’s condition. It is true if there is negligible spacing between the two lenses. In case
there is, consider the case f1 = f2 and n1 = n2. Then, the effective focal length is

1

f1
+

1

f2
− d

f1f2
=⇒ f =

f2
1

d
(9.3)

9.7 Distortion

This is a varying amount of magnification with the distance from the optical axis. This has two sub-cases:
barrel distortion (decreasing magnification with increasing distance, such as in a fisheye/wide-angle lens)
and pincushion distortion (increasing magnification with increasing distance, such as in a telephoto lens).

Distortion and coma are related. An orthoscopic system of thin lenses is one in which the optical center and
the center of the aperture stop are coincident. Stopping down the aperture in an orthoscopic system reduces
coma but not distortion. Symmetric lens systems about the stop will have no distortion, meaning that both
can be managed. However, symmetric systems require that M = 1.

If half of a lens is covered, then the image becomes fainter, but no part of the image disappears. All the
rays converge on the same point, so cutting off part of the lens only removes some of the rays, rather than
changing the geometry of the image.

9.8 Mathematical description of aberrations

Seidel aberrations are specifically arrived at by truncating the Taylor series of sin(θ). An alternate way of
describing aberrations is the Zernike polynomials, which are made for cylindrical imaging systems.
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Aberrations connect rays to waves. Aberrations are wavefront distortions, but they can also be described
as ray bending. The ideal output is considered a spherical wavefront reference; a spherical wave in the exit
pupil plane is needed to get a point in the object plane. If we consider an imaging system to be a black box,
we can measure aberrations as the difference between the expected and actual outputs.

In paraxial optics, everything lies in one plane. However, with aberrations, skew rays that have some
component along the third dimension are possible. Rays still originate from points along one axis in the
object plane, but they can be taken anywhere in the 2D pupil plane. Not every aberration will do this, but
some of them can, so they need to be allowed in our mathematical model. Skew rays are still rotationally
symmetric, so polar coordinates are an easier way to describe this system. We need to consider one dimension
in the object plane, say y, and two in the pupil plane, (r, φ). The normalized coordinates are (h, ρ, φ), where
h is the y height divided by the max object height, and ρ = r ∗ pupil radius. We expect both of these
coordinates to be between 0 and 1.

An aberration can be considered a transverse error vector in the image plane. We can describe it by
components (εx, εy), which is a measure of how far off the paraxial ray and the actual ray are from one
another.

The direction of a ray is always normal to the wavefront surface, so ray errors are proportional to the
derivative of the wavefront:

εx =
1

n′θ′a

∂W

∂ρx
(9.4)

and the same for y.

We can describe ray errors using deviations from the sphere. The wavefront aberration function is the optical
path distance between the ideal and actual wavefront, W (h, ρ, φ) = Wr(h, ρ, φ)−Wp(h, ρ, φ).

Wavefront aberrations can take on restricted forms because they have to be rotationally symmetric. With
this restriction, the wavefront aberration must be of the form

W (h, ρ, φ) =
∑
i,j,k

Wijkh
iρj cosk(φ) (9.5)

where i+ j must be even.

In an expanded form, this is

W (h, ρ, φ) = W000 +W020ρ
2 +W111hρ cosφ+W200h

2 +W040ρ
4 +W131hρ

2(ρ cosφ) +W220h
2ρ2 +W222h

2ρ2 cos2 φ+W311h
3ρ cosφ+W400h

4 + . . .(9.6)

The indices that sum to 4 correspond to the Seidel aberrations. These are 4th order terms because ray
aberrations are derivatives of the wavefront aberrations.

The W111 term is tilt, and the W000 and W200 terms are both piston terms. W020ρ
2 is defocus, as it depends

on a location in the pupil but is space-invariant. Tilt can be analyzed based on the previous deviation
formula. Say φ = 0, so that

W111hρ cosφ = W111hρ (9.7)
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The deviation in the x direction is then

εx =
1

NA

∂W

∂ρx
= 0 (9.8)

and in the y,

εy =
1

NA′
∂W

∂ρy
= W111h (9.9)

as we expect for an angle equal to zero.

Similarly, we can analyze the defocus term.

W020ρ
2 = W020(ρ2

x + ρ2
y) (9.10)

εx =
1

NA
2W020ρx (9.11)

εy =
1

NA′
2W020ρy (9.12)

Therefore there are linear deviations in the x and y components, as expected for a defocus term.
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Last time, we covered the two ways to describe aberrations, in terms of rays and wavefronts. Ray errors are
described using the deviation from the ideal sphere.

Piston: constant wavefront error. W000,W200 are piston, W111 is tilt, and W020 is defocus. Today, we will
cover the fourth-order wavefront aberrations, which are the third-order Seidel aberrations.

10.1 Third-order Seidel aberrations

The five Seidel aberrations are spherical, coma, astigmatism, field curvature, and distortion. The sixth term
in the aberration expansion is just an additional piston term.

W4(h, ρ, φ) = W040ρ
4 +W131hρ

2(ρ cosφ) +W220h
2ρ2 +W222h

2ρ2 cos2 φ+W311h
3ρ cosφ+W400h

4 (10.1)

040 - spherical, 220 - field curvature, 222 - astigmatism.

The hρ3 cosφ is a tilt term multiplied by a defocus, which is coma (a change in magnification based on where
light hits the pupil). The h2ρ2 term is field curvature, the h2ρ2 cos2 φ term is astigmatism because there is
dependence on angle magnitude, and the h3ρ cosφ term is distortion.

Consider the spherical aberration term in Cartesian coordinates.

W = W040ρ
4 = W040

(
ρ4
x + 2ρ2

xρ
2
y + ρ4

y

)
(10.2)

εy =
4W040

NA

(
ρ3
y + ρ2

xρy
)
, εx =

4W040

NA

(
ρ3
x + ρ2

yρx
)

(10.3)

Similarly, we can look at the coma term.

W = W131hρ
3 cosφ = W131hρ

2ρy = W131ρ
2∆m (10.4)

We can therefore find the error term,

εy =
W131

NA
h(3ρ2

y + ρ2
x) (10.5)

and the same expression in x (with the indices exchanged).

For field curvature, we have W = W220h
2(ρ2

x + ρ2
y). The error term is
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εy =
2W220

NA
h2ρy (10.6)

We analyze this similarly to a defocus term. (The Buralli notes cover these derivations in detail; I’m not
sure I really followed everything.)

The last one we wil look at here is astigmatism,

W = W222h
2ρ2 cos2 φ = W222h

2ρ2
y (10.7)

We see there is no x deviation, and the y deviation is 2W222

NA h2ρy.

10.2 Review

Topics you should know about for the exam:

1. Aberrations: both mathematical and intuitive. E.g. drawing spot diagrams and ε vs ρ.

2. Ray transfer matrices

3. Imaging conditions

4. Finding principal planes, aperture stop, entrance/exit pupils, numerical aperture

5. Tracing marginal and chief rays, back and front focal planes, effective focal length

6. Circle of confusion, defocus, vignetting

7. Refraction and waves

8. Approximations (paraxial)

10.2.1 Problems

The Coma aberration term is given by W131hρ
3 cosφ. Intuitively, coma changes magnification based on

where light hits the pupil (varying quadratically). Coma is zero at the center of the field of view in a
rotationally symmetric imaging system, which we can see by substituting in ρ = 0 to the above expression.
If W131 = −λ4 , with λ = 500nm, then the transverse ray errors can be derived. As in the Homework 4
problem, assume an image distance of 20, a focal length of 10 and an f-number of 2. Then

θ′0 =
D

2 · 20
= −10/2

40
= −1

8
(10.8)

εx =
1

− 1
8

· −1

8
h
∂ρyρ

2

∂ρx
= hρy · 2ρx (10.9)

εy = h(3ρ2
y + ρ2

x) (10.10)
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For a fan of rays, the direction not being plotted is zero, so εx can just be considered identically zero for the
plot. (See slides for the derivation.)

(Seeing Nemo question from the slides)

We can make the ABCD matrix for the system,

[
x
θ

]
=

[
1 s
0 1

] [
1 0

− 1−n
−R 1

] [
1 R/n
0 1

] [
xi
nθi

]
(10.11)[

x
θ

]
=

[ 1
n

R+s
n

1−n
R 1 + s(1−n)

R

] [
xi
nθi

]
(10.12)

The term that relates the input angle to the output position is R+s
n , which should be made zero by the

standard imaging condition. The condition is therefore s = −R. We get

[
1
n 0

1−n
R n

]

We get a magnification of M = xo
xi

= n, so the image is erect, and the image is formed where the actual
object is present. In reverse, the system becomes

[
xi
θi

]
=

[
1 R

n
0 1

] [
1 0

1−n
R 1

] [
1 s
0 1

] [
xo
nθo

]
(10.13)[

xi
θi

]
=
[
1− s(n−1)

R
s′

n + s− ss′(n−1)
nR

]
(10.14)

1− n
R

1− s′(n−1)
nR

[
xo
θo

]
(10.15)
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No content here, this is just being included for completeness.
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12.1 Photons

Light in its particle form can be considered to be made up of photons. Photons are stable, chargeless,
massless elementary particles travelling at the speed of light. They have energy E = hν. They can exert
force; when an EM wave impinges on a material, it interacts with the charges in it and exerts a force.
Photons have momentum ~p = ~~k = h

2π
~k, and a frequency which is related to the wavelength by c = λν. This

gives us an energy-wavelength relationship, E = hc
λ .

We can get a sense of scale pf photons via these equations. For example, consider the question: How many
photons of visible light are generated by a 100W light bulb that is left on for 1 hour? The energy per photon
is

Ephoton =
hc

λ
=

6.63× 10−34 × 3× 108

500× 10−7
≈ 4× 10−19J (12.1)

and the total energy is 100 W times 3600s. Therefore the number of photons is

# photons =
100× 3600

4× 10−19 = 9× 1023 photons
(12.2)

12.2 EM Waves

Recall that the wave equation allows us to check if a function ψ(x, t) is of the required form of a wave,

∂2ψ

∂x2
=

1

v2

∂2ψ

∂t2
(12.3)

In general, any function of the form ψ(x, t) = f(x− vt) is a valid wave. For example, ψ(x, t) = e−a(x−vt)2 is
a valid wave; it is a bell-shaped curve travelling in the x direction.

Electromagnetic waves are a bit more specific. They have associated E and B fields, that are orthogonal and
whose cross product describes the direction of propagation. They are specific in that they follow Maxwell’s
equations, which are as follows:
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∇× ~E = −∂
~B

∂t
(12.4)

∇× ~H =
∂ ~D

∂t
+ ~J (12.5)

∇ ~D = ρ (12.6)

∇ · ~B = 0 (12.7)

In words, and in order, these are: the curl of the electric field is the negative of the magnetic flux density; the
curl of the magnetic field is the time derivative of the electric displacement plus the electric current density;
the divergence of the electric (displacement) field is equal to the electric charge density, and the divergence
of the magnetic field is zero (there is no magnetic charge).

More simply, they say that electric fields are generated by both electric charges and time-varying magnetic
fields, and vice versa for magnetic fields.

We can get the magnetic field from the electric field with Maxwell’s equations. Consider a plane-wave electric
field, ~E = x̂E0 cos(kz − ωt). To find the magnetic field, we take the curl of the electric field and divide by
−1
µ0

to get the time-derivative of ~H. (By definition ~B = µ0
~H). We get

∂ ~H

∂t
= − 1

µ0

(
x̂(0− 0)− ŷ(0− ∂Ex

∂z
+ ẑ

(
0− ∂Ex

∂y

)
)

)
(12.8)

~H =

∫
∂ ~H

∂t
dt =

kE0

µ0ω
cos(kz − ωt)ŷ (12.9)

~H = ŷ

(
k

µ0ω

) ∣∣∣ ~E∣∣∣ (12.10)

The Poynting vector describes energy flow along the direction of propagation (it is parallel to propagation),
~S = c2ε0

~E × ~B. The magnitude of the Poynting vector represents the power per unit area crossing some
surface.

We can compute the Poynting vector for the previously determined E and B fields, as an example. Let
~E = E0 cos(k · r − ωt) (to make the direction generic) and ~B = B0 cos(k · r − ωt). Then the Poynting vector
magnitude, first in general in terms of the electric field, is

|S| = c2ε0| ~E|| ~B| = ~B =
~k

ω
× ~E =⇒ |B| = k

ω
|E| (12.11)

|S| = cε0|E|2 (12.12)

For the plane wave, this becomes

|S| = cε0E
2
0 cos2(kr − ωt) (12.13)

A detector cannot instantaneously measure this energy, so we end up measuring a time-averaged intensity

I = 1
T

∫ t+T
t
|S|dt′,
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I =
cε0

2
E2

0 (12.14)

For a linear isotropic dielectric, the electric displacement field is related to the electric field by ~D = ε0
~E+ ~P =

ε0(1 + χ) ~E. It turns out that n =
√

1 + χ. For an anisotropic dielectric, χ is a 3x3 matrix, which physically
means that the refractive index depends on the polarization.

The situation becomes even weirder in nonlinear optics, which has P = ε0(χ1 + χ2E + χ3E2 + . . . )E.

12.3 Electric and magnetic forces

These are determined in terms of fields by the Lorentz force equation,

~F = q( ~E + ~v × ~B) (12.15)

(There are several examples in the slides that I can’t replicate without looking up a number of diagrams)
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13.1 Finishing the previous lecture

13.1.1 Changing magnetic flux

Faraday’s experiment, consisting of a magnetic core being powered by a battery (with a switch to close and
open the circuit) and an ammeter to detect current thus produced, showed that a changing magnetic flux
induces a current.

The electrical continuity law says that electric current and charge density are conserved,

~∇ · ~J = −∂ρ
∂t

(13.1)

13.1.2 Plane waves are solutions to the wave equation

To find when a plane wave solves the wave equation, we can substitute in ~E = x̂E0 cos(kz − ωt) satisfies the
wave equation and derive a condition from that,

~∇
2
E − µ0ε0

∂2E

∂t2
= 0 (13.2)

x̂E
∂2

∂z2
cos(kz − ωt)− µ0ε0

∂2

∂t2
(E0x̂ cos(kz − ωt)) = 0 (13.3)

−k2 cos(kz − ωt) = µ0ε0(−ω2) cos(kz − ωt) (13.4)

Therefore the condition is k2 = µ0ε0ω
2. This is called the dispersion relation. It relates spatial and tempoeral

frequency, which are proportional to one another with proportionality constant µ0ε0 = 1
c2 .

13.1.3 Phase velocity

The phase velocity describes the speed at which the profile of the wave moves. It is given by ω
k for the

aforementioned plane wave.

13.2 Polarization

Transverse waves oscillate in the xy plane while travelling along z. Polarized light has a common direction
of oscillation. We can describe polarization in terms of the ratio of intensity of light that is polarized to the
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total intensity of light. Longitudinal waves cannot be polarized. An EM wave can be polarized by selective
absorption. For example, a Polaroid absorbs more light in one polarization than the other. Other ways
include reflection and scattering. Birefringence (double refraction) in crystalline materials can also cause
polarization.

Polarization describes the orientation of oscillation. Oscillations can be resolved into orthogonal components,
with some phase offset and relative amplitudes.

~E = x̂E0x cos(kz − ωt) + ŷE0y cos(kz − ωt+ ε) (13.5)

There are four major types of polarization: linear, circular, elliptical, and unpolarized. We want to find a
specific form for the ~E field equation for each of these cases.

13.3 Linear polarization

This can also be called plane polarization. The electric field vector traces out a plane, and the x and y
components are in phase. This gives us the constraint ε = nπ, so the form of the electric field reduces to

~Elinear = [x̂E0x + ŷE0y] cos(kz − ωt) (13.6)

We represent the electric field by a double-sided vector (a line with two arrows) that represent the extreme
values of the electric field. In general, if we want an EM wave to be linearly polarized and inclined at θ
relative to the horizontal axis, then ~E = (x̂E0 cos θ + ŷE0 sin θ) cos(kz − ωt).

13.4 Dichroism

Natural dichroism occurs in crystals like tourmaline. They absorb one polarization strongly along a principal
axis. This is not perfect, though, because it also absorbs some of the other polarization. It is strongly
wavelength dependent, making strange colours. We usually use plastic polarizers, that have engineered
dichroism. They consist of a large number of metallic wires in parallel, which absorb the components of the
electric field that hit it edge-on. Those that come in vertically polarized either just go through the wire or
cause transverse oscillations in the wire that cause it to re-radiate. Photographers use polarizers to limit
stray reflections.

13.5 Polarization on reflection

When an unpolarized EM wave is reflected by a smooth surface, it may become completely or partially
polarized. The amount of polarization depends on the angle of incidence; if the angle is zero, there is no
polarization. There is some particular angle such that the wave becomes completely polarized. For other
angles, there is partial polarization. In general, waves oriented parallel to the surface will reflect more. This
is the concept behind polarized sunglasses. They block horizontally polarized light to reduce glare from
horizontal surfaces.
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Polarization can be used to redirect or split light. We can also image polarization vectors. Our eyes cannot
see polarization, but we can design cameras to do this; in front of every pixel on a CCD, four polarizers with
different directions can be placed, to spatially map out the polarization of an image.

13.6 Partial polarization

Partial polarization can be thought of as a superposition of specific amounts of randomly polarized and
fully polarized light. This can be seen by comparing pictures of the sky with or without a polarizer; the
former is noticeably more blue. Light from the sun is unpolarized, and hits particles in the atmosphere in a
preferential direction. They oscillate more in the perpendicular plane. Therefore, as observed from the side,
light is polarized. Blue light scatters more, therefore it is less polarized; since multiple scattering destroys
polarization, blue light makes it through the polarizer.

13.7 Polarizer angles

Crossed polarizers block all light; if light is linearly polarized in one direction, then none of it makes it
through a second polarizer that is oriented 90 degrees relative to the first one. In general, the intensity that
makes it through two polarizers oriented at an angle θ relative to one another is

Iout = Iin cos2 θ (13.7)

This is Malus’ Law. We can use this to predict the intensity of light that passes through one linear polarizer,
by integrating:

Iav =
1

2π

∫ 2π

0

Io cos2 θdθ =
Io
2

(13.8)

Interestingly, if we have three polarizers, with both consecutive pairs oriented at 45 degrees relative to one
another, the intensity at the end is not zero even though there is still an angle change of 90 degrees overall
(whereas if there were just two at 90 degrees, no light would get through).We can use Malus’ Law to find
the intensity at the end.

I2 = I1 cos2 45◦ = I0 cos4 45◦ × 1

2
=
I0
8

(13.9)
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The factor of 1
2 comes in from going from unpolarized to polarized light.
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14.1 Circular and Elliptical Polarization

Last time, we saw that polarization describes the direction of oscillation. Linear polarization is characterized
by ε = 0, where ε is the phase offset between the x and y electric fields, and circular polarization is
characterized by ε = π

2 . Circularly polarized light has a vector tip tracing out a circle in Ex − Ey space.
Returning to the generic equation for light, we want to try and make it into that of a circle:

~E = x̂E0x cos(kz − ωt) + ŷE0y cos(kz − ωt+ ε) (14.1)

To make this into circular polarization, we set E0x = E0y and ε = π
2 in order to generate one sine component

and one cosine component.

Circular polarization decomposes into two perpendicular EM waves of equal amplitude, but with a 90 degree
phase difference. To check the direction of circular polarization, freeze space (set z = 0) and substitute in
values for time, e.g. t = 0 and t = 0.1. From this, we can see whether the field would move clockwise or
counterclockwise.

Right circularly polarized light has the form

~E = x̂E0 cos(kz − ωt) + ŷE0 sin(kz − ωt) (14.2)

and left circularly polarized light has the form

~E = x̂E0 cos(kz − ωt)− ŷE0 sin(kz − ωt) (14.3)

If left and right circularly polarized light are added, we get

~EL + ~ER = 2E0 (x̂ cos(kz − ωt)) (14.4)

which is linearly polarized.

For some general linear combination of circular polarizations, e.g. where E0x 6= E0y, we get elliptical
polarization. In terms of ε, E0y, and E0x, we can show that the equation we get from adding two electric
fields is that of an ellipse. We start with

Ex = E0x cos(kz − ωt), Ey = E0y cos(kz − ωt+ ε) (14.5)
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From the latter, we get

Ey
E0y

= cos(kz − ωt) cos(ε)− sin(kz − ωt) sin(ε) (14.6)

and from the former,

Ex
E0x

= cos(kz − ωt) (14.7)

Therefore, we get

Ey
E0y

=
Ex
E0x

cos(ε)−
√

1− cos2(kz − ωt) sin(ε) (14.8)

Ey
E0y

=
Ex
E0x

cos(ε)−

√
1− E2

x

E2
0x

sin(ε) (14.9)

Squaring both sides after rearranging, we get

(
Ey
E0y
− Ex
E0x cos ε

)2

= 1− E2
x

E2
0x

sin2 ε (14.10)

or

(
Ey
E0y

)2

+

(
Ex
E0x

)2

− 2

(
Ey
E0y

)(
Ex
E0x

)
cos ε = sin2 ε (14.11)

In the limiting case E0x = E0y and ε = π
2 , we get the unit circle.

Other types of polarization are a subset of elliptical polarization. For varying values of ε, we get different
eccentricities of the ellipse traced out by the electric field vector.

We can analyze equations to find their state of polarization. For example, ~E = x̂E0 cos(kz − ωt) −
ŷ2E0 sin(kz − ωt) has elliptical polarization because the components are out of phase with different mag-
nitudes; the polarization is left-handed, which can be seen by setting z = 0 and advancing time slightly
from t = 0. ~E = x̂E0 cos(kz − ωt) + ŷ2E0 sin(ωt− kz + π/2) has its components in phase (because
sin(x+ π/2) = cos(x)) so this describes linear polarization with angle θ = arctan 2.

14.2 Birefringence

In birefringent materials, each polarization component (x, y) incurs a different phase delay due to an
anisotropic molecular structure. This causes different polarizations to see different refractive indices.
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Birefringence relates to anisotropy in that the binding forces between atoms in a crystal are stronger or
weaker based on the location in the material. We describe birefringent materials in terms of their ordinary
and extraordinary axes. Uniaxial crystals have one refractive index for light polarized along the optical axis,
and another for light polarized perpendicularly to it. Along the optical axis, the refraction is extraordinary ;
perpendicular to it, the refraction is ordinary.

Birefringent materials show different colours when placed between two crossed polarizers. Not all light is
blocked in this case, because the birefringent material in the middle changes the polarization to somewhere in
between both of the polarizers’ axes. Wave pates use birefringent materials to change the state of polarization.
Half-wave plates cause a phase delay of π, which is given by the following equation:

∆ϕ =
2π

λ
d|no − ne| =

2π

λ
OPL (14.12)

In summary, the optical axis of a birefringent crystal is the direction which suffers no birefringence. A

quarter-wave plate has d|no − ne| = (2m+1)λ0

2 and converts between linear and circular polarization, and

a half-wave plate has d|no − ne| = (4m+1)λ0

4 and it rotates linearly polarized light from θ to −θ. Liquid
crystal displays use crossed polarizers; the electrically polar nature of LC molecules means the lowest energy
configuration state is with electric dipoles aligned with the applied electric field. This causes a change in
the refractive indices for different incident polarizations. Therefore, a liquid crystal cell between crossed
polarizers modulates amplitude with applied voltage per pixel.
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15.1 Example of predicting polarization

Randomly polarized input light is sent through a linear polarizer at 45 degrees to the x−axis, followed by two
quarter-wave plates with refractive indices nf and ns. After the first linear polaizer, the intensity becomes
Iin/2, and the polarization state is given by

ê =

√
Iin
2
x̂ cos(kz − ωt) + ŷ cos

(
kz − ωt+

π

2

)
(15.1)

Then, through the waveplates, we get

Iout =
Iin
2

(15.2)

êout =

√
Iin
2

(x̂− ŷ) cos(kz − ωt) (15.3)

Therefore, we get linearly polarized light with the given direction and intensity.

15.2 Polarization Changes on Reflection and Refraction

Polarization changes on reflection and refraction. The relative amounts of reflected and refracted light are
described by the Fresnel equations. At interfaces, we describe wave polarizations in terms of the transverse
electric field (which is perpendicular to the plane) and the transverse magnetic field (parallel to the plane). If
the polarization is somewhere in between, we describe it in terms of a TE component and a TM component.

The TM case is the dual of the TE case; see the slides for the precise variable mapping.

15.3 Dipole model for polarization-dependent reflection

It is easier to re-radiate light in particular directions, based on the alignment of the reflected ray with a
dipole axis. If the two directions are close, then the reflected beam is weaker. With no reflection, we know
that θt + θr = 90. The θr at which this happens is called Brewster’s angle, and it satisfies the relation

ni sin θp = nt sin θt (15.4)

tan θp =
nt
ni

(15.5)

50



15.4 Fresnel Equations

These give the ratios of the reflected and transmitted electric fields in the TE and TM directions.

r⊥ =

(
E0r

E0i

)
⊥

=
ni cos θi − nt cos θt
ni cos θi + nt cos θt

(15.6)

r‖ =
nt cos θi − ni cos θt
ni cos θt + nt cos θi

(15.7)

t⊥ =

(
E0t

E0i

)
⊥

=
2ni cos θi

ni cos θi + nt cos θt
(15.8)

t‖ =
2ni cos θi

ni cos θt + nt cos θi
(15.9)

Intuitively, they describe how waves change at boundaries. Previously, we talked about how ~E = E0e
i(kz−ωt)

describes a plane wave in a homogeneous medium. At interfaces, there will be three components: incident,
reflected, and transmitted. For continuity, their intensities all have to add together.

From this perspective, Snell’s law is a consequence of the tangential electric field being continuous across the
boundary (which is an important rule). Therefore, to solve problems, we look at boundary conditions at an
interface. This is how the Fresnel equations are derived.

We can plot the reflection coefficients over a range of incidence angles, which is done in the slides.

Using Snell’s law, we can simplify the Fresnel equation significantly. For example, r⊥ = sin(θt−θi)
sin(θt+θi)

.

The ratio of energies can also be given by the reflection and transmission coefficients. These energy ratios
are denoted R and T . Energy conservation is equivalent to the statement that R+ T = 1, or explicitly

1 =
E2

0r

E2
0i

+
E2

0t

E2
0i

nt cos θt
ni cos θi

(15.10)

Energy being conserved across a boundary means both the parallel and perpendicular components must
conserve energy: R⊥ + T⊥ = 1 and R‖ + T‖ = 1.

If waves with the same polarizations add, then they interfere and we get I = |E1 +E2|2. If they have opposite
polarization, there is no interference.
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(Guest lecturer: Austin Roorda)

The human eye is an optical system with a number of components. Light first hits the first surface of the
cornea, which has a radius of curvature of 7.7mm and an index of refraction of 1.376. Therefore, its power
comes out to be +48.83 D. At the back surface of the cornea, the index reduces slightly and the radius of
curvature becomes 6.8mm, to get a power of -5.88D. The total power of the cornea is about 43 D.

The pupil governs image quality, amount of light, and depth of focus. The pupil is perfectly located to
maximize the field of view of the eye. If you trace light through the pupil, which turns out to be the field
stop, it just hits the edges of the retina.

Humans can operate in a really wide range of illuminances in natural environment, from about 10−6 to 108

cd/m2. So an optical system that can operate at all of these ranges would have to be really well engineered.

After these two, we hit the crystalline lens, which has a gradient index of refraction. This increases the
overall power as it causes the light to curve as it passes through. For a homogeneous lens to have the same
power, it would have to have a higher refractive index than the peak index in the gradient.

To change the eye’s focal length, a sphincter muscle (which shrinks when activated) is used. The relaxed
eye is under tension at the equator from the ciliary body. This keeps the surfaces flat enough so that for a
typical eye, distant objects are easily visible. In the accommodated eye, the ciliary muscle constricts and
relaxes the tension on the equator of the lens. This increases the surface curvature and power of the lens.
This increases the eye’s power from about 22 to about 32 dioptres.

With age, the eye tends to harden and lose some of its accommodation power. The human eye starts around
a range of 10 dioptres, and over time this accommodation reduces.

The retina samples the image by millions of rods and cones. The fovea (maximum concentration of cones)
is 5 degrees from the optical axis, which does something. (Sorry, I’m not quite getting all the details here -
his standard slides are available online.)

The human eye perceives the sizes of objects based on visual angles. For example, the full moon occupies
half the visual angle of your fingernail.
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Light + light = darkness. If you combine two waves that are π radians out of phase, then the crests and
troughs match up and destructively interfere to create nothing. Noise-cancelling headphones work on this
principle; they listen to ambient noise and create an opposite wave to destructively interfere with it and
create silence. However, sound and light differ in that we cannot measure the actual electric field of the
light; we can only measure time-averaged interference. Instead of measuring E directly, we measure I.

Suppose there is a point P at which two electric fields combine, ~EP = ~E1 + ~E2. The intensity there is

I = ε0c
〈
~E2
P

〉
= ε0c

〈
~E1 · ~E1 + ~E2 · ~E2 + 2 ~E1 · ~E2

〉
= ε0c 〈I1 + I2 + I12〉 (17.1)

The I12 term represents interference. It is the dot product of the electric fields. For the usual form of electric
field,

~E1 · ~E2 = ~E01
~E02 cos(ks1 − ωt+ φ1) cos(ks2 − ωt+ φ2) (17.2)

We simplify this by introducing constant phases α = ks1 + φ1, β = ks2 + φ2, and using a trig identity,

I12 = ε0c ~E01
~E02 〈cos(β − α)〉 = ε0c ~E01

~E02 〈cos ∆φ〉 (17.3)

Overall, if we time-average the cosine expressions in I1 and I2, we get

I = I1 + I2 + I12 =
1

2
ε0c
(
E2

01 + E2
02

)
+ 2
√
I1I2 〈cos ∆φ〉 (17.4)

To maximize the contrast, we want I1 and I2 close together. When they are equal, say I1 = I2 = I0, I maxes
out at 4I0 and is at minimum 0.

Unidirectional destructive interference, where waves combine destructively in one direction and constructively
in the other, is possible.

17.1 Interferometry

To characterize the phase of a wave, we combine it with a known wave and measure the space- or time-varying
intensity of the combination. A Michelson interferometer characterizes interference in time. A wave hits a
beam splitter, and half goes through each arm and the halves coherently combine. By varying the lengths
of the arms or any optical obstacles on the way, a phase shift can be induced and interference effects can be
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induced with it. Half the light goes down a reference arm and the other half goes down a measurement arm
perpendicular to it.

To get the phase, we induce a controlled phase shift. This allows us to completely specify the phase up
to a modular factor of 2π. This “wrapped phase” can be recovered by interferometry, and it can then be
unwrapped more or less by guessing that jumps of 2π represent phase wrapping rather than being a part of
the wave itself.

Interferometers measure optical path length differences. (Out of time, I missed some stuff)

The same as in time can be done in space. This was done by Young’s double-slit experiment, that showed
the interference pattern.
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We want to derive an expression for the intensity of light that has undergone interference. Consider the case
of a pinhole in an opaque screen, with a little bit of light coming through a slit and spreading out from there
as a spherical wave. The field at a point x′ due to a pinhole at x = x0 is

E =
eik(z+l)

iλl
eiπ

(x′−x0)2

λl (18.1)

Now, if there is a pinhole at x = −x0, this expression only changes to have x′ + x0 instead of x′ − x0. If
we have both of these together, the interference pattern can be described by the squared magnitude of their
sum,

g(x′) =
eik(z+l)

iλl

(
exp

(
iπ

λl
(x′ − x0)2

)
+ exp

(
iπ

λl
(x′ + x0)2

))
(18.2)

By expanding, and taking the absolute value squared while dropping oscillatory terms whose magnitude is
1, we end up with

I(x′) = |g(x′)|2 =
4

λ2l2
cos2

(
2π

λl
x0x
′
)

=
2

λ2l2
(1) + cos

(
2π
x′

Λ

)
(18.3)

where Λ = λl
2x0

is the spatial period.

The double-slit experiment can be analyzed, rather than in terms of the electric fields, in terms of rays. For
any point on the imaging screen, whether the point is bright or dark depends on the phase shift between
the two light waves, which can be determined by the relative optical path lengths. Constructive interference
occurs when ∆OPL = mλ

2 for m even, and destructive interference occurs for the same condition but when
m is odd.

If the pinholes are made larger, then the overall effect would be the same as if multiple slits were put together,
creating an overall blur. If the distance betweens lits were increased, the distance between dark fringes would
decrease, and if the wavelength of light were increased, the distance between light fringes would also increase.

Huygens’ principle can be seen as a consequence of combining many pinholes in this way. Each point on a
wavefront acts as a secondary light source emitting a spherical wave.

What if more than two plane waves were to interfere? This becomes a more difficult roblem to analytically
answer; a “speckle”, the result of this, is essentially the sum of many random vectors.

Thin-film interference is seen in real life often. This occurs when there is a thin film, say oil on water, of a
different refractive index than the bulk medium. The thickness of the thin film should be roughly constant
to within a couple wavelengths; call this thickness d. Consider light coming into the thin film surface at
angle θ1. The Fresnel equations tell us how much is reflected and transmitted. Light reflects off the other
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end of the thin film and refracts outwards at the top interface. At the same time, the initially reflected light
is also present. Therefore there are two reflected rays with an optical path difference between them. From
geometry, we eventually get ∆OPL = 2dn2 cos θ2.

Thin-film interference is why colour fringes are created in glass that has internal cracks. This is a combination
of constructive or destructive reflections, where the optical path difference is an integer multiple of λ2 as before.
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19.1 Thin-film coatings continued

Thin-film coatings can be constructed to make an anti-reflective lens. Recall that ∆OPL = 2dn2 cos θ2; to
cause destructive interference in order to zero out reflections, we want ∆OPL = n2

λ
2 . Additionally, the

intensities have to be the same. Assuming this is the case, we get

d =
λ

4 cos θ2
(19.1)

The thickness is around 138 nm (for λ = 550nm and θ = 10◦.), or any thickness that yields this modulo 2π.
This can be precisely made.

A perfect anti-reflection coating is impossible to make, because of secondary reflections. More light could be
made to reflect by adding more thin-film layers; multilayer mirrors that employ this technique are common
in optics labs.

19.2 Coherence

The requirements for two beams to interfere were that they both have the same wavelength, same polar-
ization, and both be coherent. If incoherent waves combine, then we just get 〈I〉 = I1 + I2; if completely
coherent waves combine, then as we derived before 〈I〉 = I1 + I2 + 2

√
I1I2 cos 〈∆ϕ〉.

Suppose we have a wave whose wavefronts are not quite periodic in time. We characterize this by temporal
coherence; how correlated is the wave to the wave after a time-step? Similarly, spatial coherence describes
fluctuations in space, such as the shape of wavefronts. Measuring coherence becomes difficult because it is
a measure of correlation. We cannot make direct measurements of this, only averaged ones.

First consider spatial coherence. Consider two particular points P1 and P2 on the wave. If their temporal
variation is the same, or if they are negatives of one another, they are highly correlated; if the temporal
variation at fixed points is very different, then they are not correlated. We can filter incoherent light to make
it coherent; a pinhole aperture makes a wave spatially coherent.

Temporal coherence measures time correlations. Consider a time-versus-amplitude plot; if it is started in
parallel with a perfect sine wave of the same period and amplitude, the coherence time is the maximum
duration over which the perfect sine wave is in phase with the wave.

We previously said that the Michelson interferometer was a time-based interferometer; we can use it to
measure the coherence time of a wave. Consider a wave with a set of random intensities over time, which the
interferometer delays and recombines with the original wave. Over time, the fringe visibility (the measure
of correlation, or contrast in the interference pattern) reduces as the waves get less and less correlated. The
distance over which the fringe visibility drops from 1 to some conventional point (say 0.6) is the temporal
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coherence. Strangely, it has dimensions of length, because it is always measured physically. Sometimes short
coherence is preferable.

Spatial coherence can be measured with a Young’s interferometer.

Light from incoherent sources becomes more spatially coherent if you move farther away from it. Close to
the slits, light from two interfering sources is mostly from one or another. Farther away, both slits start to
see an even mix.

An extended source has low spatial coherence.

Coherent modes: partially coherent beams can be decomposed into a basis set of coherent modes, in which
each mode is coherent with itself but not with others. As an example of engineering spatial coherence, a
rotating diffuser creates partial coherence. Each random speckle field is a coherent mode, and the time
averaged field is perfectly coherent. We can create a quasi-monochromatic partially coherent beam by doing
this.
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20.1 Diffraction

Diffraction is a different type of interference. When we talk about diffraction, we are usually talking about
light propagating. When light hits an object, it spreads out like water waves creating a “wake”, appearing
to bend around an object. Red waves do not scatter as much as blue waves, and blue waves scatter to higher
angles than red waves.

Diffraction can be predicted by Huygen’s principle, but a mathematical description of diffraction via Huygen’s
principle is difficult. To make this easier, we write it as a convolution,

g(x) ~ h(x) =

∫
g(x′)h(x− x′)dx′ (20.1)

Coherent light propagates first in the near field (where evanescent waves must be considered) to the Fres-
nel region (paraxial approximation) to the fractional Fourier region (similar to Fresnel but with physical
spreading) to finally the Fraunhofer region (where optics can be described by a Fourier transform).

An optical Fourier transform can be done in two ways; by far-field propagation or by a 2f system. We denote

a Fourier transform by g(x”, y”) = G̃
(
x”
λz ,

y”
λz

)
. When done by a lens (where the object and image distances

are both f), we set z = f .

20.2 Fourier analysis

We know about spatial frequency, and that it is related to the angle of propagation by sin θ = λfx. The
Fourier transform decomposes a function of space into its constituent spatial frequencies.

G̃ = F(g) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y) exp [−i2π(fXx+ fY y] dxdy (20.2)

We will deal with 2D spatial frequencies, where the transformation is unitary. g(x, y) is a complex function
and it is usually separable in x and y. The Fourier transform is linear, meaning it has homogeneity and
superposition: F(λg) = λF(g) and F(g1 + g2) = F(g1) + F(g2). Intuitively, wide functions of space have
thin Fourier representations and vice versa.

By taking a Fourier transform, we want to decompose a pattern into a linear basis function set of spatial fre-
quencies (an inverse Fourier transform). Some common Fourier inputs are the rectangle function, sinc (rect
and sinc are Fourier pairs), the signum function, the triangle function, and the comb function (also known as
an impulse train). Fourier transforms have many useful properties, which can be read about online like here:
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MITRES_6_007S11_lec09.pdf.

Far away from a light source, we take a Fourier transform of the input slit; when R > a2/λ, this describes
the intensity distribution on a far-field observation plane. For example, the intensity due to a rectangular
slit is a sinc squared (I ∝ |E|2).

If illumination is not monochromatic, then diffraction patterns like rainbows (based on the shape of the
grating) are created.

Suppose the transmission of a wavefront is described by a function gt(x, y), such that g+(x, y) = g−(x, y)×
gt(x, y). The transparency has two effects: attenuation and phase delay. The transmittance function can be
described as a complex transmission function, gt(x, y) = a(x, y)eiϕ(x,y) where the modulus is the attenuation
and the phase is the phase delay. This is assuming that the features on the transparency are greater than
one wavelength.

Consider a rectangular aperture,

gin(x, y) = rect

(
x

x0

)
rect

(
y

y0

)
(20.3)

The Fourier transform is

Gin(u, v) = x0y0sinc(x0u)sinc(y0v) (20.4)

This lets us say that gout is proportional to sincs in both the x and y directions.

The Fourier transform of a sinusoid can be found using Euler’s formula; if g(x) = cos(2πf0x) then G(fx) is a
sum of two deltas. If there is a sinusoid in only one dimension, the Fourier transform is just two dots along
that direction. The higher the frequency, the closer together the dots (double check that). If the sinusoid
rotates in the x− y plane then the dots rotate with it.

Diffraction gratings have orders based on the optical path difference. This is given by d sin θ = nλ.

Diffraction gratings can be split into amplitude gratings, which continue forever and cause amplitude vari-
ation keeping the phase constant, and phase gratings, which cause phase variation. In the first, there is a
periodic sinusoid in the amplitude, and in the second, it is in the phase. g1(x) = 1

2

(
1 +m cos

(
2π xΛ + φ

))
and g2(x) = exp

(
im2 sin

(
2π xΛ + φ

))
.

Consider a sinusoidal amplitude grating like the first one above. Using Euler’s formula we can rewrite this,

gt(x) =
1

2
+
m

4
exp

(
i2π

sin θ

λ
x

)
+
m

4
exp

(
−i2π sin θ

λ
x

)
(20.5)

gt(x) =
1

2
+
m

4
exp(i2πu0x) +

m

4
exp(−i2πu0x) (20.6)

where sin θ = λ
Λ and u0 = 1

Λ .

The last bit of terminology here is the diffraction efficiency (a function of n), the amplitude of the nth order

squared. η0 =
(

1
2

)2
, and η±1 =

(
m
4

)2
.

Any grating can be decomposed into a sum of sinusoids, and the resultant image found in this way (demo).
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We want to look at imaging from a systems perspective. Suppose we have the property of linearity for an
optical system H, i.e. we can add and scale solutions. Then, we can use Green’s method to solve a system
of linear equations using the Fourier transform. Put another way, we put in an impulse function and get out
a point spread function; if the input is a sum of impulses, the output must be a sum of impulse responses.

Convolution in real space is multiplication in Fourier space, which makes convolution computationally very
efficient. Imaging systems usually have space invariance (as an assumption; if aberrations are present this
is not the case) which allows us to convolve an input and a point-spread function to get a system output. If
H is not space invariant, convolution cannot be used.

We will use the systems perspective to analyze the optical Fresnel region, which is closer than the Fraunhofer
region. On the way to far-field, intensity variations occur due to wave overlapping. In particular, 3 plane
waves of infinite extent will create intensity variations that are periodic along z. This is called the Talbot
effect.

At z = 10000λ and z = 20000λ from a sinusoidally varying grating as an object, the pattern is the same,
but the spatial frequency doubles at 5000λ. This is called “self-imaging”, where a periodic function repeats
itself along z with propagation.

The Talbot effect can be physically explained as a consequence of a plane wave incident on a grating, to

create three plane waves: of 0th, 1st, and -1st orders. At a distance z, the phase delay is π z2

Λλ2 (verify) and
so at certain lengths, we get constructive or destructive interference. The Talbot effect can be used to create
repeating 3D intensity patterns for lithography.

For small objects that are not gratings, in general, the far-field image can be predicted by the Fourier
transform, and in the middle, the image stretches out till it becomes its own Fourier transform.

Propagation is a convolution. Let the input be some complex field g = Aeiϕ. We Fresnel propagate by a
distance z. By Huygen’s principle, we know that the complex field is the sum of all the spherical wavelets
produced at z = 0:

g′(x′, y′) =
z

iλ

∫ ∫
g(x, y)

eikr

r2
dxdy (21.1)

where r =
√
z2 + (x′ − x)2 + (y′ − y)2. The propagation of the wave field can be treated as a 2D convolution

of the complex field with a spherical wave, g′(x, y) = g(x, y)~h(x, y) where h(x, y) ∝ eikR

r . Huygen’s principle
predicts spherical wavelets, and we can expand the above h(x, y) to

h(x, y) ∝ ik(x2 + y2 + z2)1/2 = ikz

(
1 +

1

2

(
x2 + y2

z2

)
− 1

8

(
x2 + y2

z2

)2

+ . . .

)
(21.2)

For phase, R ≈ z
(

1 + x2+y2

2z

)
.
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This h(x, y) acts like a divergent lens.

We can use this to make an algorithm for digital propagation. Let there be a complex object with g(x, y) =
A(x, y)eiϕ(x,y). Put this through a system hz(x, y), and we get g′(x′, y′) = g(x, y) ~ hz(x, y). We take the
intensity, Iz(x, y) = |g(x, y) ~ hz(x, y)|2. This contains both phase and amplitude information.

The Fresnel propagation kernel varies with distance; the greater the distance, the greater the number of
rings in the PSF and the more blurred the intensity gets.

The Fresnel number, F = ∆x2

λz , describes an amount of diffraction. This is a good indicator of whether
imaging is coherent.

Digital refocusing uses convolution. Consider the image of a bug in a complex impulse function created by
ripples in water. The distorted image is the convolution of these two. If distortion is caused by defocus, the
image can be brought back into focus by backpropagating.

62



EE 118: Introduction to Optical Engineering Spring 2019

Lecture 22: Diffraction: Fresnel to Fraunhofer Propagation
Lecturer: Laura Waller 17 April Aditya Sengupta

Recall that we propagate a wave by convolving it with a point-spread function. Last time we covered digital
Fresnel propagation, which is done by convolution: gout(x

′, y′) = gin(x, y) ~ hz(x, y). Then we can take the
intensity.

Suppose there is an circular shaped disk in a beam of light. We are interested in finding out whether
light constructively interferes at the center. We get an optical path length from the edge of the disk of
n
√
r2 + z2, which is cylindrically symmetric, so the difference in OPL and therefore the phase difference is

0. Therefore we get constructive interference. This is called the Poisson spot or Arago spot. It is a coherent
effect resulting from constructive interference, so it gives evidence that light is a wave. It is due to Fresnel

diffraction, therefore it occurs when the Fresnel number r2

λz > 1. We do not see this often in everyday life
because if the light is not coherent, then the fringes and spot are blurred.

In between the Fresnel and Fraunhofer regions, we analyze optics in the fractional Fourier region. This is
similar to Fresnel but takes into account physical spreading. A fractional Fourier transform requires that we
define the order of a Fourier transform, which is just the number of times a Fourier transform is applied to
itself: F2(f) = F(F(f)). The p/qth Fourier transform is the operation which when applied to itself q times
yields Fp(f).

We can show that Fresnel propagation goes to Fraunhofer propagation at long distances. Consider Fresnel

propagation by convolution with a PSF for propagation by distance z, h(x) = eikz

iλz e
ik x

2

2z . We get

gout =

∫
gin(x)

eikz

iλz
ei

k
2z (x′−x)2dx (22.1)

gout =
eikz

iλz
e
ik
2z x
′2
∫
ginxe

ikx2/2ze−ikx
′x/zdx (22.2)

Drop the x2 term because of the Fraunhofer far-field condition. Eventually we get

gout =
eikz

iλz
eikx

′2/2z

∫
gin(x)e−iπx

′x/λzdx (22.3)

which is just the statement of the Fourier transform with spatial frequency fx = x′

λz , as we expect.

The Fourier transform is not space invariant, so it cannot be written as a convolution and no transfer function
exists. Fresnel optics still applies, and Fraunhofer optics is one subset of Fresnel.

As mentioned previously, an optical Fourier transform can be done either by a 2f system (g(x, y) =

G
(
x
λf ,

y
λf

)
) or by carrying out far-field propagation (g(x, y) = G

(
x
λz ,

y
λz

)
). We saw how to derive the

far-field propagation method. We can derive the 2f system one by carrying out Fresnel propagation twice,
with a spherically-shaped phase delay representing the lens in the middle.

The total phase delay is
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ϕ(x, y) = kn∆(x, y) + k(∆0 −∆(x, y)) (22.4)

We split the lens into three parts to get this, ∆(x, y) = ∆1(x, y) + ∆2(x, y) + ∆3(x, y). From geometry, we
get

∆(x, y) = ∆0 −R1

(
1−

√
1− x2 + y2

R2
1

)
−R2

(
1−

√
1− x2 + y2

R2
2

)
(22.5)

Applying the paraxial approximation, this simplifies to

∆(x, y) = ∆0 −
x2 + y2

2

(
1

R1
− 1

R2

)
(22.6)

Ignoring the constant phase term, we get a lens transformation with the above phase,

tl(x, y) = exp

(
−j k

2f
(x2 + y2)

)
(22.7)

The field just before the lens is given by

glen−(x′) =

∫
g(x)e

iπ
λf (x′−x)2dx (22.8)

and just after the lens it is

glens+(x′) = glens0e
iπx′2/λf (22.9)

At the output plane, we get

gout(x
′′) =

∫
glens+(x′)e(iπ/λf)(x′′−x′)2dx′ (22.10)

which in terms of the input g(x) comes out to

gout(x
′′) =

∫
g(x) exp (−i2πxx′′/λf) dx (22.11)

which is again a Fourier transform with frequency fx = x′′/λf .
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Parseval’s theorem relates the energy in terms of space with that in terms of frequency,

∫ ∞
−∞
|f(x)|2dx =

1

2π

∫ ∞
−∞
|F (ω)|2dω (22.12)

If you do two Fourier transforms with a 4f system, we get the original image back with a sign shift:
g′′(x′′) = g(− f2f1x

′′).

A mask in Fourier space acts as a filter. For a desired point-spread function, the Fourier transform of that
PSF can be the Fourier plane transparency (in the middle of a 4f -type system), which will take an input wave
to a point to the desired PSF and finally back to the desired filtered field: g′′(x′′) = g(−(f2/f1)x′′) ~ T (x′).
(See slides for examples of Fourier filtering).
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23.1 Fourier masks

We previously saw that a mask in Fourier space acts as a filter. This allows us to design for a desired point-
spread function by constructing the corresponding Fourier mask. We can use this to figure out the filters
that would cause certain outputs. For example, if a transform takes a point to three vertically-patterned
points in space, we know that the point-spread function is those three vertically-patterned points. We expect
that the Fourier mask looks like f(x′) = 1 + cos(fxx

′). We can figure out this spatial frequency based on
known focal lengths. Say f1 = 100mm and f2 = 125mm in the 4f system being used to do this transform.

We say d sin θ = λ, and by trigonometry we see that tan θ = 0.75/2
f (where 0.75mm is the distance between

the two first orders). We get d = 177µm.

For a system with higher orders (in the slides, every odd order is shown, which corresponds to a rectangular
mask) the approximation of sines and cosines matching each of the spot ends up forming the Fourier series
of the real mask.

23.2 LTI System Convolution

If a system is LTI, then every point sees the same point spread function, and convolution can be reversed
by using linearity. Suppose we have output and input images, and we want to find the PSF with which the
input was convolved. In Fourier space, gout = h ~ gin transforms to Gout = HGin, so we can deconvolve
just by dividing in Fourier space. In this case, it is necessary for the Fourier transform not to have any zero
values, otherwise the input would blow up to infinity at those points (by dividing Gin = Gout

H ).

Engineering the point-spread function allows us to reconstruct images via deconvolution. Applying and
deconvolving from a uniform blur allows for an extended depth of field, for example. (A lot of this lecture
was demos and examples, not theory)

The PSF of a circular aperture is an Airy disk. If there are many circular objects in real space, their Airy
disks overlap in Fourier space. If two points are sufficiently far apart that their Airy disks sum to just one
larger Airy disk, then the points are not resolved, and otherwise they are. The Nyquist sampling criterion
applies to the resolution of the pixels. A larger PSF causes more blurring.

For a given lens diameter, blue has the best resolution in a microscope; wavelength and NA both affect this,
and the smaller the wavelength the smaller the diffraction limit. The Rayleigh criterion formalizes this,

res = 0.61
λ

NA
(23.1)

where 0.61 is half of the first minimum of the Airy function.

The modulation transfer function, a measure of contrast as a function of spatial frequency, also characterizes
resolution.
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