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Extrasolar Planets Lent 2022

Lecture 1: Introduction
Lecturer: Nikku Madhusudhan 21 January Aditya Sengupta

Note: LATEX format adapted from template for lecture notes from CS 267, Applications of Parallel Computing, UC
Berkeley EECS department.

We start by defining some overall goals:

1. What surface processes are there?

2. What signals are observable?

3. Do planets have a biosphere?

4. What clues can we get about a planet’s formation conditions?

5. Do a star and its planet interact?

Next, we define what we could try and study in atmospheres:

1. T, P, ρ profiles

2. Atmospheric escape

3. Chemical composition

4. Radiative transport

5. Chemical processes

6. Dynamics

7. Clouds and hazes

8. Biosignatures

And in interiors:

1. Composition

2. Structure

3. Formation

4. Energy transport

5. Magnetic fields

6. Geological processes

From this diversity of goals and observables, we can build up a sort of taxonomy of parameters and
phenomena in exoplanet characterization, on page 2 of this review paper: https://arxiv.org/pdf/1402.
1169.pdf.

We’ll study atmospheres, then interiors, then formation, and finally astrobiology.

3



Lecture 2: Inference from transits 4

Extrasolar Planets Lent 2022

Lecture 2: Inference from transits
Lecturer: Nikku Madhusudhan 24 January Aditya Sengupta

We’ll start with some basic observational techniques today.

As a broad overview of what we know of exoplanet detection so far, the first detection was made in 1995.
We only knew of the solar system planets back then, so designing a mission to study the planets would
inherently mean looking at the solar system planets. The survey strategy for finding new planets would be
very heavily based on the specifics of our solar system, which would be kind of difficult because the solar
system has either small planets, or planets that are far out, and both of those are difficult to detect. We
would need to develop very sensitive detectors, because the theory was similar to how we thought we’d
observe faint stars.

Then came 51 Peg b, the first exoplanet detected around a Sun-like star. This was an unexpected discovery,
because it had about the mass of Jupiter but it was 100 times closer than Jupiter is to our Sun. Formation
theorists couldn’t have predicted that close of a separation at the time.

Since then, we’ve found about 5000 exoplanets, spread across parameter space, and mostly detected using
the transit, radial velocity, direct imaging, and gravitational microlensing techniques. The majority of
planets we’ve found are from the transit technique. Most of the exoplanets we’ve found today have no solar
system analogs.

Let’s cover the three main techniques: transit, radial velocity, and direct imaging. The easiest and most
productive method of detecting exoplanets is the transit technique: if we’re able to look at a star-planet
system relatively edge-on, when the planet crosses the star, it blocks out some of the light, and there’s a dip
in brightness. Also, there’s a secondary eclipse when the planet crosses the star on the opposite end and
additional light from the planet (either in thermal emission or reflected light) gets blocked out.

The magnitude of a transit dip can be calculated. The flux from the star alone, when the planet is not
transiting, is proportional to some surface flux Fs times the surface area (proportional to R2

s ; the Fs has a π
factor in it), reduced by the distance to the star d

Fout = Fs

(
Rs
d

)2

(2.1)

When you’re in transit, you can expect a reduction commensurate with the size of the planet:

Fin = Fs

(
R2
s −R2

p

d2

)
(2.2)

Therefore, the relative transit depth is the size of the dip:

∆ =
Fout − Fin

Fout
=
R2
p

R2
s

. (2.3)
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In the case of a Jupiter-like planet around a Sun-like star,Rs ≈ 10RJ sowe get a 1% transit dip. Wewant that
to be a lot smaller to precisely constrain a transit; for a 10-sigma detection, you therefore want photometric
precision to about 0.1%. For Earth around the Sun, Rs ≈ 100RE so we get a transit dip of 0.01%, and so the
desired photometric precision comes down to about 10 ppm (parts per million). This seems difficult, but
optical engineers are incredible; we’ve found hundreds of Earth-like planets around Sun-like stars.

The real constraint is needing to find systems where the planets are edge-on. If we look at enough stars,
we’ll find this, though, and survey missions are designed with this in mind. They look at wide fields of
hundreds of thousands of stars and look for periodic dips, and more in-depth follow-up missions can look
further at these.

How do we see an atmosphere during a transit? We’ll do a full derivation of an atmospheric spectrum in a
later lecture, but for now we’ll just get a sense of it. Say a planet has an atmosphere of size H on top of its
existing radius, meaning we have an effective radius of R′p = Rp +H . This gives us a delta of

∆ =
(Rp +H)2

R2
s

=
R2
p + 2RpH +��H2

R2
s

. (2.4)

What is H? We can describe the atmosphere to first order using hydrostatic equilibrium, and we can get
H in terms of T, µ, g. If the atmosphere is isothermal, we can show Hsc = kT

µg and H = NHsc, where N
is some number usually less than 10 parameterising extra processes (mostly the relative abundance of the
species causing opacity). The atmosphere adds to the thickness of the planet because we’re assuming the
atmosphere is opaque, but really the opacity is wavelength-dependent. We can therefore split this up into
a function of wavelength, ∆λ against λ. We can look at the transit depth at different wavelengths λ. This is
a continuous function: depending on what we measure, we see different opacities. If the atmosphere were
transparent, we’d just see R2

p/R
2
s , but if there are features adding opacity, those will show up in regions of

λ around the expected lines for that species. This is a transmission spectrum, meaning it describes the transit
depth as it varies with wavelength.

We can compute the size of a spectral feature just by subtracting off the baseline: δ = ∆λ − ∆0, and this
equals

δ = ∆λ −∆0 =
2RpHλ

R2
s

= 2
R2
p

R2
s

Hλ

Rp
= 2∆0

Hλ

Rp
, (2.5)

so if we just measure the optical depth at a wavelength and a baseline, we can get the temperature as it’s the
only unknown component in Hλ.

This is a zeroth-order analysis, and in future lectures we’ll be looking into the complicated versions. For
now, let’s look at the secondary eclipse. Out of eclipse, we see the reflected light from the day side of the
planet, and in eclipse, we see our previous out-of-transit flux:

Fout = Fs
R2
s +R2

p

d2
(2.6)

Fin = Fs
R2
s

d2
(2.7)

∆ =
Fout − Fin

Fin
=
Fp
Fs

R2
p

R2
s

(2.8)



What are these fluxes? Blackbodies follow the Stefan-Boltzmann law, with proportionality to T 4. This gives
you the bolometric flux, integrated over all wavelengths, but here we want to keep the wavelength intact,
so we use the Planck function.

∆ =
Bλ(Tp)

Bλ(Ts)

(
Rp
Rs

)2

(2.9)

where

Bλ(T ) =
2hc2

λ5

1

ehc/λkBT − 1
(2.10)

In the large-wavelength limit where λ� hc
kBT

, we get

BλT ∝
T

λ4
(2.11)

∆ =
Tp
Ts

(
Rp
Rs

)2

. (2.12)

So we get an estimate of planet surface temperature just from the (secondary eclipse) transit at a particular
wavelength! Spitzer has been used to do this.

This is also subject to precision constraints: for a hot Jupiter, say Tp ∼ 2000 K, ∆0 = 0.01, Ts ∼ 6000 K. We
get ∆ ∼ 3× 10−3, so we need a higher degree of precision than before.

6
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Lecture 3: Thermal emission and direct imaging
Lecturer: Nikku Madhusudhan 26 January Aditya Sengupta

3.1 Thermal emission spectra

Last time, we worked out the planet-star flux ratio for large λ. What if this assumption doesn’t hold? We
can qualitatively look at the Planck function against λ for different temperatures, and note that while both
curves are falling away from their peak in the large λ limit and therefore that FpFs should be roughly constant
in λ in this limit, the Planck function for the star peaks before that for the planet, so after that the star’s Bλ
is falling and the planet’s is rising. This tells us that FpFs is increasing in the low-medium regime.

Wien’s law tells us that λmaxT is constant. For our Sun, λmax ∼ 550 nm and T ∼ 5800 K, so we can calculate
that constant and can work it out for every other star. We’ll work mostly in the infrared in this class. The
coolest stars are the lateM-dwarfs, which have T ∼ 3000K,which gives us a λmax of around 1 µm. Therefore
anything hotter than this will peak at a shorter wavelength, putting most of what we’re interested in at the
IR and optical ranges. For some other benchmarks: the Earth is about 300 K, so λmax ∼ 10µm, and Jupiter
is about 100 K, so λmax ∼ 30µm.

All of this has assumed that stars andplanets are blackbodies. For our purposes here, this is a fair assumption
for the star, but not so much for the planet. As a first order of complication, let’s look at reflection.

Ftotal,planet = Fthermal,planet + cFstar. (3.1)

The total planet flux is its thermal emission plus some constant multiple (for the sake of argument; we’ll fill
this in later) of the stellar flux. This will give us a Planck curve that has two peaks. In practice, it’s very
hard to detect the reflected starlight component, so this has never been done, but you could theoretically
simultaneously fit the star and planet temperatures.

We’ve looked at two techniques using transits: transmission spectra, and thermal emission/reflection
spectra. Now, let’s look at some other methods.



3.2 Direct imaging

Transits are somewhat limiting, because they need the solar system to be edge-on, and it favours planets
that are very close in. A more obvious strategy would be just to take a picture of the planet. This is harder
for two reasons: we don’t want the starlight to dwarf the planet, and we need to be able to see the star and
the planet as distinct objects, so

1. The planet-star flux contrast has to be high enough

2. The angular separation between the planet and the star has to be resolved.

We can use the same formalism from transits to look at the flux contrast. In the Rayleigh-Jeans limit, we’ve

already seen that Fp
Fs

=
Tp
Ts

(
Rp
Rs

)2

. For Jupiter, this comes out to around 1.5 × 10−4 and for Earth this is
around 5× 10−6. However, this limit doesn’t actually apply here.

It’s especially hard to build good ground-based direct imaging for Earth-like planets at the peakwavelengths
(beyond about 5µm it gets difficult), because the Earth itself is a blackbody so its own emission will interfere
with observations. From the ground, you need to look in the optical or near-IR, and the required contrast
is much higher. For Earth, it becomes around 10−9, and there’s no instrument that can do that.

For angular separation, we run into the diffraction limit as a certain point. If we image a star, we get a
point image that gets transformed into an Airy disk, whose angular size is θ = 1.22 λD . We can plug in
numbers to this (λ = 0.5µm, D = 10m) and get the diffraction limit for the best telescopes on Earth right
now: θ = 0.013”. That’s what we can get: what do we need?

For a semimajor axis (mean star-planet separation) a, and a distance d to the system, the angular separation
we need to resolve them both is θ(”) = a(AU)

d(pc) . Plugging in numbers, we see that we should be able to resolve
the Earth-Sun system from 10pc away. However, that’s under diffraction-limited conditions, and our seeing
from Earth is a lot worse than that. The best we can get is about 0.2", even with adaptive optics. If we go to
space, it gets much easier, but we’re then limited by the maximum diameter we can send.

On top of this, the best planet-star flux contrast we can currently achieve is about 10−5. It seems like direct
imaging just doesn’t work for the scales we’re interested in. So how are we doing it?

If you catch planets early in their formation, they’re extremely hot, which makes the contrast better while
not making the angular resolution worse. This lets us get FpFs ∼ 10−4 in the near-IR. The solution is to look
at young giant planets at large separations.

8
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4.1 Observations of spectra

Last time, we saw how the transit depth and occultation depth related to the planet and star temperatures
and radii. We saw how we could derive an atmospheric spectrum, to zeroth order, with these estimates. To
start today, we’ll look at how the radial velocity method works.

A star-planet system orbits their common center of mass, meaning the star has a small rotation due to the
gravitational effect of the planet. This results in a Doppler shift from the observer perspective, which we
can observe to infer a minimum mass of the planet. You get a radial velocity curve as a function of time,
which is ideally a sine wave. The period is the planet’s period, and the amplitude is Mp sin i

M
2/3
s

. This was the
technique they used to detect the first exoplanet around a Sun-like star, and radial velocity observations are
useful for follow-ups of transit surveys so you can constrain masses.

We’re in a golden age of exoplanet science: there’s revolutions in detection (especially of small planets
around nearby stars), and characterization. The main reason for this is survey missions: NGTS, TESS,
CHEOPS, and in a few years PLATO. In characterization, we have JWST, in a few years ARIEL, and ELT-class
telescopes.

The big question in the field is: how diverse are exoplanetary atmospheres? To do this, it’s useful to look at
the detection biases of the methods we’ve seen. For transits in particular, there’s a bias based on (Rp/Rs)

2;
to look at small planets, we want to look at small stars. It also helps to look at nearby planets, so that the
flux is high.

We characterise the atmospheric spectrum of a transiting planet, to zeroth order, by looking for absorption
peaks at characteristic wavelengths of size δ:

δ = ∆−∆0 =
2RpH

R2
s

= ∆0
2H

Rp
(4.1)

Ground-based and space-based transmission spectra have achieved very good SNRs in the past decade,
under good conditions.

Also: fun sightings of familiar names! Marois and Konopacky.

So how about characterization with RV? If we look in the infrared with a high-resolution spectrograph, we
see that the planet’s thermal emission spectrum is Doppler-shifted just like the star’s is! We see the thermal
emission of the planet if the planet-star flux contrast is high enough, and so close to transit and secondary
eclipse especially, you can look at the spectrum (only at the part that’s changing, so that you can remove
the Earth’s and the star’s influence) and monitor the molecular lines going back and forth with the Doppler
shift. The models have to be incredibly high fidelity: lines are very thin and closely spaced.

With infrared observations, you probe quite deep in the planet atmosphere, and less so with optical and
even less with UV. This means based on the wavelength you’re probing, you can understand a different part



of the atmosphere. We make chemical detections in each region of the atmosphere, and consider what they
tell us about the processes going on; we say these molecules are tracers of the processes. There’s a lot of
atmospheric processes: radiative transfer, atmospheric escape, photochemistry, thermal inversions, clouds
and hazes, vertical mixing, atmospheric circulation, and at the bottom-most level chemical equilibrium.

4.2 Radiative transfer

Our only point of observation in exoplanet atmospheres is a spectrum (transmission or emission). Our
fundamental question is: what do we observe as a function of the planet’s properties? Let’s define a few
quantities that will help us derive those observables.

Take an area element dAwith a normal to it in the ẑ direction, and a beam coming out of it into a solid angle
dω in a direction n̂. The specific intensity Iν is defined as the amount of energy per unit frequency interval
(or wavelength interval) passing through a unit area normal to the beam (this is where we get the dA cos θ
term) into a unit solid angle in unit time.

dE = Iν(~r, ~n)dνdtdωdA cos θ. (4.2)

This has an interesting property: that of invariance. Take a source and a detector, with different angles
and area elements (resp. θ,dA and θ′,dA′) and look at the energy at both. At the source, this is dE =

IνdνdtdA′ cos θ′

d2 dA cos θ, and at the detector, this is dE′ = I ′νdνdtdA cos θ
d2 dA′ cos θ′. In both, we’ve considered

dω = dA′ cos θ′

d2 by considering the solid angle subtended by the detector (and flip the primes for the solid
angle subtended by the source) and looking at the distance and projected area of the other surface that
subtends that angle. By conservation of energy, dE = dE′ =⇒ Iν = I ′ν , assuming there is no source or
sink in between. The star or the atmosphere can be this source or sink.

10
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5.1 Flux continued

Last lecture, we started looking at specific intensity. We defined it as the energy in a beam going away from
a source, the geometry of which induces several unit dependences:

dE = IνdωdA cos θdνdt. (5.1)

The energy emitted in a source-detector setup is

dE = IνdωdA cos θdνdt = IνdA cos θdνdt
dA′ cos θ′

d2
, (5.2)

since we can calculate the solid angle for the source-detector setup as dω = dA′cosθ′

d2 , and similarly the other
way to be dω′ = dAcosθ

d2 . Applying conservation of energy dE = dE′, we get Iν = I ′ν .

Iν carries units of ergs/cm2/Hz/s/sr. To get the flux (counts per unit area per time per frequency) on a
detector, we integrate out the sr part. In full generality, if I want the flux in a direction, we give the specific
intensity a direction component (the direction of propagation), and we integrate over the solid angle of the
beam.

~Fν =

∫
Ω

Iν~ndω. (5.3)

Place the observer along the ẑ direction. We can get the (scalar) flux at the source in the direction of the
observer by

Fν,s =

∫
Ω

n̂ · ẑdω =

∫
Ω

Iν cos θdω. (5.4)

We know that dω = sin θdθdφ, so we can compute this:

Fν,s =

∫
Ω

Iν cos θ sin θdθdφ. (5.5)

Now, we need to parameterise Ω. We’ll assume we have plane-parallel geometry, where the source plane is
flat: this gives us θ from 0 to π

2 , and φ from 0 to 2π.
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Fν,s =

∫ 2π

0

∫ π
2

0

Iν cos θ sin θdθdφ. (5.6)

For now, we’ll assume that we have isotropic Iν , i.e. it’s a constant with respect to θ, φ, so

Fν,s = πIν . (5.7)

This is sometimes referred to as the astrophysical flux.

Let’s find the flux at the detector now. Consider a uniformly isotropically emitting sphere. We look at it
from a distance d. As before, we look at

Fobs =

∫
Ω

Idω. (5.8)

Assume that d � R, so rays are parallel. We take an area element at a radius x < R. The observer sees
a disk, which is a circle of radius x and an infinitesimal thickness dx, so the contribution to ω from this
annulus is

dω =
2πxdx

d2
. (5.9)

We can rewrite x = R sin θ so that we’re able to do the solid angle integral.

dω =
2πR2 sin θ cos θdθ

d2
. (5.10)

This gives us

Fν,obs =

∫
Ω

Iνdω =

∫
Iν

2πR2

d2
sin θ cos θdθ (5.11)

The cos θ term comes back here: the difference between this one and the last one just comes down to when
you do the projection into the plane the observer can see, but you have to do it regardless.

We run through a similar set of computations as we did last time:

Fν,obs = 2πIν
R2

d2

∫ π
2

0

sin θ cos θdθ = πIν
R2

d2
. (5.12)

Therefore Fν,obs = Fν,s
R2

d2 .
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Slight detour: if you assume a blackbody, the flux at the source in the direction of the observer is Fν,s = πBν ,
and at the observer it’s Fν,obs = πBν

R2

d2 . If we want the bolometric flux, we integrate this over frequency.

Fs =

∫ ∞
0

Fν,sdν = π

∫ ∞
0

Bνdν. (5.13)

If you do this integral, you’ll get σT 4, which is the Stefan-Boltzmann law.

5.2 Atmospheres

All of these calculations are for the case with nothing in between. If thre’s some medium (an atmosphere,
as the example we care the most about) how does this change?

We’ll start by defining a simple version of the radiative transfer equation, in one dimension. Take a medium
with cross-section dA and thickness ds. We’ll send a beam through it, and see what happens when it comes
out as a function of those properties.

We expect I ′ν = Iν + dIν , where dIν might be positive or negative.

The first case we’ll look at for what could happen is absorption, which we characterise using the absorption
coefficient κν . This is the absorption cross-section per unit mass, and has units of cm2/g. The energy is

dEν = Iνdωdνdtκνdm. (5.14)

We’ll say the density ρ is known, so we can substitute dm = ρdAds.

dEν,abs = IνκνρdAdsdωdνdt. (5.15)

Another thing that could happen is scattering, which means some of the incoming radiation is scattered
away from the outgoing beam: it’s going somewhere that is not the direction of the outgoing beam. This is
characterised using the scattering coefficient σν .

dEν,sc = IνσνρdAdsdωdνdt. (5.16)

The third thing is emission. This shouldn’t be dependent on the incoming beam (it can, but not in this
simple setup), and is instead just a property of the medium. This is characterised using the emissivity jν .



dEν,em = jνρdAdsdωdνdt. (5.17)

We’ve got all the terms, now we’ll just look at the energy balance. The net energy gain is

dEν = dIνdAdωdνdt (5.18)

but it’s also equal to the gain terms minus the loss terms,

dEν = dEν,em − (dEν,abs + dEν,sc). (5.19)

Plug these things in, and we get

dIν = jρds+ (κν + σν)ρdsIν (5.20)
1

ρ

dIν
ds

= jν − kνIν , (5.21)

where we have kν = κν + σν . This is the radiative transfer equation.

Attenuation is determined mostly by the ds term: it matters more how far a beam travels.

14
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We started last time with specific intensity Iν which had units of ergs/cm2/Hz/s/sr. To see the flux, we
derived the simple formula Fs = πIν . At the observer, we found that Fν,obs = Fs

R2

d2 . We saw that for a
blackbody, Iν = Bν and the other quantities follow; in particular, Ftot =

∫∞
0
πBνdν = σT 4.

We derived an expression for energy attenuation when passing through a medium with cross-section area
dA and thickness ds. We also know by definitions that dEν = dIνdωdνdtdA. We can also compute the
net energy gain in terms of the absorption/emission/scattering coefficients, which gives us the radiative
transfer equation when we set those two equal:

dIνdωdνdtdA = jνρdAdsdωdνdt− (κν + σν)︸ ︷︷ ︸
kν

ρdAdsIνdωdνdt (6.1)

1

ρ

dIν
ds

= jν − kνIν . (6.2)

We often refer to kν as the extinction coefficient. The ratio jν
kν

(emission over extinction) is often referred to as
the source function Sν . We can rewrite the radiative transfer equation as

dIν
kνρds

= Sν − Iν . (6.3)

This is a first-order differential equation, and it can have varying levels of complexity depending on the
physics we consider. It’s often useful to split jν = jtν + jsν , for thermal and scattering (into the direction of
the beam) terms.

To specify our emission term,we’ll use a physical principle called local thermodynamic equilibrium (LTE), in
which we assume the material is in a cavity of uniform temperature with perfectly absorbing and emitting
walls (the same idea as a blackbody), and the material is in equilibrium with the radiation field. This
assumption, balancing thermal emission with absorption, gives us jtν = κνBν(T ), the Kirchhoff-Planck law.
This is an idealized condition, but it’s a good approximation deep in the atmosphere, and it allows for an
analytical solution to the radiative transfer equation.

Next, we’ll look at the scattering term. We consider a simplistic case where scattering is isotropic (no
preferential angle for scattering) and coherent (the scattering does not change the frequency of a photon).

jsν = σνJν , (6.4)

where Jν is the mean intensity 1
4π

∫
Ω
Iνdω. This gives us

Sν =
jν
kν

=
κνBν
κν + σν

+
σνJν
κν + σν

(6.5)
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For the special case where we have LTE and no scattering, we get σν = 0 and so Sν = Bν . So we have a
simplistic representation of the source function.

Let’s start applying this to atmospheres! We’ll do transmission geometry first. Let’s assume the source
function is weak compared to the incident radiation: Sν � Iν .

1

kνρ

dIν
ds

= −Iν (6.6)

This can be solved by separation of variables (where we replace ds = dz
cos θ and for convenience we write

µ = cos θ):

dIν
Iν

= −κνρds = −κρdz

µ
. (6.7)

We combine this numerator into the optical depth,

dIν
Iν

= −dτν
µ

(6.8)

Iν = Iν,0e
−τν/µ (6.9)

This is similar to the Beer-Lambert law in chemistry.

Let’s go back to our planet in front of a star. Going back to the geometry of an annulus, wewrite dω = 2πxdx
d2 ,

and this gives us

Fout =

∫
Ω

Iνdω =

∫ R

0

2πxdx

d2
Iν = πIν

R2

d2
(6.10)

Applied to just a star (for out of transit),

Fout = πIν,s
R2
s

d2
. (6.11)

And applied to a star-planet system (in transit),

Fν =
2π

d2

[∫ Rp

0

Ip,νxdx+

∫ Rs

Rp

Is,νxdx

]
. (6.12)

With the simplifying assumption that Ip,ν � Is,ν , the effect is basically just to block out a portion of the
light:



Fν = πIs(R
2
s −R2

p)/d
2. (6.13)

However, this isn’t the only factor – let’s apply this same method to a star-planet-atmosphere system:

Fν =
2π

d2

[∫ Rp

0

Ip,νxdx+

∫ Rp+H

Rp

Iap,νxdx+

∫ Rs

Rp+H

Is,νxdx

]
(6.14)

We say the first term goes away, and assuming a constant optical depth for simplicity (Iap,ν = Is,νe
−τν ), we

substitute in the exponential dependence on optical depth we got before,

Fν =
πIs,ν
d2

[
2RpHe

−τν +R2
s −R2

p − 2RpH
]

(6.15)

Fν =
πIs,ν
d2

[
R2
s −R2

p − 2RpH(1− e−τν ).
]

(6.16)

17
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Last time, we derived the radiative transfer equation in terms of a source function,

1

kνρ

dIν
ds

= Sν − Iν , (7.1)

where we replaced ds by dz
µ , and looked specifically at the case with a negligible source function. We further

derived a first-order way to estimate the height of the atmosphere by computing flux in terms of specific
intensity and integrating separately over the planet (negligible), the atmosphere, and theunobscuredportion
of the star.

Fν =

∫ Rp+H

Rp

Isν,p
2πxdx

d2
+

∫ Rs

Rp+H

Iν,s
2πxdx

d2

=
2π

d2
Is,νe

−τν
[
x2

2

]Rp+H

Rp

+
2π

d2
Iν,s

[
x2

2

]Rs
Rp+H

=
πIν,s
d2

[
R2
s −R2

p − 2RpH(1− e−τν )
]

(7.2)

Let’s find the transit depth in this formulation:

∆ =
Fν,out − Fν,in

Fν,out
=
R2
p + 2RpH(1− e−τν )

R2
s

. (7.3)

Looking at some limiting cases, we find that for no atmosphere we get the zeroth-order transit depth of
R2
p/R

2
s , and for an optically thick atmosphere, we get τν →∞ implying ∆ =

R2
p+2RpH

R2
s

. For an optically thin
atmosphere, we can Taylor expand the exponential term and just get linear dependence on τν , so we get
∆ =

R2
p+2RpHτν

R2
s

.

7.1 Emission spectrum

Let’s start again with the radiative transfer equation, and apply it to a secondary eclipse.

µ

kνρ

dIν
dz

= Sν − Iν . (7.4)

Consider only thermal emission, and say the atmosphere is in LTE with no scattering. Therefore Sν = Bν ,
and kν = κν . We can therefore write



µ
dIν
dτν

= Iν −Bν . (7.5)

Bν is changing with respect to τν , so separation won’t work. We’ll use an integrating factor: multiply by
e−τ/µ.

µe−τν/µ
dIν
dτν

= Iνe
−τν/µ −Bνe−τν/µ (7.6)

d
(
Iνe
−τν/µ

)
dτν

= −Bν
µ
e−τν/µ. (7.7)

Then, we integrate both sides from τ1 (at z′ = 0) to τ2 (at z′ = z).

∫ τ2

τ1

d
(
Iνe
−τν/µ

)
= −

∫ τ2

τ1

Bν
µ
e−τν/µdτν (7.8)

Iν(τ2)e−τ2/µ − Iν(τ1)e−τ1/µ = − 1

µ

∫ τ2

τ1

Bνe
−τν/µdτν (7.9)

Iν(z) = Iν(0)e(τ2−τ1)/µ − eτ2/µ
∫ τ2

τ1

Bνe
−τν/µdτν . (7.10)

We can further let τ1 → ∞, τ2 → 0 and consider the semi-infinite atmosphere. The first term vanishes
because e−∞ → 0.

Let’s look at an isothermal atmosphere, where Bν is constant.

Iν =
1

µ

∫ ∞
0

Bνe
−τν/Hdτν = −Bν e−τν/µ

∣∣∣∣∞
0

= Bν . (7.11)

This is a reassuring result: an isothermal atmosphere radiates at the temperature at which we would expect
it to radiate.

It’s difficult to do this analytically without a constant Bν , but we can look at just one layer. Let’s look at a
thin layer in which T remains constant but τ varies.

Iν(z) = Iν(0)eτ2−τ1 − eτ2Bν(e−τ1 − e−τ2) (7.12)
Iν(z) = Iν(0)eτ2−τ1 +Bν(1− eτ2−τ1). (7.13)

Further, let’s assume τ := τ1 − τ2 � 1. We can Taylor expand both of the exponential terms,

Iν(z) = Iν(0) + τ(B − Iν(0)). (7.14)

When Bν is greater than Iν(0), then Iν(z) > Iν(0), so we’re adding intensity to the beam, and we have an
emission feature. When Bν is less than Iν(0), then Iν(z) < Iν(0), so we’re subtracting intensity from the
beam, and we have an absorption feature. This is the origin of spectral features in an atmosphere!
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Previously, we were looking at emission geometry through an atmosphere of varying optical depth, and we
derived this intensity expression:

Iν(z) = Iν(0)e(τ2−τ1)/µ + eτ2/µ
∫ τ1

τ2

Bνe
−τν/µ

µ
dτν . (8.1)

We assumed a semi-infinite isothermal atmosphere, giving us τ2 = 0, τ1 = ∞, and Bν constant. This gave
us Iν(z) = Bν

We further showed how spectral features originate. Consider a thin atmospheric layer such that there’s an
incident intensity I0 and outgoing intensity I(z), with a small change in optical depth: τ1 − τ2 := τ � 1,
and such that the temperature in the thin layer is constant. We’ll also assume normal incidence, so µ = 1.
Applying the above formula here gave us

Iν(z) = Iν,0e
−τν +Bνe

τ2(e−τ2 − e−τ1) (8.2)
= Iν,0e

−τν +Bν(1− e−τν ), (8.3)

and since τν � 1, we can Taylor expand to get

Iν(z) = Iν(0) + τ(Bν − Iν(0)). (8.4)

If Bν < Iν,0, we get Iν(z) < Iν,0, so less intensity comes out than went in, so we get an absorption feature.
If Bν > Iν,0, we get Iν(z) > Iν,0, so more intensity comes out than went in, so we get an emission feature.

These work only when τν > 0. To see a spectral feature, you need to ensure both that the source function is
sufficiently large and that there is sufficient opacity.

We’ve seen how spectra originate from underlying atmospheric properties. Given the atmosphere, we
know how to study the radiation. Next, let’s look at how the atmospheric properties themselves have been
influenced by the radiation.

The dominant mechanisms of energy transfer in atmospheres are convection and radiation (conduction
isn’t as good in gases). We’ll primarily look at energy transfer via radiation. We should have a condition
of radiative equilibrium: the total energy entering the system should be equal to the total energy leaving.
Dropping factors like volume and time that are the same for both,

dEloss =

∫
ν

∫
Ω

kνIνdωdν (8.5)

dEgain =

∫
ν

∫
Ω

jνdωdν =

∫
ν

∫
Ω

kνSνdωdν. (8.6)
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We’ll further assume an isotropic source function, so we can factor out the solid angle integral and get

dEgain = 4π

∫
ν

kνSνdν (8.7)

We’ll further use the mean intensity Jν = 1
4π

∫
Ω
Iνdω.

Putting these together, we get

dEloss = dEgain (8.8)

4π

∫ ∞
0

kνJνdν = 4π

∫ ∞
0

kνSνdν (8.9)∫ ∞
0

kν(Jν − Sν)dν = 0. (8.10)

For LTE with coherent scattering, our source function is κνBν+σνJν
kν

, which we can plug back in to get

∫ ∞
0

κν(Jν −Bν)dν = 0. (8.11)

These are powerful expressions for radiative equilibrium. This is the first time we’re seeing temperature
show up as a factor that determines some part of the radiation field: Jν and Bν are complementary, so
varying temperature varies Bν varies Jν .

Now, let’s look at the temperature structure of an atmosphere. Consider the case of an isolated atmosphere
heated from below, and look at plane-parallel geometry for a grey atmosphere.

As always, we start with the radiative transfer equation:

µ
dIν
dτν

= Iν −Bν . (8.12)

We’ll take moments of this equation over µ. To do this, we’ll first look at moments of Iν .

First, some scratch work: dω = sin θdθdφ, and µ = cos θ, so dω = −dµdφ. This lets us conveniently compute
the zeroth moment in µ of Iν :

Jν =
1

4π

∫
Ω

Iνdω =
1

4π

∫ 2π

0

∫ 1

−1

Iνdµdθ (8.13)

Jν =
1

2

∫ 1

−1

Iνdµ. (8.14)

The first moment Hν is called the Eddington flux, and it’s related to flux by Fν = 4πHν :
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Hν =
1

2

∫ 1

−1

µIνdµ, (8.15)

and the second moment is just called the K-integral, and it’s to do with radiation pressure but we just care
that it’s an expression we can use for now,

Kν =
1

2

∫ 1

−1

µ2Iνdµ. (8.16)

With this, we take the zeroth moment of RTE:

1

2

∫ 1

−1

µ
dIν
dτν

dµ =
1

2

∫ 1

−1

(Iν −Bν)dµ. (8.17)

Simplifying, this gives us

d

dτν
Hν = Jν −Bν (8.18)

or

1

ρ

dHν

dz
= −kν(Jν −Bν), (8.19)

and we can integrate this over ν to get

1

ρ

d

dz

∫
ν

Hνdν = −
∫
ν

kν(Jν −Bν)dν = 0. (8.20)

Therefore, we get that dFtexttot
dz = 0: flux is constant.

Let’s do the same for the first moment.

1

2

∫ 1

−1

µ2 dIν
dτν

dµ =
1

2

∫ 1

−1

µIνdµ− µBνdµ. (8.21)

(I think this is the same idea as in weak solutions of PDEs, where if something is a solution its integral
against any test function will work out.) The last term is 0 because it’s cos θ over a circle, and we have
exprssions for the other two:



dKν

dτν
= Hν =

Fν
4π
. (8.22)

For high τ , we have Iν = I0 + I1µ, and for this case we can showKν = Jν
3 . If we assume this holds over the

whole atmosphere, this is known as the Eddington approximation.

Under this approximation, we have

dJν
dτν

=
3Fν
4π

. (8.23)

For a gray atmosphere, we represent κν by some mean opacity κ̄ and we’ll assume no scattering for now.
Plug this back into the Eddington approximation, replacing dτ = −κρdz, and

1

κ̄ρ

dJν
dz

= − 3

4π
Fν . (8.24)

Integrate over ν and we get

1

κ̄ρ

d

dz

∫ ∞
0

Jνdν = − 3

4π

∫ ∞
0

Fνdν, (8.25)

and since we’re averaging and factoring out κ, the original RTE gives us

J =

∫
ν

Jνdν =

∫
ν

Bνdν =
σT 4

π
. (8.26)

This gives us

dT

dz
=
−3κ̄ρ

16σT 3
Ftot. (8.27)
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Last time, we found a differential equation in T , which we can try to solve to get the actual temperature
dependence of the atmosphere. Replacing Ftot = σT 4

eff , we get

dσT 4

−κρdz
=

3

4
σT 4

eff , (9.1)

and we get that

T 4 =
3

4
T 4
eff · τ + C, (9.2)

and by working out limits carefully we can get that C = 1
2T

4
eff . Rearranging, we get

T 4 =
3

4
T 4
eff

(
τ +

2

3

)
. (9.3)

It’s common in astronomy to set τ = 2
3 and to say this surface is the photosphere. If we do that here, we get

T = Teff , so we have flux equivalent to the blackbody of the same temperature.

When τ → 0, we get T = Teff/2
1/4. This is known as the skin temperature: at the very top of the atmosphere,

our assumptions break down, and this is a convenient point to look at to figure out where that happens.

In the high τ limit, we get T 4 ∝ τ . Putting all of this together, we get a T − z graph that asymptotes towards
a constant at high T and towards infinity at low T .

All of this was for an isolated atmosphere heated from below. Now, let’s look at the case of an irradiated
atmosphere. We have two sources of radiation: the planet and the star. The planet radiation peaks in IR
wavelengths, whereas the stellar radiation will peak in optical wavelengths. We therefore need to choose
two equivalent grey opacities and look at the interactions between them. We’ll just cut to the chase and not
go through the whole derivation.

This is still an approximate expression because we’re assuming grey opacities, but we get

T 4 =
3

4
T 4
int

(
τ +

2

3

)
+

3

4
T 4
irrf

[
2

3
+

1

γ
√

3
+

(
γ√
3
− 1

γ
√

3

)
e−γτ

√
3

]
. (9.4)

Tirr is the temperature corresponding to the incident stellar flux, f corresponds to the fraction of incident
energy retained, and γ = κvisible

κthermal
. Let’s look at some asymptotic cases.

If Tirr = 0, we recover our internal flux expression. If the atmosphere is highly irradiated and if τ is
sufficiently large (say above 10), Tirr � Tint and the first term and the exponential term both drop out,
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leaving us with T →a constant determined by Tirr, f, γ. If τ → 0, we also get T going to a constant. What
happens in between?

We can compute dT
dτ :

dT

dτ
=

3

16

T 4
int

T 3
+

3

16

T 4
irr

T 3
f(1− γ2)e−γτ

√
3. (9.5)

If γ < 1, we get dT
dτ > 0 which implies dT

dz < 0. If γ > 1, we get the exact opposite: dT
dτ < 0 and dT

dz > 0.
Either way, we have a nonzero slope between two isotherms. This is a thermal inversion.

The conditions on this are high irradiation (meaning this doesn’t happen in the solar system) and high κvis
κth

.
If visible opacity is greater than thermal opacity, the visible opacity captures the light coming from above
and reradiates it, causing a thermal inversion at the top. In future lectures, we’ll look at the conditions
within atmospheres for this to hold.

For now, let’s look at a different mode of energy transport: convection. Take a bubble of gas and displace it
by a distance dz. Does it keep rising or does it come back? This can tell us about the stability of gases in the
atmosphere.

Let’s build a model for convective transport. Say our bubble is in thermal equilibrium. We’ll describe the
bubble initially by ρbi , T bi , P bi and the surroundings initially by ρsi , T si , P si . Initially, the temperature and
pressure are about the same for the bubble and the surroundings, which means by the ideal gas law so is
the density. In the final state, we know that P sf = P bf , and let’s require that the bubble has to keep floating.
Buoyancy tells us that ρbf < ρsf , so the ideal gas law again tells us that T bf > T sf . Putting differentials on, we
can say

dT b

dz
>

dT s

dz
(9.6)

dT s

dT︸︷︷︸
atmos

<
dT b

dz
. (9.7)

This gives us a condition for a convective instability,

dT

dz

∣∣∣∣
atmos

≤ dT

dz

∣∣∣∣
ad

. (9.8)

We can make this a more explicit expression. The bubble undergoes adiabatic expansion, which we can
express using

Pρ−γ = const (9.9)
dP

P
=

dρ

ρ
+

dT

T
(9.10)

dP

dz
= −ρg. (9.11)



Putting these together, we get

dT

dz

∣∣∣∣
ad

= − g

cp
. (9.12)
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10.1 Recap

We’ve been looking at the temperature profiles for various atmospheric structures. Last time, we looked at
the case of an isolated atmosphere heated from below, and we found

T 4 =
3

4
T 4
eff

(
τ +

2

3

)
. (10.1)

We’ll take a quick sidebar to showwhere we got the constant 2
3 . Let’s compute the emergent flux, or surface

flux, in this case. We previously showed this is

Fν = 2π

∫ 1

0

Iνµdµ = 2π

∫ 1

0

∫ ∞
0

Bνe
−τ/µdτdµ. (10.2)

Integrating this over all frequencies, we get

F =

∫ ∞
0

Fνdν = 2π

∫ 1

0

∫ ∞
0

∫ ∞
0

Bνdν︸ ︷︷ ︸
J

e−τ/µdτdµ. (10.3)

Making some further substitutions, we get

F = 2π

∫ 1

0

∫ ∞
0

(
3

4π
Fτ +A

)
e−τ/µdτdµ. (10.4)

This can be solved analytically to get simply A = F
2π , which we can plug back in to the temperature profile

to get

J =
3

4π
Fτ +

F

2π
=

3

4π
F

(
τ +

2

3

)
. (10.5)

10.2 Irradiated atmospheres

Next, we looked at the irradiated atmosphere, where we saw



T 4 =
3

4
T 4
int

(
τ +

2

3

)
+

3

4
T 4
irrf

[
2

3
+

1

γ
√

3
+

(
γ√
3
− 1

γ
√

3

)
e−γτ

√
3

]
(10.6)

where T 4
irr = T 4

s
R2
s

a2 . This made sense in some limits, and wemade a qualitative plot of the behaviour, which
showed thermal inversion: a monotonic change between two isotherms. In practice, at high pressures and
τ values, it starts levelling off again after the second isotherm as the atmosphere becomes convective, but
we’ll never observe that high.

10.3 Convection

We came up with a condition for convective instability, which from adiabatic theory comes out to

dT

dz

∣∣∣∣
atm

≤ −g
cp
, (10.7)

and we can associate this with the expression we came up with before,

dT

dz
= − 3Kρ

16T 3
T 4
int. (10.8)

This means as we go deeper into the atmosphere, ρ increases, and at some pressure sufficiently large, we
enter the convective regime and the above condition is satisfied. All profiles eventually become convective.

Note that thermal inversions are necessarily radiative, because they need dT
dz

∣∣
atm

> 0, but those planets’
temperature profiles go convective below that inversion. It’s possible to not have a second isotherm, and to
have the radiative-convective boundary exactly at the end of the thermal inversion. The edge of a thermal
inversion that either gives way to a second isotherm or the convective zone is usually around 0.1 bar.

All solar system planets larger than Earth have thermal inversions, because they have sufficient irradiation
from the Sun (although it’s not huge) and some source of visible opacity intercepting and reradiating the
stellar irradiation. On Earth, this source is ozone, and on other planets there’s various hydrocarbons.

10.4 Theory of thermal inversions

In order to get a thermal inversion, we need dT
dτ < 0, which we can get if Tirr is significant/high and if γ > 1.

If you just saw the solar system planets, you’d see thermal inversions everywhere, so you’d think that would
be the norm. But the molecular species causing the required high opacity varies widely within the solar
system: on Earth, it’s caused by ozone, which isn’t present in other solar system atmospheres, because
the molecules like ozone that we see causing thermal inversions in the solar system are low-temperature
molecules, so they won’t be present in hot Jupiters. Hubeny et al., 2003, suggested that on Jupiter it was
caused by TiO/VO.
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11.1 Thermal inversions: research retrospective

We’re continuing our study of thermal inversions, specifically in hot Jupiters as they’re highly irradiated.
Previously, we saw that inversions can be caused by titanium oxide and vanadium oxide at high temper-
atures, because they’ve been seen in very hot brown dwarfs. Initially, it was thought there was a cutoff
incident flux belowwhich there wouldn’t be thermal inversions (Fortney et al., 2008), but they found planets
below that cutoff that did show thermal inversions, and planets above it that didn’t. A possible explanation
(Spiegel et al., 2009)was that TiO andVOwere depleted by gravitational settling and condensation. Knutson
et al. tried to correlate these observations to stellar activity (the thinking being that more active stars would
be more likely to dissociate atmospheric species) with some success. Next, Madhusudhan et al. 2011 (743,
191) found a correlation between thermal inversions and C/O content, but it wasn’t definitive. Then, it
was found that HD 209458b didn’t have a thermal inversion at all! For strong spectroscopic evidence of a
thermal inversion, we needed to go very hot; WASP-33b is a few thousand Kelvin and showed this evidence.
Since then, we’ve found thermal inversions in several ultra-hot Jupiters.

We’ve looked at ways of inducing a thermal inversion that focus on increasing κvis, with species like TiO,
so potential new research directions include: add in other sources of visible opacity, or lower κth. Both of
these will have a net effect of increasing γ. We’ve found more species that cause both of these, and this is an
open area of research.

11.2 Pressure

Previously, we used pressure in deriving the convective equilibrium condition, by assuming hydrostatic
equilibrium: dP

dz = −ρg. To solve this, we introduce an equation of state, which in this case is simply the
ideal gas law P = ρ

µm
kbT . Substituting back in, separating, and integrating, we get

∫ P

P0

dP ′

P ′
= −

∫ z

z0

µmg

kbT (z)
dz. (11.1)

We can precisely solve this for the isothermal case:

∫ P

P0

dP ′

P ′
= −µmg

kbT
(z − z0) (11.2)

P = P0e
− z−z0Hsc , (11.3)

where the scale height Hsc is given by Hsc = kbT
µmg

. Otherwise, the most general expression we can write
down is



P (z) = P0e
−µmkb

∫ z

z0

g(z′)

T (z′)
dz′, (11.4)

and we can get ρ(z) just from plugging back into the ideal gas law. We can determine z0 by noting the
maximal optical depth we can probe to in secondary eclipse, and we can let P0 be a free parameter that we
fit to the data.

11.3 Atmospheric chemical compositions

There’s broadly two types of planets: rocky and giant. Giant planets have primary atmospheres, meaning
they’re hydrogen-dominated: mostly H2 and a bit of He. This is because they come from the retention of
primordial atmospheres. As planets get bigger and bigger, they undergo what’s called runaway accretion
from the nebula from which they form, and they retain much of the nebula’s hydrogen envelope. This is
why giant planets have large hydrogen-rich atmospheres. We can still have more complex molecules, but
they’re in chemical equilibrium and much smaller abundances. By contrast, rocky planets have heavier
molecular atmospheres: N2, O2, CO2 on Earth and Venus, for example. The reason for this is they’re all
secondary atmospheres. Rocky planets are smaller, so they have lower gravities and lose much of their
hydrogen envelopes over geological timescales. As a result of their small size, there’s interactions that can
no longer be ignored, so secondary atmospheres are mostly in disequilibrium.
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Between giant planets and rocky planets, the atmospheres are significantly different. We broadly say that
giant planets haveprimary atmospheres andareH2 rich,whereas rockyplanets have secondary atmospheres
which have a variety of compositions: N2, O2, CO2, and so on. Giant planets generally have atmospheres in
chemical equilibrium, and rocky planets generally don’t, as there are atmospheric processes forcing it out
of chemical equilibrium.

The problem statement, when we’re talking about chemistry, is this: you have a box of gas (the system is
idealised) intowhichwe throw some elements. Youmaintain the box at a constant pressure and temperature.
As time goes on, what happens inside the box? Do the elements stay atomic, or do they form molecules?

In mechanical systems, we find long-run behaviour by looking for low-energy states. In a chemical system,
you do this by minimising the Gibbs free energy. Why is that the case?

We’ll start from the first law of thermodynamics.

dU = dQ− dW = dQ− PdV. (12.1)

We want to see what happens to the Gibbs potential in a closed system.

G = H − TS = U + PV − TS. (12.2)

This is a measure of the energy content in the system, minus its disorder. You want to minimise H and
maximise S. Let’s look at the change in Gibbs free energy.

dG = dU + PdV + V dP − TdS − SdT (12.3)
= dQ− PdV + +PdV + V dP − TdS − SdT (12.4)
= dQ+ V dP − TdS − SdT. (12.5)

Now, let’s look at the second law: dS ≥ dQ
T . Plug that in to get

dG ≤ TdS + V dP − TdS − SdT = V dP − SdT. (12.6)

If we maintain the box at a constant pressure and temperature, we get that dG ≤ 0. The equilibrium
condition is dG = 0, and otherwise it’ll reduce. For any chemical reaction, dG < 0, so chemical systems
tend to minimise G.

Let’s look at a box of gas with various species inside it. To start with, take the case of a single-component
system, dG = V dP − SdT . Hold T constant to get
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dG = V dP =
NRT

P
dP (12.7)

G = GN +NRT ln
P

P0
. (12.8)

where GN = NG0 is the reference Gibbs free energy, and G0 is that per mole.

G = N
[
G0 +RT ln(P/P0)

]
. (12.9)

If we do this for a system with multiple species, we add a bunch of these terms together:

G =
∑
i

Ni

[
G0
i +RT ln

Pi
P0

]
. (12.10)

In the example sheet, we’ll do this one step further by replacing the partial pressure by a mixing ratio.

G =
∑
i

Ni

[
G0
i

RT
+ ln

P

P0
+ ln fi

]
, (12.11)

where fi is the mixing ratio.

In this minimisation, P, T, and elemental (not molecular!) abundances are all fixed. We apply the molecular
constraint by saying

∑
i aijni = bj , where i runs over the molecules and j over the atoms. aij is the number

of atoms of type j in molecule i, ni is the number of moles of molecule i, and bj is the number of moles of
element j. The mixing ratios are the only free parameter that we run the minimisation over.

Let’s look at a qualitative example. In H-rich atmospheres, one of the main reactions is H + H ←−→ H2. In
carbon-rich atmospheres, you encounter CO2 + 3H2 ←−→ CH4 + H2O, and in nitrogen-rich atmospheres,
you encounter N2 + 3H2 ←−→ 2NH3. (See diagrams on ipad) For the carbon reaction, we can plot G/RT
against T and get roughly increasing curves, and find that there’s a change in which side is favoured at
around 400K. To the left of the change (at low temperatures), CH4 is favored, which is backed up by the
detection of methane in Jupiter through Neptune, and to the right, CO2 is favored, which is backed up by its
detection in hot Jupiters and the lack of detections of methane in those atmospheres. Similarly, the nitrogen
transition point is around 500K at 1 bar.

We can also look at the reaction rate. If we have a reaction A+B←−→ C+Dwith forward rate kf and reverse
rate kr, we can write down

d[A]

dt
= kr[C][D]− kf [A][B], (12.12)

and this is 0 at chemical equilibrium. We can write

kf
kr

=
[C][D]

[A][B]
(12.13)



and at equilibrium, we also have ∆G = 0, orGA+GB−GC −GD = 0. Using this combined with the earlier
expression for G, we can find

∆G = ∆G0 +RT ln
[A][B]

[C][D]
(12.14)

where ∆G0 is the change in Gibbs free energy at a reference pressure. This gives us

kf
kr

= e∆G0/RT . (12.15)

We can therefore calculate either the forward or the reverse reaction rate from just the other one and from
∆G0.
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13.1 Equilibrium chemistry

We’ve been looking at chemical equilibrium in planetary atmospheres, in terms of the Gibbs free energy
and the common reactions in hydrogen-rich atmospheres. We saw there are profiles that are dominated by
CO (high temperature) and those that are dominated by CH4 (low temperature), and we’ll see that we can
get non-equilibrium chemistry in the region that interpolates between them.

As a summary of chemistry in hydrogen-rich atmospheres:

• Water should be the dominant O carrier at all temperatures

• CO should be the dominant C carrier at high temperatures

• CH4 should be the dominant C carrier at low temperatures

• Similarly, NH3 at low temperatures and N2 at high temperatures

As metallicity increases, all molecules become more abundant, especially heavier ones. Other species also
become more prominent in hot atmospheres; for instance, we saw TiO and VO are important to thermal
inversions, and people have both theoretically predicted and actually observed atomic Na and K.

If we increase the C/O ratio, the mixing ratio of water drops drastically, and the leftover oxygen binds with
carbon to create higher abundances of CO and other hydrocarbons. This is specifically a high-temperature
effect, because otherwise methane takes all the carbon. Water remains pretty constant at low temperatures
irrespective of the C/O ratio, but CO becomes more abundant than methane at some point and we start
seeing more significant effects. The threshold is somewhere around 0.7-0.8.

Most hot Jupiters are over 1200K, so the measurement of water in HJs is a very good diagnostic of the C/O
ratio. This can be corroborated by looking for hydrocarbons, but just measuring water and finding that it’s
two orders of magnitude below the solar abundance narrows down the possibilities to very low metallicity
or high C/O ratio. Generally, the former is considered impractical.

In recent years, it’s become evident that there’s other influences on water abundances. We’ve found a
population of extremely irradiated ultra hot Jupiters. At these temperatures (around 2500K) we should
expect that many species thermally dissociate. This happens for water faster than CO, but if you go hot
enough, all the common molecules are dissociated and their abundances are lower. Ions and free metallic
atoms (Fe, Cr, etc) start becoming more chemically abundant, and we may get significant opacity from
sources like H-. In the ultimate limit, you get to the same as observations for stars, where there are no
molecules and instead just atoms.

Let’s look at a few observations. In the gaseous and ice planets, we’ve detected methane and ammonia,
and a few hydrocarbons, which is consistent with what we expect from low-temperature chemistry. We
don’t detect much water as it’s often frozen out, but water is the most commonly seen molecule in giant
exoplanets. These are consistent with what we expect in theory. It’s well known that we can find Na, K,



TiO in hot Jupiters, and we’ve made atomic detections in ultra hot Jupiters, of which a principal example
is KELT-9b. Today, we have populations of species across many different planets, going down to Neptunes
and mini-Neptunes.

13.2 Non-equilibrium chemistry

Wealluded to the transition region betweenCOandCH4 earlier. What happenswhenwehave a temperature
profile that crosses the boundary between the two regimes? If you have strong vertical mixing in the
atmosphere, we can dredge up some of the CO from the bottom of the atmosphere to the top. We usually
can’t see far enough into the atmosphere that we would be able to see significant CO abundances, but with
this effect, we’d be able to see both. If you look at a cool planet and see CO in its atmosphere, that’s a signal
of strong vertical mixing.

The CO-CH4 equilibrium is composed of a chain of reactions, and people have identified the rate-limiting
step: H2 + CH2OH −−→ CH3OH +H. This gives us the chemical timescale

τchem =
[CO]

−d[CO]
dt

=
[CO]

kf,N [H2][CH3O]
(13.1)

where kf,N can be derived experimentally and the abundances can be obtained from chemical equilibrium
calculations. This chemical timescale has to compete with the mixing timescale,

τmix =
L2

Kzz
, (13.2)

where the mixing length L is usually taken as 0.1 times the scale height andKzz determines the strength of
mixing. The condition for vertical mixing is τmix ≤ τchem, and the intersection of the two curves (on a plot
of pressure against the time) is the point at which the concentrations of species are quenched (frozen), and
they’ll remain there unless other disequilibrium processes set in. τchem increases fairly monotonically with
pressure, whereas τmix does not vary much with varying pressure. For CO, they cross at 30 bars.

In exoplanets, one of the early studies of non-equilibrium chemistry was in studying the hot Neptune GJ
436b. Strong CO absorption was observed, but its temperature structure didn’t seem to support that, so one
argument was strong vertical mixing along with high metallicity.

There is one other mechanism of non-equilibrium chemistry: photochemistry, which we’ll look at next
lecture.
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We’re continuing our discussion of chemistry, focusing on photodissociation of species. If you go high
enough in the atmosphere, the incoming radiation photodisassociates the molecules, leaving them in their
atomic/ionic forms. Going even further up, you have atmospheric escape.

We quantify all these through the continuity equation,

∂nit+ ∂Φiz = Pi − Li. (14.1)

and through the reaction rates for thermochemical and photochemical reactions, respectively

A + B −−→ C + D
d[A]

dt
= −k[A][B],

d[C]

dt
= k[A][B] (14.2)

and

A + hν −−→ C + D
d[A]

dt
= −J [A],

d[C]

dt
= J [A]. (14.3)

The bond energies ofmolecules are typically in theUV range, so ν should be ultraviolet. Photochemistry gets
less and less efficient deeper in the atmosphere because it’s used higher up to dissassociate the molecules
in the upper atmosphere.

We define the photodissocation coefficient J in analogy with k, and it’s a function of the molecular cross-
section and the incident radiation flux.

These simple forms give us a large network of partial differential equations which we simultaneously solve
for an atmospheric composition over time and altitude. See Moses et al., 2011, for a set of 90 molecules with
1600 reactions.

What is the emergent behaviour? If you go high up enough, everything gets photochemically dissociated. A
bit below that, though, you’ll get photochemically added byproducts, meaning there’s more species observ-
able in the atmosphere. Eventually, even those byproducts are dissociated, but there’s an interplay between
radiation and atmospheric chemistry. Further, these species can be considered tracers of photochemical
activity: if we go deep enough, we’ll observe them in steady state.

We can now identify three regimes of chemistry in planetary atmospheres.

• At P ∼ 1 bar, in the lower atmosphere, equilibrium chemistry holds. P, T, ρ are all high enough that
the reaction timescales are very short, so the thermochemical reaction rates are sufficiently short so as
to allow equilibrium.

• At P ∼ 10−3 bar, non-equilibrium chemistry due to vertical mixing becomes important. Specific
dynamics depend onKzz , temperature, metallicity, and so on.



• At P ∼ 10−6 bar, non-equilibrium due to photochemistry becomes important, because incident irra-
diation is the most significant here.

This gives us an agenda for studying spectra: how do we use them as a probe with which to study all the
physical and chemical processes in planetary atmospheres?

As an example of photochemistry, let’s look at Earth’s ozone layer. We’ll look at a set of reactions called the
Chapman reactions:

O2 + hν −−→ O + O, k1 ≡ J1 O + O2
M−−→ O3, k2 O3 + hν uv + vis−−−−→ O + O2, k3 ≡ J3 O + O3 −−→ O2 + O2

and the reaction rates are determined by the photodissociation coefficient,

Ji(z) =

∫
ν

σiνFνe
−τν(z)/µdν, (14.4)

and the known values

k2 = 6× 10−34
( τ

300

)−2.3

cm2/s (14.5)

k4 = 8× 10−12e−2060/T cm2/s. (14.6)

We can write out reaction rate equations in terms of these coefficients and these abundances,

d[O]

dt
= 2k1[O2]− k2[O][O2][M ] + . . . (14.7)

d[O3]

dt
= k2[O][O2][M ]− k3[O3]− k4[O][O2] (14.8)

For photochemical equilibrium, we want both of these to be 0, so enforcing that gives us

[O] =
k1[O2]

k4[O3]
(14.9)

[O3] =
k2[O][O2][M ]

k3 + k4[O]
(14.10)

By looking up precise numbers, we can show that k3 � k4[O], which implies

[O3] =
k2

k3
[O][O2][M ]. (14.11)

If we substitute for [O], we get

[O3] =

√
k1k2[M ]

k3k4
[O2]. (14.12)
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At high z, [O2] decreases exponentially, so we get low O2 and therefore low O3. At low z, you can’t use
photochemical arguments: k1 is small because of low flux, so we get low O3 again. So where is the ozone?
It must be somewhere in the middle (it’s being produced, so it has to be somewhere) which is why you have
an ozone layer. In the Earth’s atmosphere, this happens at about 20-30km, or P ∼ 0.1 bar, about where we
have the thermal inversion.
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We’ve looked at various chemical processes as a function of altitude, but we haven’t yet really studied
the mechanism by which atmospheric escape takes place. The simplest escape mechanism happens when
particles have a velocity higher than the planet’s escape velocity; that is, the thermal escape mechanism. In
thermal equilibrium, particles follow a Maxwellian distribution,

f(u)du = n

(
2

π

)1/2(
m

kBT

)3/2

u2e−mv
2/2kBTdv (15.1)

This distribution peaks at vp =
√

2kBT
m , and we want to compare this to vesc =

√
2Gmp
Rp

. Generally, to
see non-negligible atmospheric escape, we want some cutoff on the high-velocity tail of the distribution; a
common cutoff is 6vp ≥ vesc.

vp ≥
1

6

√
2Gmp

Rp
(15.2)

Another thing to look at is the exobase: the location in the atmosphere where the mean free path l = 1
nσ

exceeds the scale height Hsc = kBT
mpg

. If l > Hsc, we have a collisionless atmosphere.

We can write down the rate of escape, or the Jeans escape flux:

Φ =
nexo
2
√
π
B

√
2kBT

m
(1 + λesc)e

−λesc , (15.3)

where B ∼ 0.5− 0.8 is a factor accounting for repopulation time, and the escape parameter λesc is given by

λesc =
Gmpm

RexokBT
. (15.4)

For λesc � 1, we get the so-called hydrostatic regime of escape.

Another escapemechanism is hydrodynamic escape, which iswhat happenswhen the atmosphere is heated
with very energetic stellar extremeUV flux. Particles escape so fast that the atmosphere behaves like a dense
fluid expanding outwards. Lighter particles (H) escape due to high UV, and heavier particles are entrained
in the hydrodynamic flow of the lighter particles.

A third escape mechanism is energy-limited escape. The potential energy of the atmosphere in the planet’s
gravity is Ep =

−GMpmatm
βRp

, and the power due to EUV is PEUV = πR2
pFEUV . We can divide these to get a

timescale for energy-limited escape:

There’s a few non-thermal mechanisms too!



1. Charge exchange: collisions between highly energetic ions and neutral atoms. Charges exchange and
impart kinetic energy to neutral atoms.

2. Ion escape: ions escape along open magnetic field lines. This is most efficient at the poles, which is
why on Earth we have the phenomenon of polar wind.

3. Stellar wind sweeping: solar wind can sweep away ions in planetary atmospheres, especially in the
absence of a planetary magnetic field.

4. Sputtering: fast-moving atoms come from outside the atmosphere, hit particles in the atmosphere
and on the surface, and cause a cascade of high-velocity collisions.

Hydrodynamic escape is thought to be dominant, because of the large exospheric envelopes that have been
detected. You can detect exospheres by seeing escape of Lyman-α photons.
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We’re almost done with atmospheres, but we haven’t yet covered clouds and hazes or atmospheric circula-
tion.

The first thing that comes to mind with clouds is condensation. The atmospheric temperature becomes less
than the condensation temperature of the particles, so we have suspensions of liquid particles in gases.

When we talk about clouds, we’re generally talking about condensates. Formally, we’ll say a cloud is a mass
of liquid or solid particles suspended in a planetary atmosphere, caused by condensation of atmospheric
gases. Our principal example is water clouds in Earth’s atmosphere.

Hazes are similar, but they don’t occur from condensation. They consist of very small particles suspended
in an atmosphere caused by photochemistry. For example, long-chain hydrocarbons in cold giant planet
atmospheres from methane photochemistry.

Condensates (like water in Jupiter’s atmosphere, or salt/metallic clouds in hotter atmospheres) get “frozen
out” from being visible in spectra. Marley and Robinson 2014, good reference for cloud curves on a P-T
diagram. Morley et al 2013 too.

What do clouds do to incident radiation? Mostly, scattering, and this is why I’ve been doing all this Mie
theory reading and programming. There’s two types of scattering, depending on the size of your particle a
relative to the wavelength λ of the incident light.

1. When you have a� λ, you get Rayleigh scattering. In the limit, you get the same scattering that you
would have from gas particles, and it’s the same processes that cause the sky to be blue on Earth.
σλ ∝ 1

λ4 , so there’s more scattering the bluer you go. You don’t necessarily need clouds or hazes to
get Rayleigh scattering; in spectra, regardless of the presence or absence of clouds, you’ll see a slope.
A transmission spectrum (∆ vs λ) goes up as λ goes down if you start on the left end. The reason for
this is in the small-particle limit, the incident EMwave is polarising the particles and creating a dipole
that radiates with a certain frequency.

2. When you have a & λ, you get Mie scattering. Mie theory gives you solutions to Maxwell’s equations.
The interaction of a plane wave with a particle using the particle as boundary conditions. I’d love
to do some visualisations of Mie theory against Rayleigh scattering in the context of their impact on
spectra, but I do not have the bandwidth right now; I’ll see if I can make that part of the essay. When
a� λ, Mie theory tends to geometric optics, and when a� λ, it tends to Rayleigh scattering.

Refs: Pinhas and Madhusudhan 2017, Wakeford and Sing 2015.

When you look at a spectrum, what do you actually see? Take a transmission spectrum with a Rayleigh
scattering feature at small λ, and add in a cloud deck at a high point in the atmosphere greater than the
scale heightH . If the cloud were opaque at all features, the spectrumwould become flat as the cloud would
dominate. For a lower cloud deck, only some features would be muted. Clouds therefore cause muted
features in IR spectra (as that’s where absorption features are). Another impact is non-Rayleigh features or
slopes in the visible regime.

In emission (secondary eclipse) spectra, a sufficiently high cloud deck masks out spectral features and
replaces themwith an equivalent blackbody spectrum. In general, you see muted spectral features here too.



Also, the impact of reflected light from the star goes up at lower wavelengths, as the star’s blackbody peaks
in the optical. This is what’s known as the planetary albedo.

You can constrain the degeneracy between clouds vs. a genuine non-detection by looking at the optical
and seeing if there’s a Rayleigh feature or not, as well as by looking for multiple features instead of just a
particular one.

There’s a couple different kinds of albedos. The bond albedo AB is the ratio of reflected light to incident
light, integrated over frequency or wavelength. The geometric albedo AG is the ratio of reflected light from
the object at full phase (when the disk is fully illuminated) relative to that by a Lambertian surface of equal
size at the same distance for a given wavelength. (A Lambertian surface is a surface with a flat brightness
profile.)

Fp,λ
Fs,λ

∣∣∣∣
⊕

= AG,λ
R2
p

a2
. (16.1)

The planet-star flux ratio in the optical gives us a good measurement of the geometric albedo.

GJ 1214 b.
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(I didn’t write much on this day because I wanted to listen really closely)

When you’re trying to make a model spectrum to compare to data, you need a method of model generation
that incorporates all the effects we’ve looked at. This basically involves solving a bunch of equations we’ve
seen already as a coupled system: radiative transfer, equation of state, hydrostatic equilibrium, opacity
relations, etc. In this setup, we end up squishing all the atmospheric dependence into a parameter κλ,
which we derive using chemical equilibrium. We impose that using a whole parallel chemical simulation
module.

κλ in particular depends quite heavily on molecular absorption cross-sections, especially in the infrared.
Therefore, molecular spectroscopy acts as a tracer of atmospheric processes. There are three observables in
a spectrum: chemical compositions, temperature profiles, and energy budget.

What happens when you’re matching a model to data, but the actual physics violates the assumptions you
made in a self consistent model? Also, running self-consistent models takes time, and it takes too long to
rerun them enough times to have them match data.

Back in 2008, we couldn’t fit models to data very well; the initial water vapor detections had large error bars
and wouldn’t now be considered robust, as they’re maybe only 1-2 σ. Another key problem was: do the
models uniquely fit the data?
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Atmospheres are three-dimensional, so for a full picture we have to run three-dimensional simulations.
This gives rise to general circulation models. One of the main effects that are modelled is energy transport
via winds, which is a necessarily 3D phenomenon.

GCMs essentially impose 3D versions of conservation equations (replace ∂
∂z with ∇ throughout, etc).

Although GCMs are pretty complicated to run, we can do some zeroth-order analysis. First, let’s look at
wind velocity. Between the day and night sides, let’s say there’s a temperature contrast ∆T . The zonal wind
speed along the equator comes out to be u ∼

√
R∆T∆ lnP . The derivationwill be left to an online reference,

but we can plug in some reasonable numbers and get a sense of how big this is. If we takeR = 3700 J/kg/K,
∆ lnP ∼ 3 and ∆T ∼ 400, then u comes out to around 2 kilometers per second.

How about the time scales on which dynamics change? There’s two processes with competing time scales:
radiative and advective cooling. For advective cooling, we can divide a length scale (the planetary radius)
by the velocity we just derived, and we can get τadv ∼ 105s. How do you compare that to the radiative
timescale? A radiative timescale basicallymeasures how fast a perturbation in energy is radiated away. Add
in energy per unit area ∆E = ρcp∆T∆z. The advantage of taking a small slice ∆z is you can assume it’s a
blackbody, so we get flux ∆F = ∆(σT 4) = 4σT 3∆T . Dividing these out, we get

τrad =
ρcp∆z

4σT 3
∼ ∆P

g

cp
4σT 3

∼ (∆P/1bar)
(T/1000K)3

3× 105

g/gJ
s. (18.1)

If you pick conditions such that τrad � τadv , you get large day-night contrast (and therefore a very high T ),
as excess energy is radiated away faster than it can be advected to the nightside. This is why hot planets
have hotter daysides. Similarly, if you have τrad � τadv , the contrast is much smaller.

The band structure is determined by the Rhines length scale, which is the scale overwhich planetary rotation
causes east-west jets. Lβ = π

√
u
β , where β = 2Ω cosϕ

Rp
with ϕ = the latitude.

N ∼ πRp
Lβ
∼
√

2ΩRp
u

(18.2)

For hot Jupiters, P is about a day, and Ω = 2π
P , and u ∼ 1 km/s, so plugging everything in we getN ∼ 1− 2.

For Jupiter, the same calculation gives us N ≥ 10. Larger N gives us more banded structures.

To sum up, the key observational inferences are

1. Day-night contrast

2. Hot-spot offsets

3. Wind velocities
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Look at the review paper on advective-radiative balance, as some termsmay not have been totally clear from
the lecture.

Let’s look at exoplanetary interior properties. There isn’t really anything that’s observable other than the
bulk properties (the mass and radius) and the atmospheric properties, so let’s start working with those. We
can write down conservation equations.

1. Conservation of mass: dmr
dr = 4πr2ρ(r)

2. Force balance/hydrostatic equilibrium: dP
dr = −ρg = −Gmrr2 ρ(r).

3. Energy generation/conservation of angular momentum: dLr
dr = 4πr2ρε̇, where ε̇ is the energy genera-

tion rate per unit mass.

4. Convective temperature gradient (active in most of the interior): dTr
dr = −Gmrcpr2

= − g
cp

and radiative
temperature gradient: dTr

dr = − 3κ̄ρ
16σT 3Fint = − 3κ̄ρ

16σT 3
Lr

4πr2 .

5. An equation of state, P = P (ρ, T ).

This is all pretty structurally similar to the analysis we ran for stars, with the key differences that ε̇ and the
equation of state are very different.

We can look at polytropic examples and see if we can get some test cases for how these quantities vary. A
polytropic relation is P = Kρ

1
n+1, where n is known as the polytropic index. Putting these together with

mass conservation and hydrostatic equilibrium, we get

− d

dr

(
r2

ρG

dP

dr

)
= 4πr2ρ (19.1)

1

r2

d

dr

[
r2

ρ

dP

dr

]
= −4πGρ. (19.2)

By steps we’ll do on our examples sheet, we get

1

r2

d

dr

[
r2

ρ

K(n+ 1)

4πG

ρ1/n

n

dρ

dr

]
= −ρ. (19.3)

We further assume a form ρ = ρcθ
n(r), where ρc is the central pressure and θ is a dimensionless function

defining the decay.

1

r2

d

dr

[
r2K(n+ 1)

4πG
ρ(1−n)/n
c

dθ

dr

]
= −θn. (19.4)



Further, we set r = αξ, where α contains all the material properties.

α2 =
K(n+ 1)

4πG
ρ(1−n)/n
c . (19.5)

α has dimensions of length and ξ is dimensionless. After a lot more algebra, we get the Lane-Emden equation:

1

ξ2

d

dξ

[
ξ2 dθ

dξ

]
= −θn. (19.6)

We can solve this for specific n. For n = 0, we get θ(ξ) = 1 − ξ2

6 . Further, we can get boundary conditions
by setting θ = 0 and we recover the surface properties: in this case, ξ1 =

√
6. For n = 1, we get θ = sin ξ

ξ and

ξ1 = π. For n = 5, we get θ =
(

1 + ξ2

3

)−1/2

and ξ1 =∞.

If we have constant θ we can just recover the simple mass-radius relation ρ = ρc = M
R3 . For other polytropic

cases, we can get a similar mass-radius relation.

dM

dr
= 4πr2ρ, r = αξ, ρ = ρcθ

n. (19.7)

Integrate forM and use the Lane-Emden equation to get

M =

∫ R

0

4πr2ρdr = 4πα3

∫ ξ1

0

ρcθ
nξ2dξ (19.8)

M = 4πα3ρc

∫ ξ1

0

d

dξ

[
−ξ2 dθ

dξ

]
dξ (19.9)

M = 4πα3ρc

[
−ξ2 dθ

dξ

]
ξ1

. (19.10)

Interestingly, we don’t have to integrate for the mass, and instead we just need one evaluation at a point.

We can further get the radius,

R = αξ1 =

√
K(n+ 1)

4πG
ρ(1−n)/2n
c ξ1 (19.11)

R3−nMn−1 =

(
K

GC

)n
. (19.12)

For n = 0, we recover the desired behaviour of R ∝M1/3.
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Previously, we solved the Lane-Emden equation and got the mass-radius relation R ∝ M (1−n)/(3−n) for a
polytrope of index n. If we take n = 0, we get R ∝ M1/3, which corresponds to a constant density interior,
or an incompressible fluid. For planets, until a certain mass limit, this is an accurate M-R relation.

However, if we look at giant planets, this breaks down. Say n = 3
2 , then γ = 5

3 and R ∝ M−1/3. This case
corresponds to an adiabatic interior or degenerate (nonrelativistic) gas. When objects become very massive,
the degeneracy pressure starts to become more important and eventually dominate, and we get the n = 3

2
relationship.

We can interpolate between them to plot logR against logM . We see that if it’s sloping upward for smallM
and downward for largeM (todo plot this), we see that there’s a maximum somewhere in the middle. To
find this precisely, we’d need to run more detailed models.

In practice, n = 0 and n = 3
2 don’t actually describe the interiors of planets, just simplified models. Here’s a

few actual n values from simulations in terms of masses:

M/MJ n (1− n)/(3− n)
0.1 0.6 0.16
1 1 0
10 13 -0.18

So the actual logR vs logM curve isn’t as steep as our previous assumptions would suggest.

Let’s look at a more complete picture for general hydrogen-rich objects, shown here.
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Some qualitative interpretation of this plot: Neptune-like planets are below −1, stars are above 2, and the
middle region is the gas giants up to brown dwarfs, and the nominal boundary between those is 13 MJ .
We can see that in the absence of any additional source of energy, the plot peaks around R = RJ and at
M =∼ MJ (where ∼ can be 1-5 because we’re astrophysicists); Jupiter is about the biggest you can make a
hydrogen-rich sphere.

What drives the transition fromgas giant to browndwarf? 13MJ is aboutwhere deuteriumburning becomes
significant; it’s the point at which 50% of deuterium burns over a 10 Gyr lifetime of an object. This isn’t an
exact number, and anywhere from 11-16 may be good.

Even if you have deuterium burning, it may not be a significant source of energy in the smaller brown
dwarfs. Further into the brown dwarf regime, you go from partial to complete degeneracy. For masses
beyond the complete degeneracy cutoff at about 80 MJ , hydrogen burning starts and we go from brown
dwarfs to stars.

It’s notable that Jupiter and Saturn used to be our only datapoints for these relations, and now we’ve
populated it with thousands of exoplanets and brown dwarfs.

Historically, people used zero-temperature equations of state ρ = ρ(P ) to generate theoretical mass-radius
relations for cold spheres. They found a normal-ish distribution peaking and subsequently declining at
around 0.1MJ . With more and more data, we found a lot of planets around the mass of Jupiter, but with
a much larger radius, which seems to contradict the peak around Jupiter that we saw before. What makes
these exoplanets so much larger than the theoretical curves for H-rich spheres would suggest, when their
composition isn’t that different?



The answer is that these are hot Jupiters; they’re highly irradiated and some of that energy gets deposited
onto the interior and puffs up the radius. To analyze this in detail, we’ll look at thermal evolution and
luminosity evolution.

The initial stages of evolution involve gravitational contraction, and the fraction of the gravitational potential
energy that goes into the planet’s internal energy is governed by the virial theorem. We’ll use the form
xEi + Eg = 0, where x is a fraction governed by material properties. This gives us Ei = − 1

xEg . The
remaining energy Er = |−Eg| − Ei = −x−1

x Eg is radiated away; some constant fraction (which we can
consider to be an efficiency factor η) of the gravitational energy contributes to the luminosity, which is
governed by L = Ėr.

We know gravitational potential energy is given by Eg = − 3

5︸︷︷︸
α

GM2

R , so following the above reasoning

gives us

L = −ηdEg
dt

=
−ηαGM2

R2
Ṙ (20.1)

or conversely, the contraction is governed by the luminosity,

Ṙ =
−LR2

ηαGM2
. (20.2)

At some point, this stops working as we start hitting degeneracy pressure. When the object has sufficient
interior degeneracy, gravitational contraction is no longer the dominant source of luminosity because there
isn’t much more contraction that’s possible. At this point, luminosity starts coming from the cooling of the
ions in the interior, L ∼ −Ėion ∝ −Ṫion. Giant planets start out large, luminous, and hot, and evolve into
smaller, cooler, and less luminous objects.
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For qualitative purposes, we write Er ∼ ηαGM
2

R to represent the amount of radiative energy available
(taking the positive value to represent a sort of “energy budget”) and we let η be a variable over time. In the
early stages of evolution, we have η = 1

2 by the virial theorem. For molecular hydrogen, it might be η = 2
3 ,

but it eventually gets much smaller. For Jupiter in the present day, η ∼ 0.03.

Start with the usual luminosity relation, L = 4πR2σT 4
eff. As a planet evolves, it cools down, so Teff goes

down, and it contracts, so R goes down. Both of these contribute to L going down over time.

We can find a scaling relation for the cooling time:

τ =
Er
L

=
ηαGM2

RL
(21.1)

and conversely

L =
ηαGM2

Rτ
. (21.2)

That is, the luminosity of an object goes downover time, and a logL vs log τ plot is a straight line representing
a powerlaw.

Because R is contracting and then settling to its eventual radius, the plot of R over time has a fast dropoff
for the first ∼ 100 Myr, and reaches a relative steady state after that. The temperature decreases more
monotonically than the radius.

Let’s look at Jupiter as a test case. We saw it has η ∼ 0.03 and |Eg| = 3
5
GM2

R ∼ 2 × 1043 erg. We have
Er = η|Eg| ∼ 6× 1041 erg. We also know that LJ,int ∼ 3× 1024 erg/s, which gives us a timescale τ ∼ 6 Gyr,
longer than the current age of the solar system. We could also use this logic to estimate the current radius
contraction Ṙ of Jupiter.

Ṙ = − LR2

ηαGM2
(21.3)

There are two ramifications of this. The first is it’s easier to see younger planets, because they’re inherently
more luminous. This helps us in directly imaging planets. The second is that the starting luminosity
depends on the starting mass and energy, which in turn depends on the formation mechanisms which
determine the initial entropy.

dL

dr
= 4πr2ρε̇ (21.4)



and we sometimes write ε̇ = −T dS
dT , so we have a direct relationship to the entropy S. Short-timescale

formation processes like gravitational instabilities tend to have higher entropy, and long-timescale formation
like core accretion has lower entropy.

We can look at mass level curves of luminosity evolution over time. There’s three general categories: stars,
which lose some luminosity until hydrogen burning kicks in; brown dwarfs, which have a relatively gentle
slope due to contributions from deuterium burning; and planets, which drop off the fastest.

We still haven’t resolved the inflated hot Jupiter issue, where hot Jupiters aremuch larger than Jupiter. There
are two classes of explanation. The first is an external source of heating: this can be due to tidal dissipation
of orbital eccentricity (energy due to circularization of an orbit; this can’t be a universal explanation, as
circularization timescales are relatively short so the planet would contract after it’s over), atmospheric
dynamics (recirculation of winds in the atmosphere), or ohmic dissipation (hot atmospheres can thermally
ionize some of its constituents, forming currents that may enter the convective layer and dissipate power).
Studies show we need about 1% of the incident radiation to be deposited in the interior of the planet.
The second is stalling the contraction of the object, or reinflation after contraction. This can happen due
to enhanced opacity, making cooling less efficient, or due to chemical gradients in the lower atmosphere
causing convection and slowing the dissipation of energy outwards.

Finally, what are the interior compositions of these objects? We’ve been assuming that giant planets are
mostly molecular hydrogen, which is true in the exterior. Going deeper, temperature and pressure increase
and so hydrogen is thermally dissociated and ionized, so we have ionized hydrogen. Up until 2015, it
was assumed there was a rocky core interior to this, but a more recent understanding (Miguel et al., 2022)
suggests the core is more diffuse and less well-defined, and the interior is more characterised by a metallic
gradient than an actual separate core.
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While the interiors of gas giants are relatively dilute (based on Juno studies of Jupiter), showing a gradual
gradient outwards from a core to a hydrogen envelope, ice giants and terrestrial planets have sharper
boundaries. Ice giants like Uranus and Neptune may have up to 80-90% of their interiors made of ices
and rock, and may have H/He envelopes up to 2 Earth masses; we don’t have good enough measurements
to constrain these for sure. The key difference we know is that ice giants are not hydrogen-rich in the
interior, and we have much higher (∼30x Jupiter’s) metallicity. Meanwhile, terrestrial planets have complex
structures: just looking at Earth, there’s distinct regions in the core, mantle, and crust, which we know from
seismology but don’t necessarily know for terrestrial exoplanets. The compositions of rocky planets tend to
be a lot more complex for these reasons. We don’t know the mass fractions of these components upfront.

There’s four dominant elements of the chemical compositions of the solar system planets:

1. iron/nickel (usually in the cores)

2. silicates (rock)

3. molecular hydrogen

4. water

The compositions of exoplanets may be significantly different, though. When we got the first datasets from
Kepler, around 2010-2011, we noticed large populations of exoplanets between the boundaries of what we’d
previously thought of as a classification system into terrestrial, icy, or gaseous planets; the most dominant
planet type we know today is between the ice giants and Earth, dubbed mini-Neptunes and/or super-Earths
(the exact boundary isn’t clear). We should expect that compositions are just as diverse as the macroscopic
properties.

We can start understanding the composition in terms of the structure equations. Rocky planets won’t have
much energy from gravitational contraction, but theymay have other sources of ε̇ like radioactive processes.

Let ρ = ρc, a constant, and solve the structure equations (hydrostatic equilibrium and mass continuity)
while imposing P (R) = 0 to get

P (r) =
2πG

3
ρ2
c(R

2 − r2). (22.1)

If we plug in accepted values for Earth (take ρc = 5.5g/cm3) we get Pc ∼ 150 GPa. The actual value is about
350GPa,which isn’t bad as an astronomer’s estimate but shows the effect of thedensity gradient is significant.
This is the case because even for a one-material interior, the density won’t be uniform with pressure. We
usually have constant density until some critical pressure, and subsequent nonlinear (power-law) increase
at high pressures. This translates to a bulk mass-radius relation. If we didn’t have this compression effect,
we’d expect that planets with radius 2RE have mass 8ME , but there’s significant deviations from this in the
observed population; 8ME planets have radii more like 1.5RE . There are standard forms for the equations
of state for various types of planets. With additional volatile layers, the other structure equations become
significant too.



We analyze this in practice (to zeroth order) by drawing level curves of the dominant elements andmixtures
of them onM −R diagrams, scattering the known planets, and noting which curves pass close to the points.
The mass fractions are considered to be free parameters which we can iterate over; if we’re taking three
components, we vary two mass fractions and let the third be set based on the requirement that they sum
to 1, note the resulting mass and radius, and see how closely it matches the observed mass and radius.
These solutions are represented in what’s known as a ternary diagram, which allow us to represent points in
α+ β+ γ = 1 space in terms of an equilateral triangle, and we can color regions of the triangle based on the
calculation outcomes.

Case studies in this sort of compositional exploration is the super-Earth CoRoT 7b (silicate-rich, but with a
wide range of other possible compositions if the uncertainties were increased 3x) and the mini-Neptune GJ
1214b (ice+rock interior with a hydrogen envelope, or a water world with a steamy atmosphere; the possible
hydrogen envelope composition is very well constrained at < 10%).

The solar composition can be significant too. The super-Earth 55 Cancri e is at about 2400K and is above the
silicate curve, so some sort of water-rich or hydrogen-rich envelope is necessary but is difficult to sustain;
volatile layers would dissociate very fast. The usual oxygen-rich models need a layer of super-critical water
to resolve this. However, if we took a solar composition (assuming the protoplanetary disk matches the
stellar abundances), the star’s greater C/O ratio would enable us to consider other molecules, like silicon
carbide, that may dominate the composition. In this case, the M-R curves for carbon and silicon carbide
ended up going right through the point for 55 Cancri e.

The other thing that matters is atmospheric observations. When we’re considering the radius of a rocky
planet, we usually just want Rp, but we can observe Rp +H . In the early stages of observing rocky planets,
this was neglected, because we didn’t have the sensitivity that would make that significant, but now, it
does make a difference. Looking at transmission spectra in their gaps, where possible, can give us a more
accurateRp (but generally it’s better to couple this to a full atmosphericmodel). There are numerous ongoing
missions, like TESS and CHEOPS, that aim to constrain these observables even more precisely. We can also
note that the equilibrium temperatures of rocky planets can be greater than the melting temperatures of the
rocks. This rules out effects we’re used to on Earth, like separate land and water regions and plate tectonics,
and at a certain point the surface would be mostly molten, giving rise to magma ocean worlds.
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Annoyed at myself for deleting this by accident.
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Annoyed at myself for deleting this by accident.
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