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Lecture 1: Introduction 6

EECS 126: Probability and Random Processes Fall 2019

Lecture 1: Introduction
Lecturer: Shyam Parekh 29 August Aditya Sengupta

Note: LATEX format adapted from template for lecture notes from CS 267, Applications of Parallel Comput-
ing, UC Berkeley EECS department.

1.1 Applications of Probability

This is a preview of some of the concepts you’ll understand by the end of the semester!

1.1.1 Capacity of a BEC

A binary erasure channel represents a transfer of bits over a channel, in which there is some probability that
each bit is erased, i.e. it cannot be unambiguously read as 0 or 1.

0

1

0

1

e

Similarly, a BSC represents a channel in which a 0 can be read as a 1 or vice versa, instead of registering as
an erased bit.

The key problem in a BEC or BSC is to maximize the capacity (the largest achievable rate of transmission)
while the error still tends too 0.

1.1.2 Erdos-Renyi Random Graphs

An E-R random graph is a graph whose edges are given by a probability function p(n) of the number of
vertices n. p(n) represents the probability of links being present for any given pair. Let p(n) = λ lnn

n . If
λ > 1, G(n, p(n)) is almost surely connected as n → ∞, and if λ < 1, it is almost surely disconnected.
“Almost surely” can be formalized as ∀ε > 0,∃N ∈ R s. t. n > N =⇒ the probability p > 1− ε.

1.1.3 DTMC and CTMC

A Markov chain is a system in which the current state is sufficient to describe the state evolution. This can
be applied to fields such as queueing theory.
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1.1.4 Estimation

A widely applicable problem is to estimate future states of a system given some system observation. One
method to do this is maximum likelihood estimation, which chooses parameters θ to maximize the probability
of the observed data D.

θ̂MLE = arg max
θ

P(D | θ) (1.1)

Another technique is maximum a posteriori estimation, which chooses the value that is most probable given
observed data and a prior belief on the distribution of θ.

θ̂MAP = arg max
θ

P(θ | D) (1.2)

1.1.5 Hypothesis Testing

Suppose there is a binary variable X that is observed as X̂. Hypothesis testing seeks to minimize the
probability that X̂ 6= X. Specifically, we want to minimize P (X̂ = 0 | X = 1) [probability of false negative]
subject to P(X̂ = 1 | X = 0) ≤ β [probability of false alarm/false positive]. This is resolved by Neyman-
Pearson hypothesis testing.

1.1.6 Kalman Filtering

Kalman filtering is a method to obtain the optimal linear state estimate of a dynamic system. It combines
a physical estimate of the system state with noisy measurements that are linear in the state to obtain the
state estimate having the minimum mean-squared error at any given time.

Consider a discrete-time dynamic system with a state-transition rule

~x[k + 1] = A~x[k] + ~w[k] (1.3)

where ~w[k] is Gaussian process noise described by a covariance matrix ΣW . The impact of the white noise
on the state prediction can be captured in a state covariance matrix P , with state-transition rule

P [k + 1] = AP [k]AT + ΣW (1.4)

A linear measurement of the system state is taken at each timestep k, given by

~z[k] = H~x[k] + ~v[k] (1.5)

where ~v[k] is Gaussian measurement noise described by a covariance matrix ΣV .
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The Kalman filter is an optimal state observer: given a series of measurements ~z[k], it reconstructs the ~x[k]
that has the minimum mean-squared error (MMSE). For each timestep, the Kalman filter makes a state
prediction and updates it based on the error between the predicted and actual measurements. Specifically,
the error term in the measurement domain is converted to one in the state domain by multiplying by the
Kalman gain matrix K[k], which combines the process and measurement covariances to produce the optimal
measurement-to-state gain.

1.2 Probabilistic Models

Probabilistic models are constructed by

• defining an experiment

• defining the sample space Ω of possible outcomes

• defining the probability law that assigns probabilities to subsets of Ω

For example, when flipping a coin, the sample space is {H, T}, and a probability law would have to assign
probabilities to the subsets {{}, {H}, {T}, {H, T}}.

Suppose we randomly sample a real number in [0, 1]. The probability that any one element x is chosen is
zero, because there are uncountably many reals in [0, 1]. The probability that a rational number is chosen
is also 0. This can seem unintuitive, as there are infinitely many rational numbers in [0, 1]; however, the
rationals are countable (look up arguments like Cantor diagonalization to see why), and the complement of
the rationals is uncountable; intuitively, the quantity of real numbers that are not rational outnumber the
rational ones so drastically that if you pick a truly random number, it’s virtually guaranteed to be irrational.

Even if you had an uncountably infinite set, that does not guarantee the probability of picking an element of
it is nonzero. Rather, it is possible to construct a set with uncountably many elements but zero probability,
called the Cantor set. This is constructed by recursively removing the open middle third of each segment of
the current interval, i.e. first deleting

(
1
3 ,

2
3

)
, then deleting the middle third of

[
0, 1

3

]
, i.e.

(
1
9 ,

2
9

)
and that of[

2
3 , 1
]
, i.e.

(
7
9 ,

8
9

)
, and so on.

1.3 Probability axioms

A probability law must satisfy the following axioms:

• non-negativity: ∀A ∈ Ω,P(A) ≥ 0

• additivity: ∀Ai disjoint, P(∪iAi) =
∑
i P(Ai)

• normalization: P (Ω) = 1

1.4 Algebra of sets

Distributivity holds for sets:



S ∪ (T ∩ V ) = (S ∪ T ) ∩ (S ∪ V )

S ∩ (T ∪ V ) = (S ∩ T ) ∪ (S ∩ V )
(1.6)

De Morgan’s laws are also useful:

(∪ni=1Si)
{

= ∩ni=1S
{
i (1.7)

1.5 Properties of Probability Laws

1. A ⊂ B =⇒ P(A) ≤ P(B).

2. P(A ∪B) = P(A) + P(B)− P(A ∩B).

3. P (A ∪B ∪ C) = P(A) + P(A{ ∩B) + P(A{ ∩B{ ∩ C).

1.6 Conditional Probability

Sometimes we know something about the result of an experiment that can change its probability. Consider
a fair die in which you know the outcome is even. Then,

P(6 | outcome is even) =
1

3
(1.8)

More generally,

P(A | B) =
P (A ∩B)

P (B)
(1.9)

if P (B) > 0.

9
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EECS 126: Probability and Random Processes Fall 2019

Lecture 2: Conditional, Total Probability
Lecturer: Shyam Parekh 3 September Aditya Sengupta

2.1 Conditional Probability

Consider a fair six-sided die. The sample space is Ω = {1, 2, 3, 4, 5, 6}. A simple example of a conditional
probability is

P(outcome is 6 | outcome is even) (2.1)

This condition restricts the sample space to Ω′ = {2, 4, 6}. The probability that an element chosen from this
is 6 is simply 1

3 .

Assuming that P (B) > 0,

P(A | B) =
P(A ∩B)

P(B)
(2.2)

Example 2.1. Consider two rolls of a fair 4-sided die, and let the outcome be represented as (x, y).
Consider the event B = min(x, y) = 2, where (x, y) ∈ Ω. Find P(B).

The outcomes exist in the sample space Ω = {1, 2, 3, 4} × {1, 2, 3, 4} (the Cartesian
product of the two individual sample spaces). Each outcome in Ω is equally likely
and has probability 1

16 . We can count up the five cases for which B holds true:
(2, 2), (2, 3), (2, 4), (3, 2), (4, 2). Therefore P(B) = 5

16 .

�

Example 2.2. With the same setup as above, consider the event A = {max(x, y) = m | (x, y) ∈ Ω}.
Find P(A | B).

Note that here A varies depending on m, so we have to do this piecewise. By
counting cases, we can get

P(A | B) =


2
5 m = 3, 4
1
5 m = 2

0 m = 1

(2.3)
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�

Example 2.3. Suppose a radar detection system is set up to detect airplanes. Let the event that
an airplane is present be P , and the event that an airplane is detected be D.

If an airplane is present, it is detected with P(D | P ) = 0.99. The probability of a
false alarm, i.e. detecting an airplane when it is not there, is P(D | P {) = 0.1. The
probability of a plane being present at all is P(P ) = 0.05.

We want to compute the probability of a false alarm and also no airplane being
present (a joint probability, not a conditional one.)

P(P { ∪D) = P(P c) · P(D | P {) = 0.95 · 0.1 = 0.095 (2.4)

Next, we want to compute the probability of an airplane passing undetected.

P(P ∪D{) = P(P ) · P(D{ | P ) = P(P ) · (1− P(D | P )) = 0.05 · 0.01 = 0.0005
(2.5)

�

Example 2.4. Suppose three cards are drawn randomly from a deck of 52 cards without replace-
ment. We want to find the probability that none of the drawn cards are hearts. Let
Ai be the event that the ith card is not a heart.

P(A1 ∩A2 ∩A3) = P(A1) · P(A2 | A1) · P(A3 | A2 ∩A1) (2.6)

=
39

52
· 38

51
· 37

50
(2.7)

�

2.2 Total Probability Theorem

Theorem 2.1. Let {Ai | 1 ≤ i ≤ n} be disjoint events such that ∪ni=1Ai = Ω. Then they form a partition
of Ω, and
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P(B) =

n∑
i=1

P(B ∩Ai) (2.8)

=

n∑
i=1

P(Ai)P(B | Ai) (2.9)

2.3 Bayes’ Rule

Theorem 2.2. Let Ai be disjoint events that form a partition of Ω. Assume ∀1 ≤ i ≤ n,P(Ai) > 0. Then,
for any event B such that P(B) > 0,

P(Ai | B) =
P(Ai) · P(B | Ai)

P(B)
(2.10)

Bayes’ rule is useful for investigating cause-and-effect relationships. P(Ai | B) is called the posterior proba-
bility, which is calculable given the set of prior probabilities P(Ai). Combining this with the total probability
theorem gives us

P(Ai | B) =
P(Ai) · P(B | Ai)∑n
i=1 P(Ai)P(B | Ai)

(2.11)

2.4 False Positives

Suppose there is a test for some event (e.g. someone having a rare disease) that comes up positive given that
the event has happened with probability pf , and comes up negative given the event has not happened with
probability pn. These are usually large, e.g. pf = pn = 0.95. The event has probability d, which is typically
small, e.g. d = 0.001.

Given that the test is positive, what is the probability that the event has happened?

Suppose the event is E, and the detection event is D. We want to find P(E | D), which we can find using
Bayes’ rule:

P(E | D) =
P(D | E) · P(E)

P(E)P(D | E) + P(Ec)P(D | Ec)
(2.12)

=
pfd

pfd+ pn(1− d)
(2.13)

For the proposed values of pf , pn, and d, P(E | D) comes out to 0.0187, which is much lower than what
might be expected. Intuitively, this is because Ec is the majority of the sample space, but given E, D is
most of the sample subspace. The probability of a false negative (pn(1− d)) is much greater than that of a
false positive, so the overall probability of a false positive is dominated by this.



2.5 Independence

Two events A,B are independent iff P(A ∩B) = P(A)P(B).

Remark 2.3. If P(B) > 0,P(A | B) = P(A) ⇐⇒ A,B are independent.

This can be proven easily from the definition of a conditional probability.

Note that A,B disjoint does not imply they are independent.

13
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3.1 Independent Events

Example 3.1. Consider two rolls of a fair 4-sided die. Each of 16 outcomes is equally likely. Let
the outcomes of the two individual rolls be a, b. For any i, j,

P(a = i) =
4

16
(3.1)

P(b = j) =
4

16
(3.2)

P(a = i ∧ b = j) =
1

16
=

4

16
· 4

16
(3.3)

Therefore the events are independent.

Consider the events A = the first roll is 1, and B = the sum of two rolls is 5.

P(A) =
4

16
(3.4)

P(B) = P((1, 4), (2, 3), (3, 2), (4, 1)) =
4

16
(3.5)

P(A ∩B) =
1

16
=

4

16
· 4

16
(3.6)

Therefore the events are independent.

Let M,m represent the maximum and the minimum of two rolls.

P(M = 2) = P((1, 2), (2, 1), (2, 2)) =
3

16
(3.7)

P(m = 2) = P((2, 2), (2, 3), (3, 2), (4, 2), (2, 4)) =
5

16
(3.8)

P(M = 2 ∩m = 2) = P((2, 2)) =
1

16
6= P(M = 2) · P(m = 2) (3.9)

Therefore M = 2 and m = 2 are not independent.
�
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3.1.1 Conditional Independence

Given an event C, the events A,B are conditionally independent if and only if

P(A ∩B | C) = P(A | C) · P(B | C) (3.10)

Remark 3.1. Unconditional independence does not imply conditional independence, and vice versa.

Example 3.2. todo
�

3.1.2 Independence of several events

Theorem 3.2. Events Ai, 1 ≤ i ≤ n are independent iff ∀S ⊂ {1, . . . , n},

P(∩i∈SAi) =
∏
i∈S

P(Ai) (3.11)

It is necessary to have every subset included because of the following:

Lemma 3.3. Pairwise independence does not imply independence.

Example 3.3. Consider two independent fair coin tosses. Suppose Hi is the event that the ith toss
comes up heads, and suppose D is the event that two tosses have different outcomes.
H1 and H2 are independent. Consider D given H1:

P(D | H1) =
P(D ∩H1)

P(H1)
=

1
4
1
2

=
1

2
= P(D) (3.12)

Conditioning on H1 does not change P(D), therefore D and H1 are independent.
Similarly, D and H2 are independent.

However, consider both at once:

P(D ∩H1 ∩H2) = 0 6= P(D) · P(H1) · P(H2) (3.13)

Therefore, we have pairwise independence but not independence.
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�

Similarly, joint independence (independence of a set of multiple events) does not imply independence.

Example 3.4. Consider two independent rolls of a fair six-sided die, whose outcomes are repre-
sented by d1, d2. Let A be the event d1 ∈ {1, 2, 3}, B be that d1 ∈ {3, 4, 5}, and C
be that d1 + d2 = 9.

P(A ∩B) =
1

6
6= P(A) · P(B) =

1

2
· 1

2
(3.14)

(3.15)

Similarly, it can be verified that B,C or A,C are not pairwise independent. How-
ever,

P(A ∩B ∩ C) =
1

6
· 1

6
=

1

36
=

1

2
· 1

2
· 4

36
=

1

36
(3.16)

Therefore, A,B,C are jointly independent.
�

A sequence of independent trials is a set of trials in which the likelihood of each possible outcome does not
change between each trial.

A trial is Bernoulli when there are only two possible outcomes of the trial.

3.2 Binomial Distribution

The binomial distribution models a sequence of Bernoulli trials, such as n tosses of a coin. Specifically, it
gives the probability that k of the trials succeed, e.g. the probability of k heads.

P(k successes in n trials) =

(
n

k

)
pk(1− p)n−k (3.17)

where p is the probability of a success in each trial.

3.3 Counting Terminology and Results

1. There are n! permutations of n objects.

2. There are Pn k = n!
(n−k)! k−permutations of n objects.
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3. There are
(
n
k

)
= n!

k!(n−k)! ways to choose k objects out of n.

4. A partition of a set of n objects is a set of r groups each containing ni objects such that
∑r
i=1 ni = n.

The number of ways to do this is
(

n
n1,...,nr

)
= n!

n1!n2!...nr!

3.4 Random Variables

A random variable (RV) is a real-valued function X : Ω→ R of the outcome of an experiment.

Theorem 3.4. A function of a random variable is another random variable.

Proof. https://math.stackexchange.com/questions/1554011/proving-function-of-random-variable-

is-a-random-variable

We can associate attributes to each random variable such as its mean and variance.

An RV can be conditioned on an event or on another RV. This allows us to define independence of RVs, or
of an RV and an event.

3.4.1 Discrete RVs

A discrete RV is an RV to which only countable values can be associated. To each discrete RV, we can
associate a probability mass function (PMF), which gives the probability P(X = k) that the RV X takes on
a value k. The domain of the PMF, which is the set of all values that X could take on, is called the support
of X.

In terms of sample spaces, the PMF P(X = k) represents the size of the subset of the sample space corre-
sponding to X = k, i.e. the size of the set {ω ∈ Ω | X(ω) = k}.

Below, we list some important discrete random variables.

1. Bernoulli RV: with an associated parameter 0 ≤ p ≤ 1, X takes on the values 0 or 1, corresponding to
failure or success of a single binary experiment with probability of success p. The associated PMF is

pX(k) =

{
p k = 1

1− p k = 0
(3.18)

The support is k = 0, 1.

2. Binomial RV: with associated parameters n ∈ Z, 0 ≤ p ≤ 1, X represents the total number of successful
Bernoulli trials out of a total n. The associated PMF is

pX(k) =

(
n

k

)
pk(1− p)n−k (3.19)

The support is {0, 1, . . . , n}.
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3. Geometric RV: with an associated parameter 0 < p < 1, X represents the number of failed trials until
a successful one. It takes on any integer values greater than or equal to 0. The associated PMF is

pX(k) = (1− p)k−1p (3.20)

It can be verified that this sums to 1 as is required for a probability:

∞∑
k=1

(1− p)k−1p = p

∞∑
k=0

(1− p)k =
p

1− (1− p)
= 1 (3.21)

Note that the support for a geometric RV is the positive natural numbers: k = 1, 2, 3, . . . , and not 0.

4. Poisson RV: with an associated parameter λ > 0, X represents a rapidly-decaying probability distri-
bution for quantities like the number of discrete events in a continuous interval of time - for example,
the number of photons striking a CCD per second. Its PMF is

px(k) =
e−λλk

k!
(3.22)

The support is all of Z.

As we’ll see in the next section, λ can be interpreted as the mean of the Poisson RV. To visualize this,
see Figure 3.1, which plots the PMF of a Poisson distribution for λ = 10 and λ = 20; you can see that
while there is support across all of Z, the distribution peaks at λ and decays around it.

0 5 10 15 20 25 30
x

0.00
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0.04

0.06

0.08

0.10

0.12

(X
=

x)

Visualization of the Poisson PMF, = 10

0 5 10 15 20 25 30
x

0.00

0.02

0.04

0.06

0.08

(X
=

x)

Visualization of the Poisson PMF, = 20

Figure 3.1: Two plots of the Poisson distribution

5. Uniform RV: with parameters a < b representing the range, X represents a uniformly sampled random
variable. Its PMF is

px(k) =

{
1

b−a+1 k ∈ [a, b] ∩ Z
0 k /∈ [a, b] ∩ Z

(3.23)

The support is {a, a + 1, . . . , b − 1, b}. Note that later we’ll see the continuous uniform RV, whose
support is the subset of the real line [a, b].



Theorem 3.5. Let Xi, i = 1, . . . , n be i.i.d. (independent and identically distributed) Bernoulli RVs. Then
Y =

∑n
i=1Xi is a binomial RV.

In addition to the connection between binomial and Bernoulli RVs, there is a connection between binomial
and Poisson RVs. As n → ∞ and p → 0 while np remains constant in a binomial distribution, its PMF
tends to that of a Poisson distribution with λ = np. This is called the Poisson limit theorem or the law of
rare events. This can be algebraically proven using the limit definition of ex.

3.5 Expectation

The expected value is also more commonly referred to as the average or mean. The most fundamental
definition involves summing across the sample space and weighting each value with how likely it is.

E[X] =
∑
ω∈Ω

X(ω)pX(ω). (3.24)

Recall that a random variable is actually a function, X : Ω→ R, taking in an element of the sample space and
returning a corresponding real number. Therefore, across all elements of the sample space, we’re summing
up the product of the associated real number (X(ω)) and the probability that that element of the sample
space comes up (pX(ω)).

E[X] =
∑
x

xpX(x) (3.25)

Technically, the condition
∑
x |x|pX(x) <∞ must be satisfied for the expectation to be well defined.

Example 3.5. Consider a PMF such that X = 2k with probability 2−k for k ∈ Z, k > 1 and
X = −2|k| with probability 2−|k| for k ∈ Z, k < −1. We can verify that the
probabilities sum to 1, but E[X] is not defined, because the above condition is not
satisfied.

�

19
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4.1 Definitions of expectation and variance

Previously, we saw that the expected value of a discrete RV is given by a weighted sum over its PMF:

E[X] =
∑
x

xpX(x) (4.1)

Any operation applied to X is also a random variable whose expectation and variance can be found. In
particular, we refer to E[Xn] as the nth moment of X. More generally, we can say

E[g(X)] =
∑
x

g(x)pX(x) (4.2)

We can calculate the variance, which is a quantity representing the spread of a distribution, by

var(X) = E[(X − E[X])2] ≥ 0 (4.3)

The standard deviation of a distribution is the square root of its variance.

The variance is zero if and only if X = E[X].

Proof. In the forward direction, let var(X) = 0. Then, E[(X−E[X])2] = 0. Since (X−E[X])2 is nonnegative
(as it is squared), the only way for it to be zero in expectation is for it to be exactly zero across the whole
sample space. That is, X − E[X] = 0 and so X = E[X].

In the backward direction, let X = E[X]. Then var(X) = E[(X − E[X])2] = E[(E[X] − E[X])2] = 0, which
is what we wanted.

Suppose Y = aX + b, i.e. Y is linearly related to X. The expected value is

E[Y ] = aE[X] + b (4.4)

and the variance is
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var(Y ) =
∑
x

(ax+ b− E[ax+ b])2px(X) (4.5)

=
∑
x

(ax+ b− aE[X]− b)2pX(x) (4.6)

= a2
∑
x

(x− E[X])2pX(x) = a2 var(X) (4.7)

Therefore, linear scaling becomes quadratic under variance, and constant shifts do not affect the variance.

We can show that var(X) = E[X2]− E[X]2:

var(X) =
∑
x

(x− E[X])2pX(x) (4.8)

=
∑
x

(x2 − 2xE[X] + (E[X])2)pX(x) (4.9)

= E[X2]− E[X]2 (4.10)

4.2 Linearity of Expectation and Independent Variances

An important, and perhaps surprising, property of random variables is the linearity of expectation, which
states simply that for any RVs X,Y ,

E[X + Y ] = E[X] + E[Y ]. (4.11)

This holds regardless of whether X and Y are independent. This property follows from the definition of
expectation:

E[X + Y ] =
∑
ω∈Ω

X(ω)pX(ω) + Y (ω)pY (ω)

=
∑
ω∈Ω

X(ω)pX(ω) +
∑
ω∈Ω

Y (ω)pY (ω)

= E[X] + E[Y ].

(4.12)

The same holds for variance if X and Y are independent:

X,Y indep =⇒ var(X + Y ) = var(X) + var(Y ). (4.13)

The more general law for the addition of variances is:

var(X + Y ) = var(X) + var(Y ) + 2 cov(X,Y ), (4.14)

(although we have not yet defined the covariance cov.)
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4.3 Expectation and variance of common RVs

4.3.1 Bernoulli

With parameter p, the expectation of a Bernoulli RV is E[X] = p · 1 + (1 − p) · 0 = p, and the variance is
E[X2]− E[X]2 = p− p2 = p(1− p).

4.3.2 Binomial

With parameters n, p, the expectation of a binomial RV is E[X] = np and the variance is var[X] = np(1−p).
This is obtained by sampling from a Bernoulli distribution n times; since each Bernoulli draw is independent,
the linearity of independent variances holds, and so we can say var(X) is n times the variance of a Bernoulli(p)
RV.

4.3.3 Geometric

E[X] =

∞∑
k=1

k(1− p)k−1p (4.15)

= −p
∞∑
k=0

d

dp
(1− p)k (4.16)

= −p d
dp

1

1− (1− p)
=

1

p
(4.17)

Similarly, E[X2] = 2
p2 −

1
p , therefore var(X) = E[X2]− E[X]2 = 2

p2 −
1
p −

1
p2 = 1−p

p2 .

4.3.4 Poisson

E[X] =

∞∑
k=0

k
e−λλk

k!
= λe−λ

∞∑
k=1

λk−1

(k − 1)!
(4.18)

= λe−λ
∞∑
k=0

λk

k!
= λ (4.19)

The second moment is
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E[X2] =

∞∑
k=0

k2 e
−λλk

k!
(4.20)

=

∞∑
k=0

k(k − 1)
e−λλk

k!
+

∞∑
k=0

k
e−λλk

k!
(4.21)

=

∞∑
k=2

e−λλk

(k − 2)!
+ λ (4.22)

= λ2
∞∑
k=2

e−λλk

k!
+ λ (4.23)

= λ2 + λ, (4.24)

where we use the facts that
∑∞
k=0

e−λλk

k! = 1 (as it is a PMF, it must sum to 1) and
∑∞
k=0 k

e−λλk

k! = λ
(definition of expectation).

Therefore var[X] = E[X2] − E[X]2 = λ2 + λ − λ2 = λ. Intuitively, as you increase λ, the mean increases,
and the distribution also spreads out more around that mean.

4.4 Joint PMFs

The joint PMF of two variables is the probability that they both have a certain fixed value,

PX,Y (x, y) = P(X = x, Y = y) = P({X = x} ∩ {Y = y}) (4.25)

From this, we can get the marginal PMFs by summing over all values of one of the variables,

PX(x) =
∑
y

PX,Y (x, y) (4.26)

PY (y) =
∑
x

PX,Y (x, y) (4.27)

We can extend the idea of the linear expectation of a linear function of random variables to these joint
distributions,

E[g(X,Y )] =
∑
x

∑
y

g(x, y)PX,Y (x, y) (4.28)

E[aX + bY + c] = aE[X] + bE[Y ] + c (4.29)

4.5 Conditional PMFs

We can condition a PMF on an event:
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PX|A(X = x | A) =
P({X = x} ∩A)

P(A)
(4.30)

and we can verify that this is still a valid PMF:

∑
x

PX|A(x|A) = 1 (4.31)

We can also condition on another RV,

PX|Y (x|y) = P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)
=

PX,Y (x, y)

PY (y)
(4.32)

Again, we can verify that this is still a valid PMF,

∑
x

PX|Y (x|y) = 1 (4.33)

4.6 Conditional Expectation

Suppose P(A) > 0. Then

E[X | A] =
∑
x

xPX=x|A(x | A) (4.34)

E[X | Y = y] =
∑
x

xPX|Y (x | y) (4.35)

4.7 Total Expectation Theorem

Theorem 4.1. Let {Ai}ni=1 be disjoint events such that P(Ai) > 0 for each i and such that they form a
partition of Ω. Then

E[X] =
∑

P (Ai)E[X | Ai] (4.36)

E[X] =
∑
x

xPX(x) =
∑
x

x

n∑
i=1

P(Ai)PX|Ai(x) (4.37)

We can think of X|Y as a random variable, which allows us to rewrite a marginal PMF as follows:
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E[X] =
∑
y

PY (y)E[X | Y = y] = E[E[X|Y ]] (4.38)

This is referred to as the theorem of iterated expectations.

Example 4.1. Suppose a message is being sent from Boston to New York with probability 0.5, to
Chicago with probability 0.3, and to San Francisco with probability 0.2. Each of
these destinations has an expectation of the transit time; say E[T | N ] = 0.05,E[T |
C] = 0.1,E[T | S] = 0.3.

The overall expectation of the transit time can be found by multiplying pairwise
the probability of each destination by its expected value,

E[T ] = 0.5 · 0.05 + 0.3 · 0.1 + 0.2 · 0.3 = 0.115 (4.39)

�

4.8 Geometric RV Expectation and Moments

We can use the idea of conditional expectation to analyze the expectation and variance of a geometric RV
from a different angle.

As motivation, consider a situation in which we are flipping a coin, and it comes up heads with probability p.
If we get a heads, we stop flipping, and otherwise (with probability 1− p) we continue. Somewhat trivially,
we can provide an expression for E[X] in the case that we immediately get a heads:

E[X | X = 1] = 1 (4.40)

To analyze the situation in which we get a tails, we note that this situation is memoryless: at each flip, the
history does not matter. The probability of the next flip being heads or tails is not impacted by the past
flips. Therefore, we can write down an expression for E[X] in the case that we have had to flip more than
once: we have 1 because we know that we have flipped the coin at least once, and after that flip the situation
is the same as what we had before, so the expectation is just the unconditioned E[X]:

E[X | X > 1] = 1 + E[X] (4.41)

By the total expectation theorem, we get that

E[X] = P(X = 1)E[X | X = 1] + P(X > 1)E[X | X > 1] (4.42)

= p · 1 + (1− p) · (1 + E[X]) (4.43)



Therefore, E[X] = 1
p . Similarly, E[X2 | X = 1] = 1 and E[X2 | X > 1] = E[(1 + X)2], so similarly we can

get the above expression for E[X2] and from that the variance.

The above analysis illustrates the memorylessness property of the geometric distribution; in the continuous
case, we’ll see that the exponential distribution is analogous to this.

26
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5.1 Independence of random variables

A random variable X is independent of event A iff P(X = x and A) = PX(x) · P(A) ∀x. Similarly, we say
that random variables X,Y are independent iff PX,Y (X = x, Y = y) = PX(x) · PY (y) ∀x, y.

Equivalently, X,Y are independent iff PX|Y (x|y) = PX(x) ∀y s. t.PY (y) > 0 ∀x.

Theorem 5.1. If X,Y are independent, then E[XY ] = E[X]E[Y ].

Proof.

E[XY ] =
∑
x

∑
y

xy PX,Y (x, y) (5.1)

=
∑
x

∑
y

xy PX(x)PY (y) (5.2)

=
∑
x

xPX(x) ·
∑
y

y PY (y) (5.3)

= E[X]E[Y ] (5.4)

5.2 Covariance

The covariance of two random variables is given by

cov(X,Y ) = E[(X − E[X]) · (Y − E[Y ])] (5.5)

= E[XY ]− E[X]E[Y ] (5.6)

The correlation coefficient of two random variables is given by

ρ(X,Y ) =
cov(X,Y )√

var(X) var(Y )
(5.7)

provided that var(X), var(Y ) > 0.

If X,Y are independent, then cov(X,Y ) = 0. Also, if var(X), var(Y ) > 0 but they are independent, then
ρ(X,Y ) = 0. In this case, we say that X,Y are uncorrelated.

Note that the covariance of two random variables being zeroo does not mean that they are independent.
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Example 5.1. Randomly choose any of the four points on the unit circle with integer coordinates.
The x and y coordinates are dependent, as we can see by calculating the marginal
PMF for x (and similarly the one for y):

PX(x) =


1
4 x = −1
1
4 x = 1
1
2 x = 0

(5.8)

Also, E[XY ] = 0, and E[X]E[Y ] = 0, so the correlation coefficient is zero. However,
X and Y are not independent. For example, if X = ±1, Y can only be 0.

�

Theorem 5.2.

|ρ(X,Y )| ≤ 1 (5.9)

Proof. We first show the Cauchy-Schwarz inequality holds on expected values:

(E[XY ])2 ≤ E[X2]E[Y 2] (5.10)

NOTE: I couldn’t follow the proof in lecture, so this is one that I came up with.

Consider the vector space of random variables (they can be added, scaled, and have a zero element, and things
like distributivity follow easily). Then, define an inner product on this: 〈X,Y 〉 = E[XY ]. This is symmetric
by the symmetry of regular multiplication, linear by the linearity of expectation, and positive-definite by
E[X2] > 0 ∀X such that PX(0) = 0. https://inst.eecs.berkeley.edu/~ee126/sp18/projection.pdf.
Since it’s an inner product space, the inner product satisfies the C-S inequality.

Consider X̃ = X − E[X], Ỹ = Y − E[Y ].

ρ(X,Y )2 =
(E[X̃Ỹ ])

E[X̃2]E[Ỹ 2]
≤ 1 (5.11)

∴ |ρ(X,Y )| ≤ 1 (5.12)

If X,Y are independent, then their variances add linearly: var(X + Y ) = var(X) + var(Y ). This is because
they can be shifted without affecting their variance to have zero mean, and the freshman’s dream holds
because the cross-term is zero by independence:

var(X + Y ) = var(X̃ + Ỹ ) = E[(X̃ + Ỹ 2)] (5.13)

where the second term vanishes because both variables are zero-mean. We expand this further,



var(X + Y ) = E[X̃2] + E[Ỹ 2] + 2E[X̃Ỹ ] = E[X̃2] + E[Ỹ 2] = var(X) + var(Y ) (5.14)

5.3 Variance of Binomial RVs

Let {Xi}ni=1 be i.i.d. Bernoulli RVs. We can use the linearity of variances of independent variables to get

var(X) = var

(
n∑
i=1

Xi

)
=

n∑
i=1

var(Xi) = np(1− p) (5.15)

5.4 Entropy

Suppose X takes values xi with probabilities pi. The entropy of X is defined as

H(X) = −
n∑
i=1

pi ln(pi) (5.16)

Each component − log(pi) is the self-information of X = xi, and the entropy is the expected value of the
self-information.

5.5 Continuous RVs

A random variable is continuous if there is a function fx ≥ 0 such that

p(x ∈ B) =

∫
B

fx(x)dx (5.17)

Here, fx is referred to as a probability density function. fx is Riemann integrable. For our purposes, fx is
piecewise continuous. The sets B over which we integrate are unions of finite or countably infinite intervals
of R.
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NOTE: this was a lecture by TAs, so there are slides with all this content. That meant I didn’t go into as
much detail as I would otherwise.

6.1 Probability Densities

In a continuous space, we describe a distribution with a probability density function (pdf). A valid probability
density of a continuous random variable satisfies the conditions of

1. non-negativity: ∀x, f(x) ≥ 0

2. summing to 1:
∫
D
f(x) = 1 (D is the domain of x)

We can get probabilities from densities by P(X ∈ B) =
∫
B
fX(x)dx for any B ⊂ D. Specifically, for an

interval in the reals,

P(X ∈ [a, b]) = P(a ≤ X ≤ B) =

∫ b

a

fX(x)dx (6.1)

Since the probability of attaining any particular point is zero, whether this interval is open or closed does
not matter.

Example 6.1. Suppose we randomly sample a point in the unit sphere.

• The probability of picking the origin is 0.

• The probability density of picking the origin is 1
4
3πr

3 = 3
4π .

• The probability of picking a point on the surface is 0, because the surface has
no volume.

• The probability of picking a point within a radius of 1
2 is 1

8 .

�
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6.2 Cumulative Distribution Functions

The cumulative distribution function (cdf) of a random variable is FX(x) = P(X ≤ x). This is given
explicitly by

FX(x) =

∫ x

−∞
f(t)dt (6.2)

Since the pdf is always nonnegative, the cdf is always increasing.

Example 6.2. Let R be the distance from the origin to a point randomly sampled on a unit sphere.

• The cdf of R is FR(r) = 3
4π ·

4
3πr

3 = r3.

• The pdf of R is d
dr r

3 = 3r2.

• The expectation of R is
∫ 1

0
r · 3r2dr = 3

4 .

�

Note that the density can be greater than 1, as long as it is less than 1 when integrated over any interval.
(??)

6.3 Continuous Distributions

6.3.1 Uniform Distribution

The density is uniform across a bounded interval. For X ∼ Unif(a, b),

fX(x) =
1

b− a
, a < x < b (6.3)

E[X] =
a+ b

2
, var(X) =

(b− a)2

12
(6.4)

6.3.2 Exponential Distribution

The density uniformly decays.

fX(x) = λe−λx, x > 0 (6.5)
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The cdf is FX(x) = 1− e−λx, the expectation is 1
λ , and the variance is 1

λ2 .

The exponential distribution is memoryless, meaning that P(X > x + a | X > x) = P(X > a). The
analogous discrete distribution is the geometric distribution. These are the only distributions in the discrete
and continuous spaces with the memoryless property.

Intuitively, Geo(p) approaches Exp(λ) as n → ∞. Recall the cdf of the geometric distribution is FX(n) =

1 − (1 − p)n. As an ansatz, let δ = − ln(1−p)
λ ; we have e−λδ = 1 − p, so that FX(n) = FY (nλ). If we drive

δ → 0, we have infinitely many trials per second while the expected number of trials stays constant. This
approaches a continuous exponential distribution.

6.4 Gaussian Distribution

fX(X) =
1√

2πσ2
e−(x−µ)2/2σ2

(6.6)

The cdf is given by the error function.

The sum of two independent Gaussians is Gaussian: if X ∼ N(µ1, σ
2
1), Y ∼ N(µ2, σ

2
2) then X + Y ∼

N(µ1 + µ2, σ
2
1 + σ2

2). This is only true if they are independent.

A Gaussian multiplied by a constant is Gaussian: if X ∼ N(µ, σ2), then aX ∼ N(aµ, a2σ2). These properties
allow us to convert any Gaussian to the standard Gaussian N(0, 1).

6.5 Joint PDFs

We can make them, and resolve them by double-integration. This gives us conditional probability densities:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
(6.7)

6.6 Independence

Similar to discrete RVs, there are three different definitions that are independent:

fX,Y (x, y) = fX(x)fY (y) (6.8)

and two others on the slides.

6.7 Conditional Expectation

E[Y | X = x] =

∫ ∞
−∞

y . . . . . . . . . (6.9)



6.8 Combining Discrete and Continuous RVs

You can do that.

Example 6.3. Let X be the outcome of a dice roll and let Y = Exp(X). Then

fY |X(y | x) = xe−xy (6.10)

This allows us to define a marginal density,

fY (y) =

6∑
x=1

f(y | x)px(x) =
1

6
(f(y | x = 1) + · · ·+ f(y | x = 6)) (6.11)

�

6.9 Change of Variables

Example 6.4. Let X ∼ U [0, 1] and Y = 2X. We can’t directly manipulate the density, but we can
manipulate the cdf:

FY (y) = P(Y ≤ y) = P(2X ≤ Y ) = P(X ≤ y

2
) = FX

(y
2

)
(6.12)

Then, we take a derivative:

fY (y) =
d

dy
FX(

y

2
) = fX

(y
2

)
· 1

2
(6.13)

This is the pdf.
�
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7.1 Order Statistics

kth order statistics refers to the kth smallest random variable from a set of RVs x1, . . . , xn. In particular,
we’re interested in the smallest and the largest RVs.

Suppose X1, . . . , Xn are i.i.d. RVs with CDFs FX(x). Let

Y = min
1≤k≤n

Xk (7.1)

Z = max
1≤k≤n

Xk (7.2)

Then

FY (y) = P(Y ≤ y) (7.3)

= P(min(X1, . . . , Xn) ≤ y) (7.4)

= 1− P(min(X1, . . . , Xn) ≥ Y ) (7.5)

= 1− (1− FX(y))n (7.6)

Similarly,

FZ(z) = P(Z ≤ z) (7.7)

= P(max(x1, . . . , xn) ≤ z) (7.8)

= P(x1 ≤ z)P(x2 ≤ z) . . .P(xn ≤ z) (7.9)

= (FX(z))n (7.10)

Example 7.1. The min of exponentially distributed i.i.d RVs can be found using the cdf, FX(x) =
1− e−λx, x ≥ 0.

FY (y) = 1− (1− (1− e−λy))n = 1− e−nλy (7.11)

If xi has parameter λi, we get
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FY (y) = 1− ey
∑
i λi (7.12)

That is, Y is exponentially distributed with parameter
∑
i λi.

�

7.2 Convolution

7.2.1 Discrete Case

Let X and Y be independent RVs with PMFs pX , pY .

pZ(z) = P(X + Y = z) =
∑
x

P(X = x, Y = z − x) =
∑
x

Px(x)PY (z − x) (7.13)

This is called convolution.

7.2.2 Continuous Case

Let X,Y be continuous RVs with PDFs fX , fY . Let Z = X + Y with PDF fZ .

P(X + Y ≤ z | X = x) = P(Y ≤ z − x | X = x) = P(Y ≤ z − x) (7.14)

By differentiating, we have

fZ|X(z|x) = fY (z − x) (7.15)

Using the multiplication rule, we find that the joint pdf on X and Z equals the unconditional pdf on X
multiplies by the conditional pdf on Z given X:

fX,Z(x, z) = fX(x)fZ|X(z|x) (7.16)

Finally,

fZ(z) =

∫ ∞
−∞

fX,Z(x, z)dx (7.17)

=

∫ ∞
−∞

fX(x)fY (z − x)dx (7.18)

This is the continuous convolution of X and Y .
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Example 7.2. The convolution of two rectangles is a triangle.
�

Example 7.3. Let X,Y be independent normally distributed RVs with parameters (µx, σ
2
x) and

(µy, σ
2
y). Then, the sum is also normally distributed with parameter (µx +µy, σ

2
x +

σ2
y).

�

7.3 Moment Generating Functions

For a random variable X, the moment generating function is

MX(s) = E[esx] (7.19)

for a real number s.

Example 7.4. Consider a Poisson RV X with PMF pX(x) = e−λλx

x! . The MGF is

MX(s) =

∞∑
x=0

esx
λxe−λ

x!
= e−λ

∞∑
x=a

ax

x!
(7.20)

= eλ(es−1) (7.21)

where a = λes.
�

Example 7.5. Consider an exponential RV with parameter λ; the MGF is

M(s) = λ

∫ ∞
0

esxe−λxdx =
λ

λ− s
, s < λ (7.22)

�



The MGFs can give us the moments of a continuous random variable. Let X be a continuous RV; then

M(s) =

∫ ∞
−∞

esxfX(x)dx (7.23)

dnM(s)

dsn

∣∣∣∣
s=0

=

∫
xnf(x)dx = E[Xn] (7.24)

An MGF uniquely specifies the pdf/pmf of a random variable.

37
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8.1 MGF Examples

Example 8.1. Consider a Poisson(λ) distributed random variable. Its MGF is

M(s) =

∞∑
x=0

esx
λxe−λ

x!
= e−λ

∞∑
x=0

(esλ)x

x!
(8.1)

= eλ(es−1) (8.2)

�

Example 8.2. Consider an Exponential(λ) random variable. Its MGF is

M(s) = λ

∫ ∞
0

esxe−λxdx = λ
es−λ

s− λ

∣∣∣∣∞
0

(8.3)

=
λ

λ− s
, s < λ (8.4)

�

Example 8.3. Consider Y ∼ N (0, 1).

MY (s) =

∫ ∞
−∞

1√
2π
ey

2/2esydy (8.5)

Completing the square, we get
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MY (s) = es
2/2 1√

2π

∫ ∞
−∞

e−y
2/2+sy−s2/2dy (8.6)

=
1√
2π
es

2/2

∫ ∞
−∞

e−(y−s)2/2dy (8.7)

= es
2/2 (8.8)

�

8.2 Moments from MGF

Lemma 8.1. The nth moment of a distribution is equal to the nth derivative of its MGF,

dnM(s)

dsn

∣∣∣∣
s=0

= E[Xn] (8.9)

Lemma 8.2. If MX(s) is finite over (−a, a) for some a > 0, then the MGF uniquely determines the CDF
for the random variable X.

Example 8.4. Consider a random variable whose MGF is

M(s) =
1

4
e−s +

1

2
+

1

8
e4s +

1

8
e5s (8.10)

Then, the PMF of X is the result of an inverse Laplace transform:

P (X = x) =
1

4
δ[x+ 1] +

1

2
δ[x] +

1

8
δ[x− 4] +

1

8
δ[x− 5] (8.11)

�

Example 8.5. Suppose

M(s) =
pes

1− (1− p)es
(8.12)

We recognize the denominator as the sum of an infinite geometric series, so we
rewrite the MGF:
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M(s) = pes
(
1 + (1− p)es + (1− p)2e2s + . . .

)
(8.13)

Assuming (1− p)es < 1, we get

P (X = k) = p(1− p)k−1 (8.14)

i.e. X ∼ Geom(p).
�

Theorem 8.3. If Z =
∑
Xi, then MZ(s) =

∏
Mxi(s).

Example 8.6. The MGF of a Bernoulli(p) random variable is Mxi(s) = 1− p+ pes, therefore the
MGF of a Binomial(n, p) random variable is

MX(s) =

n∏
i=1

Mxi(s) = (1− p+ pes)n (8.15)

From this, we can get the moments of the binomial distribution:

E[X] =
d

ds
MX(s)

∣∣∣∣
s=0

= n(1− p+ pes)n−1pes
∣∣
s=0

= np (8.16)

sE[X2] = n2p2 + np(1− p) (8.17)

(8.18)

�

Example 8.7. Let X ∼ Poisson(λ), Y ∼ Poisson(µ) and let Z = X + Y . The MGF is

MZ(s) = MX(s)MY (s) = eλ(es−1)eµ(es−1) = e(λ+µ)(es−1) (8.19)

i.e. Z ∼ Poisson(λ+ µ). This gives us the linearity of the Poisson distribution.
�
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8.3 Bounds

8.3.1 Markov Inequality

Theorem 8.4. If a random variable X ≥ 0, then P(X ≥ a) ≤ E[X]
a ∀a > 0.

Proof.

E[X] =
∑
x

xP(X = x) (8.20)

≥
∑
x≥a

xP(X = x) (8.21)

≥ a
∑
x≥a

P(X = x) (8.22)

= aP(X ≥ a) (8.23)

Therefore

P(X ≥ a) ≤ E[X]

a
(8.24)

The continuous analogue follows similarly.

Alternatively, let Ya = au(a). Since Ya ≤ X, E[Ya] ≤ E[X], and

E[Ya] = aP(Ya = a) = aP(x ≥ a) ≤ E[X] =⇒ P(X ≥ a) ≤ E[X]

a
∀a > 0 (8.25)

8.3.2 Chebyshev’s Inequality

Theorem 8.5. If X is a random variable with mean µ and variance σ2, then

P(|X − µ| ≥ c) ≤ σ2

c2
∀c > 0 (8.26)

Proof. Given c > 0,

P(|X − µ| ≥ c) ≤ E[(x− µ)2 ≥ c2] ≤ E[(x− µ)2]/c2 =
σ2

c2
(8.27)



If we take c = kσ for some k, we get the probability of being within k standard deviations,

P(|X − µ| ≥ kσ) ≤ 1

k2
, k > 0 (8.28)

8.3.3 Chernoff Bounds

Theorem 8.6. (Positive Chernoff Bound) Let M(s) be the MGF of an RV X. For every a and every s ≥ 0,
P(X ≥ a) ≤ e−saM(s).

Proof. Let s > 0. Then P(X ≥ a) = P(sX ≥ sa) = P(esX ≥ esa). We apply the Markov inequality to get

P(X ≥ a) ≤ E[esx]

esa
=⇒ P(X ≥ a) ≤ e−saM(s) (8.29)

Theorem 8.7. (Negative Chernoff Bound) For every a and every s ≤ 0, P(x ≤ a) ≤ e−saM(s).
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9.1 Refining the Chernoff Bound

The Chernoff bound can be refined by applying a Legendre transform:

P(X ≥ a) ≤ e−φ(a) ∀a (9.1)

where φ(a) = maxs≥0(sa− lnM(s)).

Proof.

P(X ≥ a) ≤ min
s≥0

(e−saM(s)) = min
s≥0

e−(sa−lnM(s)) (9.2)

≤ e−maxs≥0(sa−lnM(s)) = e−φ(a) (9.3)

9.2 Jensen’s Inequality

Theorem 9.1. Let f be a twice-differentiable convex function (i.e. f ′′(x) > 0.) Then

f(E[x]) ≤ E[f(x)]. (9.4)

Proof. Wasn’t proved in class, but I did a supplementary writeup on this!

9.3 The Weak Law of Large Numbers

Theorem 9.2. Let X1, X2, . . . be i.i.d. RVs with mean µ and variance σ2. Let Mn be their sample mean,
Mn = X1+···+Xn

n . As n→∞, the sample mean converges to the actual mean.

This comes out of the Central Limit Theorem, which states that the sample mean doesn’t just have these
properties; its distribution is the (unique) normal distribution that has these properties. The direct proof
you’re about to see proves equality of arbitrary probability bounds on the sample mean, but not equality of
the distributions.
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Proof. By linearity of expectation, E[Mn] = µ and because i.i.d. variances are additive, var(Mn) =∑n
i=1

var(Xi)
n2 = σ2

n .

By Chebyshev’s inequality,

P(|Mn − µ| ≥ ε) ≤
σ2

nε2
(9.5)

lim
n→∞

P(|Mn − µ| ≥ ε) = lim
n→∞

σ2

nε2
= 0 (9.6)

This gives us the notion of convergence in probability.

Let X1, . . . , Xn be RVs, not necessarily i.i.d. We say Xn converges to X in probability if for every ε > 0, we
have

lim
n→∞

P(|Xn −X| ≥ ε) = 0 (9.7)

Example 9.1. Suppose some fraction p of voters support a candidate. Let Mn be the fraction of
voters sampled who support the candidate. Then by a result from the homework:

P(|Mn − p| ≥ ε) ≤
p(1− p)
nε2

(9.8)

Further, we note that max
0≤p≤1

p(1− p) = 1
4 . Without knowing p, we therefore have

P(|Mn − p| ≥ ε) ≤
1

4nε2
(9.9)

�

9.4 The Strong Law of Large Numbers

Theorem 9.3. Let X1, X2, . . . be i.i.d. random variables with mean µ. Let Mn be their sample mean. Then,
Mn converges almost surely to µ, i.e.

P( lim
n→∞

Mn = µ) = 1 (9.10)
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You say “almost sure” because there are still technically sequences of events that don’t have the sample
mean equal to the actual mean, just that those have probability tending to 0. For example, if you flip a fair
coin an infinite number of times, the sample mean will converge to the actual mean, but you still have the
possibility of a sequence of n heads that goes to zero as n→∞, so it’ll “almost surely” converge.

Wikipedia: “In other words, the set of possible exceptions may be non-empty, but it has probability zero.
The concept is precisely the same as the concept of ”almost everywhere” in measure theory.” (https:
//en.wikipedia.org/wiki/Almost_surely). If (X,Σ, µ) is a measure space, a property P is said to hold
almost everywhere in X if there exists a set N ∈ Σ with measure 0 (µ(N) = 0), and all x ∈ X \N have the
property P .

Example 9.2. Let Xi ∼ Unif[0, 1]. Let Yn = min{X1, . . . , Xn}. Then the Yis are nonincreasing,
and since it’s always nonnegative we have a lower bound on Y = limYi.

P(Yi ≥ ε) = P(X1 ≥ ε,X2 ≥ ε, . . . ) = (1− ε)n (9.11)

P(Y ≥ ε) = lim
n→∞

(1− ε)n = 0 (9.12)

Therefore Y → 0 almost surely.

There’s something to be said for convergence here: we can say the lim inf of Yi is 0
because the sequence keeps decreasing and is bounded below by 0. I think you can
formally prove this with subsequences. Here’s a sketch: almost surely (yay I get
why you need that now - there’s some probability that the Xis are all bigger than
the current min, but that probability goes to 0) you’ll always have the minimum
of the Xi decreasing so you can’t pick an infinite subsequence with subsequential
limit greater than that. So that’s the lim inf and the lim sup because you also can’t
pick an infinite subsequence with subsequential limit less than that: by definition
it’s bounded below by 0. So lim sup and lim inf are equal, so the limit is equal and
it’s 0.

�

Theorem 9.4 (Central Limit Theorem). Let X1, X2, . . . be i.i.d. RVs with mean µ and variance σ2. Let
Sn =

∑n
i=1Xi. Define

Zn =
Sn − nµ√

nσ
(9.13)

Then, in the limit n→∞, the cdf of Zn converges (pointwise) to the cdf of the standard normal:

FZn(z)→ Φ(z) =
1√
2π

∫ z

−∞
e−z

2/2dz (9.14)

A sequence of RVs Xi is said to converge to X in distribution (or weakly) if for every a ∈ R such that FX(a)
is continuous,



lim
n→∞

FXn(a) = FX(a) (9.15)

or equivalently with epsilon-delta notation, ∀ε > 0,∃N s. t. n > N =⇒ lim supa |FXn(a)− FX(a)| < ε.

We’ve used a number of different modes of convergence. Specifically, almost-sure convergence and rth
moment convergence (i.e. that E[(Xn −X)r]→ 0) implies in-probability convergence, which in turn implies
weak convergence.
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10.1 Convergence

Alternate proof of almost-sure convergence of the sequence of minima of Unif([0, 1]) random variables to 0,
with slightly more formalization.

We can demonstrate through an example that almost sure convergence implies in-probability convergence.

Example 10.1. Let

X =

{
0 with probability 1

2

1 with probability 1
2

(10.1)

and let Xn =
(
1 + 1

n

)
x, i.e. Xn −X = X

n . Then

P( lim
n→∞

|Xn −X| ≥ ε) = P( lim
n→∞

X

n
≥ ε) = 0 (10.2)

The dual of this gives us the result that we want,

P( lim
n→∞

|Xn −X| < ε) = 1 =⇒ Xn → xa.s. (10.3)

�

Something we’ve been using without proof for a while is this:

Lemma 10.1. Almost sure convergence implies in-probability convergence.

Proof. Let Xn → X almost surely. Then

P
(

lim
n→∞

Xn → X
)

= 1 (10.4)

Let ω represent an arbitrary element of the sample space.



Lecture 10: Probability Convergence, Information Theory 48

P (ω : |Xn(ω)−X(ω)| < ε ∀n > some m(ω)) = 1 (10.5)

(say there exists an m such that |an − a| < ε for all n > m). Then define

Am = ∪n≥m{ω | |Xn(ω)−X(ω)| ≥ ε} := ∪n≥m{|Xn −X| ≥ ε} (10.6)

We see that A1 ⊇ A2 ⊇ A3 ⊇ . . . , so we claim that A∞ = ∩m≥1Am is the limiting set that has the
intersection of all the Ams, and therefore contains the event we do not want (deviation by more than ε).
Then by De Morgan’s laws, we get

Ac
∞ = ∪m≥1A

c
m (10.7)

= ∪m≥1 ∩n≥m {|xn − x| < ε} (10.8)

∴ P(Ac
∞) = 1 (10.9)

We get that this has probability 1 from the statement that the set of ω such that the Xns are ε-close to the
limiting X(ω) for some n spans the sample space.

Therefore

P(A∞) = 0 (10.10)

P(|Xn −X| ≥ ε) ≤ lim
n→∞

P(An) = 0 (10.11)

Therefore Xn → X in probability.

Note: just because P(Ac
∞) = 1, we’re not allowed to say Ac

∞ spans the sample space; there may be (there
are!) some points in the sample space with probability 0 that aren’t in that set. They don’t converge but
they don’t matter, which is why almost sure convergence makes sense.

We can show that in-probability convergence doesn’t imply convergence of the expectation (rth moment
convergence for r = 1.)

Example 10.2. Let Xn be 0 with probability 1− 1
n and otherwise n2. Then

lim
n→∞

P(|Xn| ≥ ε) = lim
n→∞

1

n
= 0 (10.12)

so Xn → 0 in probability, but lim
n→∞

E[Xn] = lim
n→∞

n =∞.

�

The relationship is as follows: almost sure convergence (through the SLLN) and rth moment convergence
both separately imply in-probability convergence, which in turn implies in-distribution convergence.



Example 10.3. Let Xi be Bernoulli with parameter 1
i . Then E[|Xn|r] = 1

n → 0 so rth moment
convergence holds, so convergence in probability holds. However, almost sure con-
vergence does not hold. For that, we would want to show that

P(|Xn − 0| < ε ∀n ≥ m) lim
n→∞

n∏
i=m

(
1− 1

i

)
= lim

n→∞

n∏
i=m

i− 1

i
= lim

n→∞

m− 1

n

This is telescoping so it simplifies nicely. The limit goes to 0, which shows a.s.
convergence doesn’t hold. For a.s. convergence to hold, you need to show that some
threshold m exists such that the probability of Xn being ε−small is 1, but for any
m this goes to 0.

�

10.2 Information Theory

Todo: TeX a block diagram. Information theory covers the flow of information from a source to a destination:
source, to source encoder, to channel encoder, over a potentially noisy channel, through a channel decoder,
then through a destination decoder and finally to the destination.

Theorem 10.2 (Source Coding Theorem). Consider N i.i.d. RVs each with entropy H(X). This can be
compressed into no more than NH(x) bits with negligible risk of information loss as N → ∞. Conversely,
if they are compressed into fewer than NH(x) bits, it is virtually certain that information will be lost.

Theorem 10.3 (Channel Coding Theorem). Any rate below the channel capacity # message input bits
# of bits transmitted is

achievable. Conversely, any sequence of codes with Pe(n)→ 0 as n→∞ (where Pe(n) is the max probability
of error over possible input messages for the channel) has rate R less than the channel capacity.

The two main channel modes we’ll look at are binary erasure channels and binary symmetric channels. In a
BEC, c(b) = b with probability 1− p (b is a bit, 0 or 1) and c(b) = e with probability p (e is an error state).
In a BSC, c(b) = b with probability 1− p and c(b) = 1− b with probability p.

Let’s look at the achievable transmission rate for a BEC. We say R is an achievable transmission rate if
there exist channel encoding and decoding functions (fn, gn) which encode messages of length bnRc and
decode the corresponding messages of length n; further, Pe(n) → 0 as n → ∞ is required. The capacity is
R = sup{r | r achievable}.
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11.1 Lyapunov’s Inequality

Suppose r > s ≥ 1. If Xn → X under the Lr norm, then Xn → X under the Ls norm. Lyapunov’s inequality
gives us a formal statement of this:

Theorem 11.1.

(E [|Xn −X|s])1/s ≤ (E [|Xn −X|r])1/r
(11.1)

11.2 Binary Channels contd.

We previously defined the capacity of a channel. We claim that the BEC has capacity 1 − p, and the BSC
has capacity 1 − H(p). First, we consider the BEC. This has an input set X = {0, 1} and an output set
Y = {0, 1, e}. Then, encoding is a function fn : XL → Xn and decoding is a function Yn → Y l. The max
probability of error is

pe(n) = max
x∈XL

P
(
gn(Y(n)) 6= x | x(n) = fn(x)

)
(11.2)

Let R be an achievable rate; then L(n) = bnRc is the minimal number of bits you send ovwer the channel
so that the message can be recovered. We will show that the capacity (the maximal achievable rate) cannot
exceed 1− p; suppose that we had feedback, i.e. the receiver could tell the sender when it received an erased
bit. Then, to send 1 bit, an expected 1

1−p bits would have to be sent. Therefore R = 1
1/(1−p) = 1 − p, i.e.

even with the additional feedback information, we wouldn’t be able to do any better than 1− p.

Since we are claiming the capacity is 1− p, we want to show that a rate 1− p− ε is achievable for any ε > 0.
We do this by writing a codebook. There are a total 2L(n) possible messages, and we can associate a length n
sequence of bits to be transmitted to each of these. However, we generate these sequences randomly, without
requiring that they are unique. Since the probability of error is p, we can assume that bn(1− p)c of the bits
are transmitted; without loss of generality, suppose they’re the first bn(1 − p)c bits. The decoding scheme
looks for a match for these bits. If no unique match exists, it declares an error. Therefore, the probability
of an error is

P(error) = P
(
∪2L(n)

i=2 (c1 = ci)
)
≤

2L(n)∑
i=2

2bn(1−p)c (11.3)

≤ 2L(n)2−bn(1−p)c ≈ 2−nε (11.4)

Therefore the error goes to 0 as n → ∞, so R < 1 − p is achievable. Therefore the capacity of the BEC is
1− p.



11.3 Huffman Coding

Huffman coding works on the principle that more likely symbols should be encoded in shorter bitstrings,
and less likely symbols should be encoded in longer bitstrings. Suppose we want to encode sequences of
the letters A, B, C, and D, and the frequencies associated to each are 55%, 30%, 10%, and 5%. We need to
ensure that the codes are prefix-free, i.e. there is a unique way to decode a bitstring. Huffman coding is an
optimal way to assign these, by building a binary tree using a priority queue. There’s a lab on this.

11.4 Markov chains

A model has the “Markov property” if the effect of the past is summarized in the current state. For example,
suppose you’re betting on coin tosses. You have money given by Fn and you bet Gn+1 on the next toss
being heads. Then

Fn+1 = Fn +Gn+1 (1(xn+1 = H)− 1(xn+1 = T )) (11.5)

and Fn+1 = Fn if Fn = 0.

As another example, suppose Tn is the time for the nth earthquake that is greater than 4 on the Richter
scale. Then Tn+1 = Tn + Exp

(
1
λ

)
; this is a Poisson process.
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A discrete-time Markov chain describes a process whose state changes in discrete steps and cycles between a
finite set of possible states. It also satisfies the Markov property, that the state only depends on the previous
state:

P(Xn+1 = j | Xn = i,Xn−1 = xn−1, . . . , X1 = x1) = P(Xn+1 = j | Xn = i) = pij (12.1)

where pij ≥ 0 and
∑
j pij = 1.

We also want the Markov chain to be time-independent.

We can make a probability transition matrix P =
[
pij
]

to encode all of these probabilities. Let π(n) =[
P(Xn = 1) . . .P(Xn = m)

]
represent the PMF of the state at time n. Then, the distribution at time n+ 1

can be found using the law of total probability to be

π(n+1)(i) =
∑
j

π(n)(j)pji (12.2)

and from this we get

π(n) = π(0)Pn (12.3)

In general, if you want the probability of a particular sequence, you can multiply together a number of
conditional probabilities, for example:

P(X0, X1, X2 . . . , Xn) = P(X0)P(X1 | X0)P(X2 | X1, X0) . . .P(Xn | Xn−1, Xn−2, . . . , X1) (12.4)

Then, the Markov property allows us to drop most of the conditioning:

P(X0, X1, X2 . . . , Xn) = P(X0)P(X1 | X0)P(X2 | X1) . . .P(Xn | Xn−1) (12.5)

12.1 n-step transitions

Let rij(n) be the probability that Xn = j given that X0 = i. It is given by this recurrence relation:

rij(n) =
∑
k∈S

rik(n− 1)pkj (12.6)



Since rij(1) = pij , this just reduces to a matrix power.

We say state j is accessible from state i if ∃n ∈ N such that rij(n) > 0.

A state i is recurrent if for all j reachable from i, i is reachable from j, i.e. there is a nonzero probability
of looping between i and j infinitely. If A(i) is the set of reachable states from i, then i is recurrent iff
∀j ∈ A(i), i ∈ A(j).

A state i is transient if it is not recurrent.

For any recurrent state i, all states A(i) form a recurrent class.

Lemma 12.1. Any Markov chain can be decomposed into one or more recurrent classes.

Lemma 12.2. A state in a recurrent class is not reachable fromo states in any other recurrent class (if it
were, they would form one larger recurrent class.)

Lemma 12.3. Transient states are not reachable from a recurrent state. Moreover, at least one recurrent
state is reachable from every transient state.

A Markov chain is called irreducible if it only has one recurrent class.

For a non-irreducible Markov chain, we can identify the recurrent classes by an algorithm that I’ll get off
the slides later.

12.2 Periodicity

The periodicity of a state i in a Markov chain is

d(i) = gcd{n ≥| rii(n) > 0} (12.7)

Intuitively, this says that “all paths back to i take a multiple of d(i) steps”.

Theorem 12.4. If i and j are in the same recurrent class, then d(i) = d(j).

We define a Markov chain as aperiodic if d(i) = 1 for all i; otherwise we say the chain is periodic with period
d.

We say that a state π0(j) is stationary if choosing the initial state according to P(X0 = j) = π0(j) implies
P(Xn = j) = π0(j) for all n.

The balance equations give us stationarity:

π0(j) =

m∑
k=1

π0(k)pkj (12.8)

This can be written as π0 = π0P ; that is, π0 is a left eigenvector of P with eigenvalue 1.
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13.1 Hitting Times / First Passage Times

Let {Xn, n ≥ 0} be a DTMC over a finite set S. Consider a set A ⊂ S; let TA = min{n ≥ 0 | xn ∈ A}. We’re
interested in the expected value of the minimum number of steps required to reach the set A given that we
start at some state i, i.e. E[TA | X0 = i]. We write this more compactly as Ei[TA]. Let β(i) = Ei[TA] for all
i ∈ S. Then, in general, we can say that

β(i) =

{
1 +

∑
j pijβj i 6∈ A

0 i ∈ A
(13.1)

These two cases are referred to as the first set equations (FSEs). The nontrivial case comes out of summing
up
∑
j pij(1 + β(j)); for each state j that could be reached from i in one step, the expected time is 1 to get

to j plus the expected time to reach the set A from the state j, which is β(j). Further, we pull out the 1
from recognizing that the pijs sum to 1.

Example 13.1. This is called the Gambler’s Ruin: consider a Markov chain in which with probability
p, the state i moves to i+ 1 unless you’re at the end in either direction (at 0 or at
some maximum, say 3), in which case you stay there with probability 1 (you don’t
have any money left, or you’ve got enough and don’t want to risk more).

0 1 2 31
1− p

p
p

1− p

1

Consider the expected time to reach a success-or-failure state, i.e. A = {0, 3}.

β(0) = 0, β(3) = 0β(1) = 1 + pβ(2), β(2) = 1 + (1− p)β(1) (13.2)

Solving the system of linear equations, we get

β(1) =
1 + p

1− p+ p2
, β(2) =

2− p
1− p+ p2

(13.3)
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�

Given A,B ⊂ S disjoint, we are interested in Pi(TA < TB) = P(TA < TB | X0 = i). Let this be represented
by αi. Then

α(i) =


pijα(j) i 6∈ A ∪B
1 i ∈ A
0 i ∈ B

(13.4)

Example 13.2. With the same setup as above, we see that α(0) = 0, α(3) = 1, α(1) = pα(2), α(2) =
p+ (1− p)α(1). This gives us

α(1) =
p2

1− p+ p2
, α(2) =

p

1− p+ p2
(13.5)

�

13.2 Countably Infinite DTMCs

We say {Xn, n ≥ 0} is a countably infinite DTMC if its set of possible states X is countably infinite. Let Tx
and T+

x be defined by

Tx = min{n ≥ 0 | Xn = x} (13.6)

T+
x = min{n ≥ 1 | Xn = x} (13.7)

For x, y ∈ X , we defin ρx,y = Px(T+
y <∞) and ρx = ρx,x. We say x is recurrent if ρx = 1, and it is transient

if ρx < 1.

Proposition 13.1. Let Nx =
∑
n≥0 1{Xn = x}, i.e. the number of visits to x. If x is recurrent, then Nx →

∞ almost surely and Ex[Nx] =∞; if x is transient, then Nx <∞ almost surely and Ex[Nx] = ρx
1−ρx <∞.

We get this result from the Markov chain being memoryless and following a geometric distribution; every
time x is reached, there is a probability ρx that x will be reached again in finite time, so the expected number
of visits for a transient state is given by the expectation of a Geometric(ρx) variable.

To illustrate this, consider the following finite DTMC:

0 11
2 1

2

1

Here, 0 is transient and 1 is recurrent. This corresponds to ρ0 = 1
2 , and ρ1 = 1.
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13.3 Random Walks

Consider the following random walk:

0 1 21
2

1
2

1
2

1
2

1
2

...

1
2

1
2

This is a “random walk reflected at zero”. To find the ρ coefficients, we use its recursive structure and the
Markov property; for example,

ρ2,0 = ρ2,1 · ρ1,0 = ρ2
1,0 (13.8)

Also, we get the following linear relationships by examining the first few states:

ρ0 =
1

2
+

1

2
ρ1,0 (13.9)

ρ1,0 =
1

2
+

1

2
ρ2,0 (13.10)

Solving all of these together, we get ρ1,0 = 1
2 + 1

2ρ
2
1,0 =⇒ ρ1,0 = 1. Therefore ρ0 = 1, so the zero state is

recurrent and N0 →∞ almost surely.

Next, consider a general random walk reflected at 0, which is almost the same but with probability of a
forward transition p:

0 1 21− p

p

1− p

p

1− p

...

p

1− p

We claim that p > 1
2 implies that all states are transient, and p ≤ 1

2 implies that all states are recurrent.
Note that this is not a property of a finite Markov chain: if the chain terminated, all the states would be
recurrent because they all satisfy j ∈ A(i) =⇒ i ∈ A(j). This shows that there is something nontrivial
about the countably-finite extension.

Proposition 13.2. A finite DTMC must have at least one recurrent state.

Proof. (mine) Suppose this is not the case; then every state in the set on which the DTMC is defined is
transient, so each one is visited finitely many times. Index this by X = {X1, . . . , Xn} with a finite number of
visits each {N1, . . . , Nn}. At time 1+

∑n
i=1Ni, we must be at one of the states, but we’ve already exhausted

all the visits, so we cannot be at any state. Therefore this is a contradiction and at least one state must be
recurrent.



State x communicates with state y if ρx,y > 0 and ρy,x > 0.

This is equivalent to the definition in which y ∈ A(x), x ∈ A(y), but moe general, because it applies to the
countably-infinite case as well.

A communicating class is a maximal set of states which communicate with each other.

Lemma 13.3. States communicating is an equivalence relation, and so the communicating classes on a
Markov chain are the equivalence classes under this relation.

Proof. • Symmetry: if x communicates with y, then ρx,y > 0 and ρy,x = 0 and so y communicates with
x.

• Reflexivity: ρx > 0 by definition unless it transitions to a different state immediately with probability 1
and there is no path back to it. (The reference I looked up for this says reflexivity is “trivial”, because
of course it does.)

• Transitivity: if x communicates with y and y communicates with z, then the probability of moving
x → y in finite time is nonzero, and the probability of moving y → z in finite time is nonzero, so the
probability of moving x→ z in finite time is at least their product and is therefore nonzero. Therefore
ρxz > 0, so x communicates with z.

A DTMC is irreducible if it consists of only a single communicating class.

Theorem 13.4. Recurrence and transience are class properties: if one element in a communicating class is
recurrent or transient, all of the others are.

State x is positive-recurrent if it is recurrent and Ex[T+
x ] <∞. State x is null-recurrent if it is recurrent and

Ex[T+
x ] =∞.

Remark 13.5. Positive- and null-recurrence are also class properties.

Theorem 13.6 (Big Theorem). If a Markov chain is irreducible and positive recurrent, then the steady-state
probability of each state gives the unique stationary distribution; further, it implies that

lim
x→∞

1

n

n−1∑
i=0

1{Xi = x} = π(x) (13.11)

This condition is called ergodicity. Finally, an irreducible positive-recurrent aperiodic Markov chain has
πn(x)→ π(x): the distribution after n time trainsitions tends to the unique stationary distribution.
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14.1 Ergodic Theorem

We’ll start by restating the Ergodic Theorem.

Theorem 14.1 (Ergodic Theorem). Consider an irreducible DTMC.

1. If it is positive-recurrent, there exists a unique invariant distribution. This is an if-and-only-if: if there
exists an invariant distribution, the DTMC must be positive-recurrent.

2. Ergodicity: if the DTMC is positive-recurrent, then the invariant distribution is almost surely just the
fraction of time spent in each state as time goes to infinity:

lim
n→∞

1

n

n∑
i=0

1{Xi = x} = π(x) (14.1)

In words, the time average tends to the ensemble average.

3. If the DTMC is positive-recurrent and aperiodic, then the distribution of states πn tends to π as n→∞.

Theorem 14.2. Consider an irreducible positive-recurrent DTMC with invariant distribution π. Then

π(x) =
1

Ex[T+
x ]

(14.2)

Proof. Let τ1, τ2, . . . be the inter-visit intervals for x, i.e. the time intervals between consecutive visits to x
(τ1 is the time between the initial state and first visit, τ2 is the time between the first visit and the second
visit, etc.) The Markov property means the τis are i.i.d. By the strong law of large numbers, we can say
that

1

n

n∑
i=1

τi → Ex[T+
x ] almost surely (14.3)

The sample mean of the τis is given by the ratio of some large time t to the number of visits to x in that
time, so we can rewrite the above convergence statement as

t∑t−1
i=0 1{Xi = x}

→ Ex[T+
x ] (14.4)



Lecture 14: Discrete-Time Markov Chains III 59

Rearranging, we get

1

t

t−1∑
i=0

1{Xi = x} → 1

Ex[T+
x ]

(14.5)

Therefore, by the ergodic theorem, we get π(x)→ 1
Ex[T+

x ]
.

14.2 General Random Walk with Reflection

0 1 21− p

p

1− p

p

1− p

...

p

1− p

We previously stated that p < 1
2 implied this Markov chain was positive recurrent. By the ergodic theorem,

we can say that means there exists a unique invariant distribution. We’ll show on the homework that this is

π(k) = (1− ρ)ρk, k ≥ 0 (14.6)

where ρ = p
1−p .

Now, consider the case p = 1
2 , which we previously claimed is null-recurrent. We showed last time that this

DTMC is recurrent, and we can solve the first step equations for recurrence:

E1[T+
0 ] = 1 +

1

2
E2[T+

0 ]

= 1 + E1[T+
0 ] + (something positive)

The only way this can be satisfied is if E1[T+
0 ] =∞. We can extend this argument and say that each state

x has Ex[T+
x ] = ∞, so the Markov chain is null-recurrent. We can intuitively make sense of this as saying

that since there are infinite recurrent states, the expected time we’ll spend at any particular state goes to 0.

Finally, consider p > 1
2 . This is a transient DTMC. Let Yns be i.i.d with PMF

Yn =

{
1 with probability p

−1 with probability 1− p
(14.7)

Let Xn = maxXn−1 + Yn, 0 for n ≥ 1. Based on this, we can say Xn ≥ X0 +
∑n
i=1 Yi, and so

1

n
Xn ≥

X0

n
+

1

n

n∑
i=1

Yi (14.8)
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The sample mean of the Yis goes almost surely to the true mean by the strong law of large numbers, and
because p > 1

2 this is some positive number. Therefore, the probability that Xn = 0 goes to 0 almost surely.
This implies 0 is transient, which in turn implies the DTMC is transient (just do this recursively, I think.)

14.3 Balance Equations

The global balance equations state that a distribution must be invariant under one time transition: π = πP .
In particular, that means the probability of each state must be invariant under the time transition:

π(k) =
∑
i

π(i)pik =
∑
i 6=k

π(i)pik + π(k)pkk (14.9)

π(k)(1− pkk) = π(k)
∑
i 6=k

pki =
∑
i 6=k

π(i)pik (14.10)

We don’t have to consider the entirety of the DTMC at once, because global balance is quite a strong
condition and we can stil comment on balance even if global balance is not satisfied. This leads to the idea
of local balance: if you create a cut of a DTMC, then the probability mass flow in both directions must be
equal.

Example 14.1.

1 2 3 4

(sorry about the arrow, this is some jank LATEXwork - basically it thinks this dotted
line is being drawn between two hidden Markov nodes and so it’s a directed edge.)

Place a cut between 2 and 3. Then local balance implies

π(1)p13 = π(3)p32 + π(4)p42 (14.11)

�

The global balance equations imply all the local balance equations and vice versa. This gives us a tool for
dealing with systems like the random walk reflected at zero. Suppose the forward transition probabilities i
to i+ 1 are bi and the backward ones i to i+ 1 are di+1.
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0 1 2d0

b0

d1

b1

d2

...

b2

d3

We call this a birth-death DTMC.

Place a cut between 1 and 2; then π(1)b1 = π(2)d2, and in general

π(k)bk = π(k + 1)dk+1, k ≥ 0 (14.12)

which gives us the recurrence relation

π(k) = π(0)
b0 . . . bk−1

d1 . . . dk
(14.13)

Suppose bi = p and di = 1− p for all i ≥ 0 and suppose p < 1
2 . Then this gives us

π(k) = π(0)ρk, k ≥ 1 (14.14)

where ρ = p
1−p . Therefore, π(k) = (1− ρ)ρk (normalize to find π(0).)

14.3.1 Detailed Balance Equations

The detailed balance equations state that

∑
x 6=m

π(x)pxm = π(m)
∑
x 6=m

pmx. (14.15)

I’m not sure I got all of this right?

This is useful in a case where we have one highly connected node:

i

j

k

m



The detailed balance equations imply the global balance equations, and for birth-death DTMCs, the balance
equations imply the detailed balance equations. The DBEs are useful for when we look at reversibility.

14.4 Reversibility

Suppose Xn, n ≥ 0 is an irreducible and positive-recurrent DTMC. Suppose the invariant distribution is π
and π0 = π.

If for all n ≥ 0, the joint distribution of X0, . . . , Xn is the same as the joint distribution of Xn, . . . , X0, then
the DTMC is reversible.

Theorem 14.3. The reverse of a DTMC has the Markov property.

Proof.

P (Xk = i | Xk+1 = j,Xk+2 = ik+2, . . . , Xn = in) =
P(Xk = i,Xk+1 = j,Xk+2 = ik+2 . . . , Xn = in)

P(Xk+1 = j,Xk+2 = ik+2, . . . , Xn = in)

(14.16)

=
π(i)pijpj,ik+2

. . . pin−1,in

π(j)pj,ik+2
. . . pin−1,in

(14.17)

=
π(i)pij

hhhhhhhh
pj,ik+2

. . . pin−1,in

π(j)
hhhhhhhh
pj,ik+2

. . . pin−1,in

(14.18)

=
π(i)pij
π(j)

(14.19)

We see that the Markov property is satisfied because the dependence in everything from ik+2 onwards drops
out.

We can further recognize our result as P(Xk = j | Xk−1 = i) = pij . Therefore we get that for a reversible
Markov chain, π(i)pij = π(j)pji, which is just the DBE on two states.

Theorem 14.4. A DTMC is reversible if and only if the DBEs hold.

Lemma 14.5. If π satisfies the DBEs, then π is an invariant distribution.

14.5 Poisson Processes

An arrival process is called a Poisson process with rate λ > 0 if it satisfies

1. time-homogeneity: p(k, τ) is the same for any τ .

2. independence: the number of arrivals in a given interval is independent of what happens outside that
interval

3. p(0, τ) = 1− λτ +O(τ); p(1, τ) = λτ +O1(τ) and in general p(k, τ) = Ok(τ).
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15.1 Deriving the distribution

A Poisson random variable can be approximated to a binomial one. Recall that a Poisson random variable

has PMF PZ(k) = e−λλk

k! , and a binomial random variable has PMF Ps(k) =
(
n
k

)
pk(1 − p)n−k. If we let

np→ λ while also letting n→∞, we can show that Ps(k)→ Pz(k).

A Poisson process, given by the distribution p(k, τ) (the probability of k arrivals in a time interval τ) has
the following properties:

1. Time homogeneity: p(k, τ) is a pure function of τ .

2. Independence: the number of arrivals in any interval is independent of what happens outside the
interval.

3. When τ → 0, p(0, τ) ≈ 1− λτ , p(1, τ) ≈ λτ and p(k, τ) ≈ 0 for k > 1.

Consider a time interval [0, τ ], and divide this up into arbitrarily small windows of time δ, i.e. τ
δ = n. Then,

the number of arrivals in [0, δ] (and by independence, any δ−width) is given by the third property to be
either 0 or 1 with probabilities 1− λδ or λδ respectively. This is the definition of a binomial process, as we
are essentially drawing n Bernoulli(λδ) random variables and summing them.

This tells us that the average number of arrivals in an interval τ is np = nδλ. Since δ = τ
n , this is λτ .

Identifying this as a Poisson parameter, we can say that

p(k, τ) =
e−λτ (λτ)k

k!
k = 0, 1, 2, . . . (15.1)

Let Nτ be the number of arrivals within time τ . Then E[Nτ ] = λτ and var(Nτ ) = λτ , because we know a
Poisson distribution must satisfy these.

15.2 Time for first arrival

Let the time for the first arrival be T . If we start at time t = 0, then

P(T ≤ t) = 1− P(T > t) = 1− p(0, t) = 1− e−λt (15.2)

Therefore T ∼ Exp(λ). This tells us that E[T ] = 1
λ and var(λ) = 1

λ2 .
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15.3 Arrivals in disjoint intervals

Suppose we have disjoint intervals with widths τ1, τ2 with N1 and N2 arrivals respectively. We know that
Poisson random variables sum in distribution, so N1 +N2s ∼ Pois(λ(τ1 + τ2)).

15.4 Properties of Poisson Processes

1. For any t > 0, a PP after t is independent of the PP up until t.

2. For any t > 0, let T be the time of the first arrival after t. Then P (T − t > s) = p(0, (t + s) − t) =
p(0, s) = e−λs.

This lets us say that the inter-arrival times Tk are i.i.d Exp(λ).

15.5 kth Arrival Time

Let Yk be the kth arrival time. Yk =
∑k
i=1 Ti, and the Tis are i.i.d. so E[Yk] = k

λ and var(Yk) = k
λ2 . The

pdf is

fYk(y) =
λkyk−1e−λy

(k − 1)!
, y ≥ 0 (15.3)

Proof. The cdf is

FYk(y) = P(Yk ≤ y) =

∞∑
n=k

p(n, y) = 1−
k−1∑
n=0

p(n, y) (15.4)

Then, we take a derivative and it works.

We call this the Erlang distribution of order k.

15.6 Splitting and Merging of Poisson Processes

Suppose for every arrival in a Poisson process, we categorize it in one of two “buckets”: the left with
probability p and the right with probability 1 − p. Then the arrivals in the left bucket is a PP with
parameter λp and the right bucket is a PP with parameter λ(1− p).

Merging works similarly: if we have two Poisson processes with parameters λ1, λ2, then their combination is
Poisson with parameter λ1 + λ2.

If we consider a time interval δ, then to first order this can be verified:



pλ1+λ2
(0, δ) = (1− λ1δ)(1− λ2δ) ≈ 1− (λ1 + λ2)δ (15.5)

pλ1+λ2
(1, δ) = λ1δ(1− λ2δ) + λ2δ(1− λ1δ) ≈ (λ1 + λ2)δ (15.6)

If Ta ∼ Exp(λa) and Tb ∼ Exp(λb), then Z = min{Ta, Tb} ∼ Exp(λa + λb). Therefore the inter-arrival time
of the merged Poisson process with parameters λa, λb is Exp(λa+λb). Additionally, we have P(min{Ta, Tb} =
Ta) = λa

λa+λb
.

15.7 Residual Life Paradox

Start a PP(λ) from t = −∞. Let t∗ be the current time, let u be the time of the last arrival, and let v be
the time of the next arrival. We want to find the width of the interval, L = (v − t∗) + (t∗ − u).

Due to independence, (t∗ − u) is independent of (v − t∗). By memorylessness, v − t∗ is Exp(λ). Therefore

P((t∗ − u) > x) = P(no arrival in [t∗ − x, t∗]) = p(0, x) = e−λx (15.7)

Therefore t∗−u ∼ Exp(λ), so L is an Erlang distribution of order 2. But we know this should be exponential.
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So far, we’ve discussed Markov chains with discrete jumps, i.e. chains that could be characterized by the
transitions from X0 → X1 → X2. However, some problems can only be modelled in continuous time. To
account for this, we introduce the machinery of CTMCs.

Let X be a countable state space, and let π be a distribution on X. Then, we define the analogy to the state
transition matrix P :

Q := {Q(i, j) | i, j ∈ X} s. t. Q(i, j) ≥ 0∀i 6= j (16.1)

We refer to this as the rate matrix or infinitesimal generator. Further, we can require of the rate matrix that∑
j Q(i, j) = 0 for all i: the rates at which we go to every state is 0. This will make intuitive sense when we

look at Q as the derivative of some analogous discrete-time matrix P . (I think.)

As a consequence of this, we get that the rate of a self-transition is given by

Q(i, i) = −
∑
j 6=i

Q(i, j) (16.2)

Further, we define q(i) = −Q(i, i). Now, we can define a CTMC.

A continuous-time Markov chain over a countable state space X with initial distribution π and rate matrix
Q is the process {Xt, t ≥ 0} such that

1. P(X0 = i) = π(i): the initial distribution works the way it does for DTMCs.

2. P(Xt+ε = j | Xt = i) = (1 − q(i)ε) · 1{j = i} + Q(i, j)ε1{j 6= i} + O(ε2): the infinitesimal-time
transition probability can be linearly approximated using the transition rates. Further, the Markov
property holds.

Note that
∑
j P(Xt+ε = j | Xt = i) ≈ 1, so this is consistent with Q(i, j) being the probability of jumping

i→ j in unit time.

16.1 Construction

Suppose at time t we’re in state i. Let τ ∼ Exp(q(i)). At time t+τ , the chain jumps to j 6= i with probability

Γ(i, j) =
Q(i, j)

q(i)
∀j 6= i (16.3)
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For j 6= i, note that

P(Xt+ε = j | Xt = i) = q(i)ε
Q(i, j)

q(i)
+O(ε2) = εQ(i, j) +O(ε2) (16.4)

If we sum over all of these but retain the higher-order terms, we get the probability of a transition in time
ε is q(i)e−q(i)ε ≈ q(i)ε. I think this is true, but I can’t really tell. This tells us that transition times are
exponentially distributed, which is a characteristic of a Poisson process.

From this we see that a transition is the merging of Poisson processes with rates Q(i,j)
q(i) , determining whether

i will transition to each possible j.

16.2 Embedded Markov Chain

The DTMC {Xn, n ≥ 0} with transition matrix Γ is called the embedded Markov chain of a CTMC.

Example 16.1. Consider a PP (λ) that we model in a CTMC where the state is the number of
arrivals in the last interval of time ≤ t. This is modelled in the rate matrix

Q =


−λ λ 0 0 . . .

−λ λ 0 . . .
−λ λ . . .

...
...

...
...

...
. . . −λ λ


and the associated discrete-time transition matrix,

Γ =


0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
. . . . . . . . . . . . . . .


�

Example 16.2. Consider the on-off source in the following CTMC:

off on

λ

µ
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�

Example 16.3. Suppose we have two machines that both fail in time Exp(λ) independently. If they
fail, they’re repaired in time Exp(µ) independently.

Let (i, j) be the state of this system, where a variable is 0 if its corresponding
machine isn’t working, and 1 if it is.

This is embedded into the following CTMC:

(0,0) (0,1)

(1,0) (1,1)

µ

λ
µλ µλ

µ

λ

To compute the associated rate matrix, we note that if both machines are broken
or are working, the odds are equally good that either one will break or will be fixed
first, so the transitions going out from (0, 0) and (1, 1) all have probability 1

2 . The
others have probabilities that we can get from comparing exponential variables as
usual.

(0,0) (0,1)

(1,0) (1,1)

1/2

λ
λ+µ1/2λ

λ+µ
µ

λ+µ1/2

µ
µ+λ

1/2

Another possible setup that is more easily extended is to set the number of machines
working at any given time as the state.

0 1 2

2µ µ

2λλ

and the embedded DTMC is



0 1 2

1
µ

λ+µ

1λ
λ+µ

�
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17.1 The M/M/1 Queue

Example 17.1. Consider a system with a single server for customers arriving according to a Poisson
process with parameter λ, and in which the service time is τi ∼ Exp(µ).

The embedded DTMC is the birth-death Markov chain with bi = λ and di = µ,
where the state is the number of customers in the queue.

0 1 2

λ

µ

λ

µ

...

λ

µ

The associated rate matrix is

Q =


−λ λ
µ −(µ+ λ) λ

µ −(µ+ λ) λ
µ −(µ+ λ) λ

...
...

...
...

...


�

17.2 CTMC Properties

1. A CTMC is irreducible if and only if its embedded DTMC is irreducible.

2. A state is recurrent or transient in a CTMC if and only if it’s recurrent or transient in the embedded
DTMC.

3. Positive and null recurrence are not equivalent in the CTMC and the embedded DTMC. For example,
Markov chains that are positive-recurrent in the continuous case over an infinite state space (i.e. have
infinite expected transitions in finite time) are called explosive Markov chains, even though the em-
bedded MC may be null-recurrent. http://www.columbia.edu/~ks20/stochastic-I/stochastic-

I-CTMC.pdf

4. There is no notion of periodicity in a CTMC.
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17.3 Throwing a Bunch of Theorems At Us

(his words) Let Pt =
[
Pt(i, j)

]
=
[
P(Xt = j | X0 = i)

]
. This satisfies the property Pt+s = PtPs = PsPt. If

we take a derivative in time, we should get the rate matrix multiplied by this transition-probability matrix.

Theorem 17.1.

d

dt
Pt = QPt (17.1)

This is the Kolmogorov backward equation (KBE).

Theorem 17.2.

d

dt
Pt = PtQ (17.2)

This is the Kolmogorov forward equation (KFE).

I don’t know how both of these are true in general at the same time, because that suggests any matrix
commutes with its exponential which I’m pretty sure is not the case.

Here’s a good derivation: https://mast.queensu.ca/~stat455/lecturenotes/set5.pdf.

So Pt is both a left and right eigenvector of the derivative operator, meaning it’s an exponential with
eigenvalue (rate) Q.

Theorem 17.3.

Pt = etQ =

∞∑
k=0

tkQk

k!
(17.3)

This tells us that the distribution of a CTMC after t transitions is given by πt = π0e
Qt.

17.4 Balance Equations

Theorem 17.4. πQ = 0 if and only if πPt = π; any π satisfying this is called the stationary or invariant
distribution.

Suppose πQ = 0. Then
∑
i π(i)Q(i, j) = 0 ∀j.

In general, the rate into state j should be the same as the rate out:

∑
i 6=j

π(i)Q(i, j) = πj
∑
k 6=j

Q(j, k) (17.4)

Theorem 17.5 (Big Theorem). the name is still ridiculous.

Consider an irreducible CTMC.

1. If and only if it is positive-recurrent, there exists a unique invariant distribution.



2. If it is positive-recurrent, then lim
t→∞

1
t

∫ t
0
1{Xu = i}du = π(i) almost surely, i.e. it is ergodic.

3. If it is positive-recurrent, then Pt(i, j)→ π(j) as t→∞.

4. If it is not positive-recurrent, then there exists no invariant distribution, and the fraction of time spent
in any given state goes to 0:

lim
t→∞

1

t

∫ t

0

1{Xu = i}du = 0 ∀i (17.5)

We can relate the invariant distributions of a CTMC and its embedded MC.

Theorem 17.6. Consider a CTMC {Xt, t ≥ 0} and the embedded MC {Xn, n ≥ 0}. Assume that both are
irreducible positive-recurrent. Let π, α be the corresponding invariant distributions. Then

π(i) =
α(i)/q(i)∑
k α(k)/q(k)

(17.6)

where q(i) = −Q(i, i).

Example 17.2. Consider the on-off source CTMC:

0 1

λ

µ

Solving the first-step equations (I think?), we get that π(0) = µ
λ+µ and π(1) = λ

λ+µ .
�

Example 17.3. For another example, we can return to the M/M/1 queue, with all of its birth
coefficients equal to λ and all of its death coefficients equal to µ. If λ > µ, the
entire chain is a transient class; if λ = µ, we get null recurence, and if λ < µ we get
positive recurrence.

In the case λ < µ, we get that there must exist an invariant distribution, which is
given by π(i) = (1− ρ)ρi where ρ = λ

µ .
�

The rate matrix and the embedded DTMC matrix are related by R = I + 1
qQ.
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18.1 Simulated DTMCs

18.1.1 CTMC Review

Recall that if π is an invariant for a CTMC and α is an invariant for its embedded DTMC, then

π(i) =
α(i)/q(i)∑
k α(k)/q(k)

(18.1)

or conversely,

α(i) =
π(i)q(i)∑
k π(k)q(k)

(18.2)

As stated, the ergodic theorem held for countably infinite state spaces X ; a finite irreducible CTMC is always
positive-recurrent. Further, if the chain is not irreducible, it can be decomposed into recurrent and transient
classes. In this case, the invariant distribution is some linear combination of the invariant distributions of
each recurrent class.

Recall that the balance equations for CTMCs said that we could find the invariant distribution by solving
πQ = 0, which we get by equating flow-in and flow-out. Further, the detailed balance equations tell us that
π(i)Q(i, j) = π(j)Q(j, i).

18.1.2 Uniformization

We can convert a CTMC with rate matrix Q into its embedded DTMC by taking q = sup q(i) and R = I+ 1
qQ.

The invariant distribution holds in both: πR = π ⇐⇒ πQ = 0.

For example, for the on-off source, we have Q =

[
−λ λ
µ −µ

]
and so R =

[
0 1
µ
λ 1− µ

λ

]
and we can verify that

these have the same invariant distribution π = 1
λ+µ

[
λ µ

]
.

18.1.3 The PASTA property

Recall that the stationary distribution for the M/M/1 queue Markov chain was π(i) = (1 − ρ)ρi for i ≥ 0
and ρ = λ

µ . We can use this as an illustration of the PASTA property: Poisson Arrivals See Time Averages.
By this property, we know that the probability that an arriving customer finds i customers in the queue is
(1− ρ)ρi. Let D be the total delay in the system (waiting and service). Then, we can find the MGF of D:
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MD(s) = E[esD] =

∞∑
i=0

ρi(1− ρ)

(
µ

µ− s

)i+1

=
µ− λ

(µ− λ)− s
(18.3)

Therefore, the total delay is distributed by Exp(µ− λ).

18.1.4 Hitting times/probabilities in a CTMC

Let A ⊂ X and let TA = inf{t | Xt ∈ A}. We want to find Ei[TA]. Let β(i) = Ei[TA].

β(i) =

{
1
q(i) +

∑
j 6=i

Q(i,j)
q(i) β(j) i 6∈ A

0 i ∈ A
(18.4)

and if we take A,B ⊂ X with A ∩B = ∅, we can find Pi(TA < TB):

α(i) =


∑
j 6=i

Q(i,j)
q(i) α(j) i 6∈ A ∪B

1 i ∈ A
0 i ∈ B

(18.5)

18.2 Erdős-Rényi Random Graphs

18.2.1 Properties of E-R Random Graphs

An E-R random graph G(n, p) is a random undirected graph with n vertices, where each of the
(
n
2

)
edges

exists with probability p.

We can think of an E-R random graph as a distribution over the set of all graphs. There are 2(n2) possible
graphs, which we can enumerate. Let G0 be a particular graph with m edges. Then

P(G = G0) = pm(1− p)(
n
2)−m (18.6)

The expected number of edges can be found using linearity of expectation: each edge exists with probability
p, and there are

(
n
2

)
of them, so the expected number of edges is

(
n
2

)
p.

The degree of an arbitrary vertex is given by

P(D = d) =

(
n− 1

d

)
pd(1− p)n−1−d (18.7)

and E[D] = (n− 1)p.



When p(n) = λ
n , λ > 0, then

E[D] =
n− 1

n
λ

n→∞−−−−→ λ (18.8)

The distribution of D turns out to be Poisson(λ).

The probability that a given vertex is isolated is (1− p)n−1.

Theorem 18.1 (Erdős-Rényi Theorem). Let p(n) = λ ln(n)
n .

• If λ < 1, then P{G(n, p) is connected} n→∞−−−−→ 0.

• If λ > 1, then P{G(n, p) is connected} n→∞−−−−→ 1.

Proof. For the case λ < 1, let Xn be the number of isolated nodes. We want to show that P(Xn > 0)→ 1.

P(Xn = 0) = P(|Xn − E[Xn]| = E[Xn]) (18.9)

≤ P(|Xn − E[Xn]| ≥ E[Xn]) (18.10)

≤ var(Xn)

E[Xn]2
(18.11)

We can also look at Xn as the sum of indicator variables i, indicating whether i is isolated. Then by the
variance of identically distributed RVs, we get

var(Xn) = n var(I1) + n(n− 1) cov(I1, I2) (18.12)

I1 ∼ Bernoulli((1− p(n))n−1) = Bernoulli(q(n)), so var(I1) = q(n)(1− q(n)).

18.2.2 Percolation Theory

Suppose we have a particle in a 2D grid starting on the top and trying to percolate to the bottom. It can
either transition or not transition to an adjacent point with probability p. If p < 1

2 , there is no path to get
to a particular point with probability 1, and if p > 1

2 there is a path with probability 1.
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19.1 Applying Bayes’ Rule

Bayes’ rule lets us incorporate a prior probability into our analysis of events: we can condition the probability
of something happening on some expectation of how likely we think it is. This is useful when we are
trying to determine hidden parameters and only have some observed data that tells us indirectly about
these parameters. The distribution that incorporates the prior as well as observed data is referred to as
the posterior distribution. Suppose we have events Ci with prior probabilities pi, and probabilities of the
observed event/data S conditioned on Ci given by qi. Then, we update P(Ci) based on seeing S as follows:

P(Ci | S) =
P(Ci ∩ S)

P(S)
=

P(Ci)P(S | Ci)
P(S)

(19.1)

=
P(Ci)P(S | Ci)∑
j P(S | Cj)P(Cj)

(19.2)

=
piqi∑
j pjqj

(19.3)

19.2 MAP and MLE

19.2.1 Max A Posteriori Estimation

The MAP estimate of the correct Ci or a parameter associated with the Cis just has us maximize the
numerator in the above application of Bayes’ rule:

arg max
i

P(Ci | S) = arg max
i
piqi (19.4)

This gives us the most likely cause for S given some priors.

19.2.2 Maximum Likelihood Estimation

MLE gives us the most likely causation:

arg max
i

P(Ci | S) = arg max
i
qi (19.5)

Note that if the prior is uniform, i.e. pi = 1
n for all i, then MAP and MLE are the same.
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Example 19.1. Suppose we have two coins with probabilities of getting heads p1 and p2. We choose
one of these coins, toss it n times and get k heads. The probability that we picked
the first coin is

P(coin 1 | k heads) ∝ P(k heads | coin 1)P(coin1) (19.6)

and the same for coin 2. Therefore, the updated P(coin 1) ∝ pk1(1 − p1)n−k and
P(coin 2) ∝ pk2(1− p2)n−k up to the same normalizing factor.

Here, MLE and MAP are the same because the prior probability of picking either
coin is the same.

�

Let X and Y be discrete random variables.

MAP [X | Y = y] = arg max
x

P[X = x | Y = y] (19.7)

MLE[X | Y = y] = arg max
x

P[Y = y | X = x] (19.8)

Example 19.2. Romeo and Juliet are supposed to meet, but Juliet is late by some random time
X ∼ Unif [0, θ]. Suppose Romeo thinks she’ll be late by some time Unif [0, 1], i.e.
our prior is that θ = 1. Then, the posterior distribution can be computed as follows.
First, we write out the prior:

fθ(θ) =

{
1 0 ≤ θ ≤ 1

0 otherwise
(19.9)

and the probability of the observation:

fX|θ(x|θ) =

{
1
θ 0 ≤ x ≤ θ
0 otherwise

(19.10)

Then, the posterior distribution is
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fθ|X(θ|x) =
fθ(θ)fX|θ(x|θ)∫
fθθ′fX|θ(x|θ′)dθ′

(19.11)

=
1/θ∫ 1

x
1
θ′ dθ

′
, 0 ≤ x ≤ θ ≤ 1 (19.12)

=

{
1

θ| ln x| 0 ≤ x ≤ θ ≤ 1

0 otherwise
(19.13)

�

The MAP posterior PDF is “optimistic” in x, as it decreases in θ faster than in x. Note that here the prior
is uniform, so MAP and MLE are the same.

19.3 Binary Symmetric Channel Inference

Suppose in a BSC with probability p of switching, we get an output 1. We want to estimate the input. The
input x = 1 with probability α and x = 0 with probability 1− α. Then

P(X = 0 | Y = 1) =
P(X = 0, Y = 1)

P(Y = 1)
=

P(X = 0, Y = 1)

P(Y = 1 | X = 0)P(X = 0) + P(Y = 1 | X = 1)P(X = 1)
(19.14)

Substituting in, we get that P(X = 0 | Y = 1) ∝ p(1− α) and P(X = 1 | Y = 1) ∝ (1− p)α.

19.4 Gaussian Channel Inference

Suppose we send X ∈ {0, 1} and receive Y = X +Z where Z ∼ N(0, σ2) independent of X. With a prior of
X ∼ Bernoulli(α), we can infer from Y what X is. Let fi(y) = fY |X(y | x = 0) ∼ N(i, σ2) for i = 0, 1.
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Then the posterior is

fX|Y (x = 0 | y) =
(1− α)f0(y)

(1− α)f0(y) + αf1(y)
(19.15)

fX|Y (x = 1 | y) =
αf1(y)

(1− α)f0(y) + αf1(y)
(19.16)

The MAP is 0 if (1 − α)f0(y) > αf1(y), and 1 otherwise. This is the same as an indicator function of
1{y ≥ 1

2 + σ2 log
(

1−α
α

)
}.

The MLE is 0 if f0(y) > f1(y) and 1 otherwise.
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20.1 Binary Hypothesis Testing

Suppose X ∈ {0, 1}, and we observe some output Y . We want to determine X̂ such that we maximize the
probability of correct detection (PCD, or true positive) = P(X̂ = 1 | X = 1) subject to the probability of a
false alarm (PFA, or false positive) = P(X̂ = 1 | X = 0).

If the solution is PCD = R(β), then R(β) is called the Receiver Operating Characteristic (ROC).

R(β) = maxPCD | PFA ≤ β (20.1)

Theorem 20.1 (Neyman-Pearson Theorem). The X̂ that maximizes the PCD such that PFA ≤ β is given
by

X̂ =


1 L(Y ) > λ

1w.p.γ L(Y ) = λ

0 L(Y ) < λ

(20.2)

where λ > 0, γ ∈ [0, 1] are chosen such that P[X̂ = 1 | X = 0] = β, and

L(y) =
fY |X(y|1)

fY |X(y|0)
(20.3)

If L(Y ) is large, then for an observed Y , X = 1 is more likely. As λ reduces, we choose X̂ = 1 more
frequently. This leads to the PCD and PFA both increasing. We further constrain this by choosing λ such
that PFA = β.

Example 20.1. Consideer the Gaussian channel where Y = X + Z and Z ∼ N(0, σ2). The MLE
estimate is

MLE[X | Y = y] = arg max
x

fY |X(y|x) = 1{y ≥ 0.5} (20.4)

and the MAP estimate is
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MAP [X | Y = y] = argmaxxfX|Y (x|y) = 1{y ≥ 0.5 + σ2 log

(
p0

p1

)
} (20.5)

For hypothesis testing, we choose the bound β on P(X̂ = 1 | X = 0). By the
Neyman-Pearson theorem,

L(y) = exp

(
2y − 1

2σ2

)
(20.6)

Note that for any X, P[L(y) = λ] = 0; L(y) is strictly increasing in y. By the NP
theorem, X̂ = 1{y ≥ y0}.

Suppose P(Y ≥ y0 | X = 0) = β. This implies that P(N (0, 1) ≥ y0
σ ) = β; we can

look this up by standard confidence intervals. Similarly,PCD = P[X̂ = 1 | X =
1] = P[N(1, σ2) ≥ y0] = P[N(0, 1 ≥ y(β)− σ2]. (I can’t tell if that’s a σ or σ2.)

�

Example 20.2. Mean of Exponential Random Variables.

Two machines produce light bulbs. The lightbulbs have lifespans ∼ Exp(λ0) or
Exp(λ1) respectively. Suppose λ0 < λ1, i.e. machine 1 is defective. Suppose we
observe lifespans Y = (Y1, . . . , Yn): which machine might have produced these?

L(y) =

∏n
i=1 λ1 exp(−λ1y1)∏n
i=1 λ0 exp(−λ0y0)

(20.7)

=

(
λ1

λ0

)n
exp

(
−(λ1 − λ0)

n∑
i=1

yi

)
(20.8)

Since λ1 > λ0, L(y) is decreasing in
∑n
i=1 yi. Also, P(L(y) = λ) = 0. Therefore

X̂ = 1{
n∑
i=1

yi ≤ a} (20.9)

We choose a such that

P(

n∑
i=1

Yi ≤ a | X = 0) = β (20.10)



Applying the Central Limit Theorem, we get that this is equivalent to

P(N(0, 1) ≤ λ0
a− n/λ0√

n
) = β (20.11)

If we take β = 0.05, we get that a = (n+ 1.65
√
n)λ−1

0 . (I think he got the number
wrong and it should be 1.96.)

�

20.2 Randomization

Let X ∈ {0, 1} and Y ∈ {A,B,C}. Suppose the probabilities that Y = A,B,C conditioned on X = 0 are
0.2, 0.5, 0.3 and conditioned on X = 1 are 0.2, 0.2, 0.6. This gives us

L(Y ) =


0.4 Y = B

1 Y = A

2 Y = C

(20.12)

Suppose λ = 2.1; then the PCD is 0 because L(Y ) < λ everywhere and the PFA is also 0. If we set λ = 2,
the PCD becomes 0.6γ and the PFA is 0.3γ. If γ = 1 then the PCD is 0.6 + 0.2γ and the PFA is 0.3 + 0.2γ.
I don’t know how he got those numbers but it seems alright.
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21.1 Neyman-Pearson Hypothesis Testing is Optimal

Proof. (of Neyman-Pearson optimality) Consider another decision rule X̃ such that P(X̃ = 1 | X = 0) ≤ β;
we wannt to show that P(X̃ = 1 | X = 1) ≤ P(X̂ = 1 | X = 1). Observe that

(X̂ − X̃)(L(Y )− λ) ≥ 0 (21.1)

which we can verify by taking all three cases, L(Y ) > λ, L(Y ) = λ, and L(Y ) < λ. Taking expectation on
both sides, we get

E[X̂L(Y ) | X = 0]− E[X̃L(Y ) | X = 0] ≥ λ
(
E[X̂ | X = 0]− E[X̃ | X = 0]

)
(21.2)

Since X̂ and X̃ can only take on the values 0 or 1, their expectation is equivalent to the probability that
they are 1. Further, by the setup, we know that P(X̂ = 1 | X = 0) = β ≥ P(X̃ = 1 | X = 0). Therefore the
right hand side is some positive number.

This implies that

E[X̂L(Y ) | X = 0] ≥ E[X̃L(Y ) | Y = 0] (21.3)

Further, we can go through algebra to show that E[g(Y )L(Y ) | X = 0] = E[g(Y ) | X = 1]. Therefore

E[X̂L(Y ) | X = 0] = E[X̂ | X = 1] = P(X̂ = 1 | X = 1) ≥ E[X̃ | X = 1] = P(X̃ = 1 | X = 1) (21.4)

21.2 Estimation

21.2.1 Linear Algebra Setup

We want to develop geometric intuition for estimating a random variable. Consider the following space of
random variables:



H = {X | X ∈ R,E[X2] <∞} (21.5)

Definitions of vector spaces, bases, spanning, linear independence, subspaces, inner product spaces.

An inner product space that is complete is called a Hilbert space. A space is complete if any Cauchy sequence
in the space converges in the space, but we won’t deal with those details.

Define 〈X,Y 〉 = E[XY ]. We can show this makes H into an inner product space. The only nontrivial piece
of algebra required for this is the Cauchy-Schwartz inequality:

|E[XY ]| ≤
√

E[X2]E[Y 2] (21.6)

Note that over a finite sample space, E[XY ] =
∑
ω∈ΩX(ω)Y (ω)P (ω). Since Ω is finite, H is finite-

dimensional, and has a basis {1ω}ω∈Ω.

21.3 Projections

We want to find L[Y |X], the “best” linear (in the form a+ bX) estimate of Y given X. Given Y ∈ V and a
subspace U ⊆ V , we want to find the closest X ∈ U to Y . This is the orthogonal projection of Y on U .

The orthogonal projetion on a subspace U is P : V → U, y → Py = arg minx∈U‖y − x‖.

Py ∈ U and y − Py ∈ U⊥.

If U is finite-dimensional with an orthonormal basis {vi}ni=1, then Py =
∑n
i=1〈y, vi〉vi. Further, we can use

the Gram-Schmidt process to construct an orthonormal basis out of any basis.
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Recall that the LLSE problem is to find L(X|Y ) given X,Y ∈ H. This is an orthogonal projection:

X

L(X|Y ) = a+ bYY

{cY + d} = span{1, Y }

X − a− bY

Our task is to minimize E[(X − a− bY )2] over all a, b ∈ R.

The first method is algebraic, which is to take partial derivatives with respect to a and b of the expected
value of the error squared, and set them both to zero. The second method is geometric: the error vector,
denoted by a dotted line in the above diagram, is orthogonal to the space {cY +d}, meaning it is orthogonal
to each basis element. That is, E[X − a− bY ] = 0 and E[(X − a− bY )Y ] = 0.

To illustrate these projections, imagine a unit cube, as represented in Figure 22.2.

Suppose we wanted to represent the vector (1, 1, 1) in the x− y plane basis. It is the sum of the projection
onto this basis (1, 1, 0) and an error term (0, 0, 1). Similarly, we could represent it in the x−axis basis as
(1, 0, 0) + (0, 1, 1), or the y−axis basis as (0, 1, 0) + (1, 0, 1). In each of these cases, we see that the error term
is orthogonal to the pojection, like we would expect.

To bring this reasoning to random variabes, we make {1, Y } into an orthonormal basis by applying Gram-
Schmidt. We get {1, (Y −E[Y ])/

√
varY }. This gives us a closed form for the linear least-squares estimator:

Theorem 22.1. Let X,Y ∈ H and let Y not be a constant. Then

L[X|Y ] = E[X] +
cov(X,Y )

var(Y )
(Y − E[Y ]) (22.1)

Further, the squared error of this estimator is
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(1, 1, 1)

Figure 22.2: A unit cube, to represent projections

E[(X − L[X|Y ])2] = var(X)− cov(X,Y )2

var(Y )
(22.2)

Proof. The linear estimator formula comes out of taking the projection
∑n
i=1〈x, ui〉ui to the orthonormal

basis we found above. To compute the error term, we can reason geometrically. For simplicity, let X and Y
be zero-mean (take X → X − E[X] and Y → Y − E[Y ]). Then, the linear estimator is

L[X|Y ] =
cov(X,Y )

var(Y )
Y (22.3)

Then, we draw the projection and note we can use Pythagoras’ theorem:

X

L[X|Y ]
Y

Error

The error term is therefore given by

‖Error‖2 = ‖X‖2 − ‖L(X|Y )‖2 = var(X)− cov(X,Y )2

var(Y )
(22.4)
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Example 22.1. Let Y = αX + Z, where X,Z are both zero-mean and independent. The true
relation is given by Y = αX and there is an additional noise term that we denote
Z. The optimal linear esatimator is

L[X|Y ] =
cov(X,Y )

var(Y )
Y (22.5)

Further, based on the form for Y , we know that cov(X,Y ) = αE[X2] and var(Y ) =
α2 E[X2] + var(Z). Therefore

L[X|Y ] =
αE[X2]

α2 E[X2] + E[Z2]
=

α−1

1 + SNR−1
(22.6)

where SNR, the signal-to-noise ratio, is the ratio of the power (squared-magnitude,
e.g. imagine X and Y are voltages, then their squares are proportional to power)
of the signal to the noise. As the SNR goes to 0, the noise drowns out the signal
and we get L[X|Y ] → 0; as the SNR goes to ∞, the signal dominates and we get
the correct estimate of L[X|Y ]→ 1

αY .
�

Example 22.2. Let X = αY + βY 2 where Y ∼ Unif [0, 1]. Then

L[X|Y ] = E[X] +
cov(X,Y )

var(Y )
(Y − E[Y ]) (22.7)

The expected value of X is

E[X] = αE[Y ] + β E[Y 2] =
α

2
+
β

3
(22.8)

The covariance of X and Y is

cov(X,Y ) = E[XY ]− E[X]E[Y ] = E[αY 2 + βY 3]−
(
α

2
+
β

3

)
1

2
=
α+ β

12
(22.9)

and the variance of Y is 1
12 . Therefore, we get
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L[X|Y ] = −β
6

+ (α+ β)Y (22.10)

This can be visualized as follows:

Y

X

We see that locally, the linear estimator (red) approximates the true values (blue)
but this linear approximation does not extend very well.

�

22.1 Linear Regression

Suppose we observe i.i.d {(Xi, Yi)}. We want to find g(Y ) = a + bY such that the error E[|X − a − bY |2]
is minimized. We can do this by taking the partial derivatives of the total error of the observed points. For
each k, we want

Errk =

k∑
j=1

|Xj − a− bYj |2 (22.11)

∂Errk
∂a

= 0,
∂Errk
∂b

= 0 (22.12)

After much algebra, we can show that

a+ bY = Ek[X] +
covk(X,Y )

vark(Y )
(Y − Ek[Y ]) (22.13)

where each subscript k indicates that it pertains to the value after k observations:



Ek[X] =
1

k

k∑
j=1

Xj (22.14)

Ek[Y ] =
1

k

k∑
j=1

Yj (22.15)

covk(X,Y ) =
1

k

k∑
j=1

XjYj − Ek[X]Ek[Y ] (22.16)

vark(Y ) =
1

k

k∑
j=1

Y 2
j − (Ek[Y ])2 (22.17)

Essentially, this gives us a sample variance and covariance on the true values, that are given in general by:

Mn =
1

n

n∑
i=1

Zi (22.18)

S2
n =

1

n− 1

n∑
i=1

(Zi −M − n)2 (22.19)

Su,v =
1

n

n∑
i=1

(Ui −Mu
n )(Vi −Mv

n) (22.20)

These will converge to the true values with enough samples, in accordance with the strong law of large
numbers.

Theorem 22.2. Linear regression converges to the linear least-squares estimate of a random variable.

22.2 Minimum mean-squared estimate (MMSE)

Suppose we know the joint distribution of X and Y . We want to find g(Y ) such that E[(X − g(Y ))2] is
minimized.

Theorem 22.3. The MMSE of X given Y is given by

g(Y ) = E[X|Y ] (22.21)

Recall that E[X|Y ] is a random variable that is a function of Y .
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23.1 The MMSE theorem

Recall that the MMSE problem is to find g(Y ) such that E[(X − g(Y ))2] is minimized, givenn the joint
distribution of X and Y . Last time, we showed that the MMSE of X given Y is E[X|Y ].

E[X | Y = y] =

∫
xfX|Y (x|y)dx =

∫
x
fX,Y (x, y)

fY (y)
dx (23.1)

Some properties of the random variable E[X|Y ] are

1. Linearity: E[aX1 + bX2 | Y ] = aE[X1 | Y ] + bE[X2 | Y ]

2. Factoring: E[h(Y )X | Y ] = h(Y )E[X | Y ]

3. Iterated expectation: E[E[X|Y ]] = E[X]

4. Independence: if X and Y are independent, E[X|Y ] = E[X].

Lemma 23.1. For any function ϕ,

E[(X − E[X|Y ])ϕ(Y )] = 0 (23.2)

and further, if g(Y ) is such that

E[(X − g(Y ))ϕ(Y )] = 0 ∀ϕ (23.3)

theen g(Y ) = E[X|Y ].

Proof. We look at the following expression:

E[E[X|Y ]ϕ(Y )] = E[E[ϕ(Y )X | Y ]] = E[Xϕ(Y )] (23.4)

Therefore, by linearity,
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E[(X − E[X|Y ])ϕ(Y )] = E[Xϕ(Y )]− E[E[X|Y ]ϕ(Y )] = 0 (23.5)

Further, for the general g(Y ) case, let ϕ(Y ) = g(Y )− E[X|Y ]. That is,

E[(X − g(Y ))ϕ(Y )] =E[(g(Y )− E[X|Y ])2] = 0 (23.6)

=⇒ E[(g(Y )− E[X|Y ]) · ((g(Y )−X)− (E[X|Y ]−X))] = 0 (23.7)

We recognize the first term as ϕ(Y ). Expanding this out, we note that the term ϕ(Y )(E[X|Y ]−X) must be
zero in expectation by the first part of the lemma, meaning the term (g(Y )−X)ϕ(Y ) must also be zero in
expectation. Therefore E[ϕ(Y )] = 0 which means its first and second moments are both zero, so ϕ(Y ) = 0
and g(Y ) = E[X|Y ].

Now, we can prove the MMSE theorem.

Proof. (of the MMSE theorem)

Suppose there were some projection h(Y ) such that the distance-squared were less than what we claim is
the minimal value.

X

E[X|Y ]Y

h(Y )

{g(Y )}

X − E[X|Y ]

We can expand out the expectation with the greater value:

E[(X − h(Y ))2] = E[(X − E[X|Y ])2] + E[(E[X|Y ]− h(Y ))2] + 2E[(X − E[X|Y ])(E[X|Y ]− h(Y ))] (23.8)

The cross term is zero by the lemma, because it is some function of Y multiplied by X − E[X|Y ], and the
term E[(E[X|Y ]− h(Y ))2] must be nonnegative. Therefore
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E[(X − h(Y ))2] ≥ E[(X − E[X|Y ])2] (23.9)

23.2 Relating MMSE and LLSE

In general, the LLSE and MMSE are not equal, and the error of the LLSE is greater than or equal to that
of the MMSE.

NOTE: tikz to be edited

X

E[X|Y ]Y

L[X|Y ]

{g(Y )}

span{1, Y }

X − E[X|Y ]

Example 23.1. Let Y ∼ Unif [−1, 1] and let X = Y 2. The MMSE is

E[X|Y ] = Y 2 (23.10)

whereas the LLSE is

 L[X|Y ] = E[X] =
1

3
(23.11)

These are clearly different.
�
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Example 23.2. Suppose X,Y, Z are i.i.d. and we have access to their sum.

E[X|X + Y + Z] =
1

3
(X + Y + Z) (23.12)

By symmetry, this is also the same as E[Y |X +Y +Z] and E[Z|X +Y +Z]. In this
case, the LLSE and MMSE are the same.

�

23.3 Jointly Gaussian RVs, LLSE of vectors

Suppose we have random variables X and Y given by

[
X
Y

]
= A2×kZk×1 +

[
µ1

µ2

]
(23.13)

where the Zis are i.i.d. N (0, 1). In this case, the LLSE and MMSE are the same.

Before we can analyze this further, we have to develop the machinery of finding the LLSE of vectors. Let X
and Y be random vectors, and suppose ΣY = E[(Y − E[Y ])(Y − E[Y ])T ]. Then

L[X|Y ] = E[X] + cov(X,Y )Σ−1
Y (Y − E[Y ]) (23.14)

where the covariance of the two vectors is given by cov(X,Y ) = E[(X − E[X])(Y − E[Y ])T ].

The error of the linear estimator is

E[‖X − L[X|Y ]‖2] = tr
(
Σx − cov(X,Y )Σ−1

y cov(Y,X)
)

(23.15)

23.4 LLSE Updates

Suppose we have a linear estimate L[X|Y ] and then we get a second observation Z that is orthogonal to Y .
Then

L[X|Y, Z] = L[X|Y ] + L[X|Z] (23.16)

We need to show that X − (L[X|Y ] + L[X|Z]) is orthogonal to Y and Z. This can be done geometrically.

NOTE: tikz to be edited.



X

{bY + dZ}

{dZ}{bY }

L[X|Z]L[X|Y ]

L[X|Y,Z]
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We know that given a finite basis {ui}ni=1 of a subspace U , we can find an orthonormal basis of U . This
allows us to define jointly Gaussian random variables. Y1, . . . , Yn are jointly Gaussian RVs if

Y =

Y1

...
Yn

 = An×kZk×1 + µY n×1 (24.1)

where each Zi in Z =

Z1

...
Zk

 is i.i.d. N (0, 1). Y has covariance matrix ΣY = AAT . We denote this by

Y ∼ N (µY ,ΣY ).

Theorem 24.1. The joint density of Y ∼ N (µY ,ΣY ) is

fY (y) =
1√

2π|ΣY |
exp

(
−1

2
(y − µY )TΣ−1

Y (y − µY )

)
(24.2)

We assume that ΣY is invertible.

Example 24.1. Let Yi ∼ N (0,Σ2
i ) for i = 1, 2.

[
Y1

Y2

]
=

[
σ1 0
0 σ2

] [
z1

z2

]
(24.3)

The joint density is

fY (y1, y2) =
1

2πσ1σ2
exp

(
−1

2

[
y1 y2

] [1/σ2
1 0

0 1/σ2
2

] [
y1

y2

])
(24.4)

=
1

2πσ1σ2
exp

(
−1

2

(
y2

1

σ2
1

+
y2

2

σ2
2

))
(24.5)

=
1√

2πσ1

exp

(
−1

2

y2
1

σ2
1

)
· 1√

2πσ2

exp

(
−1

2

y2
2

σ2
2

)
(24.6)

This satisfies the definition of being jointly Gaussian. However, if we say that
fY (y1, y2) is defined this way if y1y2 > 0 and the density is 0 otherwise, they are no



longer jointly Gaussian.
�

Theorem 24.2. Jointly Gaussian RVs are independent iff they are uncorrelated.

The components being uncorrelated implies the components are independent. This is easy to verify when
all cov(Yi, Yj) = 0 for all i 6= j.

The level curves of the joint density of jointly Gaussian RVs are ellipses.

Theorem 24.3. For jointly Gaussian RVs, the LLSE and MMSE are the same.

Proof. X − L[X|Y ] and Y are uncorrelated, so they are independent. This means X − L[X|Y ] and φ(Y )
are independent for any function φ. This means X − L[X|Y ] is orthogonal to the space of functions of Y .
Therefore X − L[X|Y ] = E[X|Y ] so the LLSE is the MMSE.
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Suppose we have a system with state {Xi}ni=1 and output {Yi}ni=1. In general both are vectors, and typically
Y will have lower dimensionality than X. We have some model that gives us how the states change over
time:

Xn = AXn−1 + Vn (25.1)

where Vn is zero-mean process noise with a known covariance matrix Q. We measure Y according to some
known translation, given by a matrix C, and we also have some zero-mean measurement noise Wn with
known covariance R:

Yn = CXn +Wn (25.2)

The estimation problem here is to estimate Xn, the state, given the observed outputs Yn. Since we assume
everything is linear, we denote this by L[Xn | Y1, . . . , Yn].

For the scalar case, we assume |a| < 1; for the vector case, we can either assume |
∣∣A∣∣ | < 1 or add a control

term. In the scalar case, we can also rescale such that c = 1.

Recall that if X,Y, Z are zero-mean, then L[X | Y, Z] = L[X | Y ] + L[X | Z − L[Z | Y ]]. We can intuitively
understand this as an update satep: we first have the estimate L[X | Y ], then when we observe Z, we can
update this by adding the corrective term.

25.1 Deriving the Kalman Filter

Let x̂n|n = L[xn | y1, . . . , yn]. From the above result, we can write a recurrence relation for this:

x̂n|n = L[xn | y1, . . . , yn−1] + L[xn | yn − L[yn | y1, . . . , yn−1]] = x̂n|n−1 +Knỹn (25.3)

The first term is a prediction: assuming we know x̂n−1|n−1, we can just multiply by A to get our prediction
x̂n|n−1. The second is an update: we multiply the error (or more optimistically innovation) term yn−L[yn |
y1, . . . , yn−1] by some “magical” gain to give us the linear least-square estimate of the state. Intuitively, we
make a guess as to what’ll happen to the state, and from there a guess as to what measurement to expect.
When we get an actual measurement, we have a term denoting how far off we are, so we multiply this by
the Kalman gain matrix Kn to translate that to a correction in the state domain.

x̂n|n−1 = ax̂n−1|n−1 (25.4)

ỹn = yn − L[yn | y1, . . . , yn−1] = yn − CL[xn | y1, . . . , yn−1] = yn − Cx̂n|n−1 (25.5)
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(In the scalar case, we can drop the C.) Therefore, we get the overall equation

x̂n|n = Ax̂n−1|n−1 +Kn(yn − CAx̂n−1|n−1) (25.6)

This is all predicated on our ability to derive the magic scalar/matrix Kn. The website has a derivation of
the scalar case, so I’m going to derive the vector case.

Along with the states x̂n|n, we maintain estimates of the covariance of the state, Pn|n. During a ‘predict’
step, the state is propagated forward in time according to x̂n|n−1 = Ax̂n−1|n−1 + Vn and the covariance is
updated according to Pn|n−1 = APn−1|n−1A

T +Q. This is important for finding the steady-state covariance
and therefore for the steady-state Kalman gain.

x̂n|n−1 = Ax̂n−1|n−1 + Vn (25.7)

Pn|n−1 = APn−1|n−1A
T +Q (25.8)

During an ‘update’ step, the state is updated according to x̂n|n = x̂n|n−1 + Kn(yn − Cx̂n|n−1) = (I −
KC)x̂n|n−1 +Kyn. Recall that measurement covariance is given by a matrix R. The covariance is updated
according to Pn|n = (I−KnC)Pn|n−1(I−KnC)T +KnRK

T
n . The Kalman gain is the matrix that minimizes

Pn|n.

x̂n|n = (I −KC)x̂n|n−1 +Kyn +Wn (25.9)

Pn|n = (I −KnC)Pn|n−1(I −KnC)T +KnRK
T
n (25.10)

To find the gain, we set the following:

∂TrPn|n

∂Kn
= 0 (25.11)

∂TrPn|n−1

∂Kn
− 2

∂TrKnCPn|n−1

∂Kn
+
∂TrKnCPn|n−1C

TKT
n

∂Kn
+
∂TrKnRK

T
n

∂Kn
= 0 (25.12)

The first term is a constant with respect to Kn, so we drop it. The other three can be evaluated using trace

differentiation properties: ∂TrABAT

∂A = 2AB for symmetric A, and ∂TrAC
∂A = CT . We get

−2Pn|n−1C
T + 2KnCPn|n−1C

T + 2KnR = 0 (25.13)

This gives us the Kalman gain:

Kn = Pn|n−1C
T [CPn|n−1C

T +R]−1. (25.14)

Further, we can put the system into a steady state. That is, we can find the K that keeps the covariance
constant, so that we can precompute the gain and compute MMSE state estimates online without having to



track the covariance. We do this by requiring Pn+1|n = Pn|n−1 (we do the update before the prediction just
for algebraic simplicity).

Pn|n−1 = APn|n−1A
T +Q−APn|n−1C

T (CPn|n−1C
T +R)−1CPn|n−1A

T (25.15)

This is a specific form of something called an algebraic Ricatti equation, which can be analytically solved.
In practice, you can get this solution just by running the filter until a steady state is reached.
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