
Notes for Inverse Problems
University of Cambridge, Lent 2022

Aditya Sengupta

June 13, 2022

Contents

Lecture 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Well-posed and ill-posed problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Lecture 2: Examples of inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Signal and image deblurring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Lecture 3: Orthogonal decompositions, solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Lecture 4: Least-squares, pseudoinverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Lecture 5: Compact operators, the SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1 Compact operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 Singular value decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Lecture 6: SVD, Picard criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Lecture 7: Regularisation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Lecture 8: Parameter choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.1 Parameter choice rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.1.1 A priori parameter choice rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.1.2 A posteriori parameter choice rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8.1.3 Heuristic parameter choice rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Lecture 9: Parameter choice rules, Tikhonov regularisation . . . . . . . . . . . . . . . . . . . . . . 24

9.1 Parameter choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9.2 Tikhonov regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1



Lecture 10: Variational regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Lecture 11: Convexity, Bregman distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11.2 Subgradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

11.3 Bregman distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Lecture 12: Direct method for optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

12.1 Minimisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Lecture 13: Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

13.1 Duality in convex optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

13.2 Well-posedness and regularisation properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Lecture 14: Solution convergence, regularisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Lecture 15: Total variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Lecture 16: Convex Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

16.1 The dual problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

16.2 Source condition and convergence rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2



Lecture 1: Introduction 3

Inverse Problems Lent 2022

Lecture 1: Introduction
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Note: LATEX format adapted from template for lecture notes from CS 267, Applications of Parallel Computing, UC
Berkeley EECS department.

In an inverse problem, we have some object that goes through a forward process to create some data, and
the inverse problem consists of reversing that process to recover that object. In this class, we’ll talk mostly
about continuous inverse problems, so we’ll be using tools from functional analysis, but we’ll use a lot of
discrete examples. Discrete inverse problems make use of the tools of numerical linear algebra.

Learning goals:

1. What are inverse problems?

2. Why are they important?

3. Why are they challenging to solve?

4. What are their important properties?

We’ll stick to classic approaches – no Bayesian solvers, for example, but we can email for requests for extra
reviews. There’s also no machine learning.

1.1 Well-posed and ill-posed problems

Consider a problemof the form f = Au, whereA is an operator between Banach/Hilbert spaces: A : X → Y .
This is too simplistic of a model, so instead we consider

fn = Au+ n, (1.1)

where n is noise with some possibly-not-nice characteristics. We’ll see that this is actually applied mathe-
matics: a lot of the not-niceness of inverse problems is because these noise terms aren’t nice.

Definition 1.1. A problem is well-posed if

1. There exists some solution (existence)

2. There exists at most one solution (uniqueness)

3. The solution depends continuously on the data (stability)

The general version of the discrete problem fn = Au+ n has the form fn ∈ Rk, A ∈ Rd×k, u ∈ Rd.

Ill-posed discrete (linear algebraic) problems can therefore be characterised: you can construct a problem
where d < k and no solution exists. You can construct a problemwhere d > k and there are many solutions.
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We can’t deal with the third condition here because linear systems are formally well-posed. This is because
the error in the solution is bounded by a constant times the error in the right-hand side. These problems
are still interesting, and there are ways to express instabilities even in discrete problems, but they’re not our
primary focus. The issue here comes in with the constant multiplier, which isn’t bounded and scales with
the condition number of the matrix. The problem here is said to be ill-conditioned, not strictly ill-posed, but
for the purpose of an introduction the distinction isn’t that useful.

Let’s say u, fn ∈ Rn andA is symmetric positive definite inRn×n, meaning it admits an eigendecomposition.
We could generalise this with the SVD, but let’s go with this for simplicity for now.

A = V ΛV ᵀ =

n∑
j=1

λjvjv
ᵀ
j , (1.2)

where these are related by Λ = diag(λ1, . . . , λn) and WLOG λ1 ≥ λ2 · · · ≥ λn > 0.

Say we have the noisy and noiseless versions of a problem:

Aun = fn = f + n (1.3)
Au = f (1.4)

Naively, the inverse noisy problem can be solved by

un = A−1f +A−1n = u+A−1n. (1.5)

If A−1n is well behaved, we’re fine, but it often isn’t. We can look at the difference between u and un in
terms of the eigendecomposition of A:

u− un =

n∑
j=1

λ−1
j vjv

ᵀ
j (f − fn) (1.6)

‖u− un‖22 =

n∑
j=1

λ−2
j ‖vj‖

2
2

∥∥vᵀj (f − fn)
∥∥

≤ λ−2
n ‖f − fn‖

2
2

≤ λ2
1

λ2
n

δ2

= κ2δ2.

(1.7)

where we use the fact that ‖f − fn‖ ≤ λ1 · δ = ‖A‖δ. This gives us a nice characterisation of a problem
stability just in terms of its eigenvalues, using its condition number,

κ =
λ1

λn
=

largest eigenvalue of A
smallest eigenvalue of A (1.8)



Example 1.1. The standard example in discrete inverse problems is this:

A =

[
1 1
1 1001

1000

]
(1.9)

f =

[
1
1

]
(1.10)

This has a solution u =

[
1
0

]
, and A is full rank, so there should be no problems, but that doesn’t

agree with what we want to say about it – it’s very close to being degenerate. We can bring out
these bad properties with numerical experiments.

A key property of ill-conditioned discrete inverse problems is the singular values decay very fast.
Intuitively, this is because the eigenvectors are all relatively clustered together and point in about
the same direction, meaning the eigenvalues for the principal directions away from this cluster will
be really small. This directly gives us a high condition number, and we’ll see the consequences of
this in later lectures.

�
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2.1 Signal and image deblurring

If an image is aberrated by some process, what can we do to reverse that aberration?

The deblurring problem can be formulated by

fex(t1) =

∫ ∞
−∞

a(t1 − s)µex(s)ds ∀t1 ∈ Y (2.1)

so we can define

fex(t) =

∫ ∞
−∞

a(t− s)µex(s)ds. (2.2)

This is a convolution, so we can invoke the convolution theorem,

f̂ex(ξ) = â(ξ)µ̂ex(ξ), (2.3)

where f̂ex is the Fourier transform of fex,

f̂ex(ξ) =

∫ ∞
−∞

e−iftfex(t)dt. (2.4)

Therefore you get the inverse,

µ̂ex(ξ) =
f̂ex(ξ)

â(ξ)
(2.5)

µex(s) =
1

2π

∫ ∞
−∞

eisξ
f̂ex(ξ)

â(ξ)
ds. (2.6)

In practice, we have to account for noise, though:

fn(t) = fex(t) + n(t) (2.7)

µn(t) = µex(t) +
1

2π

∫ ∞
−∞

eisξ
n̂(ξ)

â(ξ)
dξ, (2.8)



and this additional term makes our lives difficult. In the real world, this term is usually not even well
defined.

By defining a kernel matrix that’s symmetric and close to diagonal, we can model blurring.

2.2 The heat equation

For another example, consider a torus with Dirichlet boundary conditions:

dv

dt
−4v = 0 on πd × R+

v(x, t) = 0 on ∂πd × R+

v(x, t) = f(x) on πd

v(x, 0) = µ(x) on πd.

(2.9)

Here, theLaplacian4 represents thedifferencebetween the averagevalueof a function in theneighbourhood
of a point and the value of the function at that point.

Suppose you have the heat profile at time t, and you want to reconstruct the original profile. Since this
is a diffusion process, this is difficult. There can be a lot of high-frequency noise components that further
complicate this.

2.3 Tomography

Tomography consists of computing reconstructions from projections.

f(θ, s) = (Pu)(θ, s) =

∫
R
µ(sθ + tθ⊥)dt. (2.10)

7
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We’ll look at one more example of an inverse problem.

Consider the evaluation of the derivative of a function between two specific spaces,

f ∈ L2
[
0,
π

2

]
(3.1)

Df = f ′, D : L2
[
0,
π

2

]
→ L2

[
0,
π

2

]
. (3.2)

Proposition 3.1. D is unbounded from L2
[
0, π2

]
→ L2

[
0, π2

]
.

Proof .
We have to find a sequence of functions that is bounded, but whose image under D is not. This is
satisfied by, for example, fn(x) = sin(nx) for n ∈ N. We can show that fn ∈ L2

[
0, π2

]
for all n, and

‖fn‖ =
√
π

4 < ∞. However, Dfn(x) = n cos(nx) and this clearly goes to infinity when n → ∞, so
D is unbounded.

�

Differentiation can be seen as the inverse problem of solving the integral equation f(x) =
∫ x

0
u(t)dt.

Having built the foundation of a few examples, let’s start looking at how we build generalised solutions to
inverse problems. To do this, we need to recap some tools from functional analysis.

Consider a linear operator between spaces A ∈ L(X ,Y). For convenience, we’ll let X and Y be Hilbert
spaces, which means they’re equipped with scalar products 〈·, ·〉X , 〈·, ·〉Y .

We are particularly interested in the case where A is bounded and linear. This means

‖A‖L(X ,Y) = sup
u∈X\{0}

‖Au‖Y
‖u‖X

= sup
u|‖u‖X=1

‖Au‖Y <∞. (3.3)

We’ll denote the domain of A by D(A) = X , the kernel by N (A) = {u ∈ X | Au = 0}, the range by
R(A) = {f ∈ Y | f = Au, u ∈ X}.

Definition 3.1. A is continuous at u ∈ X if for all ε > 0, there exists δ > 0 such that if ‖Au−Av‖Y < ε for some
v ∈ X , then v satisfies ‖u− v‖X < δ.

Theorem 3.2. Let A be a linear operator between normed spaces. Then A is bounded iff it is continuous.

By “bounded”, we mean that there exists c such that ‖Au‖Y ≤ c‖u‖X for all u. In such a case we say
c = ‖A‖L(X ,Y) when c is the minimal scalar for which this would hold.
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Definition 3.2. The adjointA∗ to the operatorA is the operator such that 〈Au, v〉Y = 〈u,A∗v〉X for all u ∈ X , v ∈ Y .

Definition 3.3. u, v ∈ X are orthogonal if 〈u, v〉X = 0.

Definition 3.4. The orthogonal complement of X ′ ⊂ X is X ′⊥ := {u ∈ X | 〈u, v〉X = 0 ∀v ∈ X ′}.

Note that if X ′⊥ is a closed space, then X⊥ = {0}, and in general X ′ ⊂ (X ′⊥)⊥ with equality if X ′ is closed.

For closed subspaces X ′ ⊂ X we have an orthogonal decomposition X = X ′ ⊕ X ′⊥. This implies that any
u ∈ X can be written as u = X︸︷︷︸

∈X ′
+ X⊥︸︷︷︸
X ′⊥

, which is a unique decomposition that will be useful later.

Definition 3.5. The orthogonal projection on X ′ is a map

projX ′ : u→ X ,projX ′ ∈ L(X ,X ). (3.4)

Lemma 3.3. Let X ′ ⊂ X be a closed subspace. Then projX′ satisfies

1. proj∗X ′ = projX′ (self-adjoint)

2. ‖projX′‖L(X ,X ) = 1 if X ′ 6= {0}

3. I − projX′ = projX′⊥

4. ‖u− projX′u‖X ≤ ‖u− v‖X ∀v ∈ X ′.

5. x = projX′u ⇐⇒ x ∈ X ′ and u− x ∈ X ′⊥.

Remark 3.4. If X ′ is not closed, then (X ′⊥)⊥ = X ′, so for A ∈ L(X ,Y),

• R(A)⊥ = N (A∗)

• R(A∗)⊥ = N (A)

This gives rise to the following orthogonal decompositions of X ,Y :

X = N (A)⊕R(A∗) (3.5)
Y = N (A∗)⊕R(A) (3.6)

Lemma 3.5. Let A ∈ L(X ,Y). ThenR(A∗A) = RA∗.

Proof .
We show they are subsets of each other. In the ⊆ direction,

R(A∗A) = R(A∗)R(A) ⊆ R(A∗). (3.7)

In the ⊇ direction, take u ∈ R(A∗). Then there exists f ∈ N (A∗) such that ‖A∗f − u‖X < ε
2 . But

N (A∗)⊥ = R(A), so there also exists x ∈ X such that ‖Ax− f‖Y <
ε

2‖A‖L(X ,Y)
. Then



‖A∗Ax− u‖X ≤ ‖A
∗Ax−A∗f‖X + ‖A∗f − u‖X (3.8)

≤ ‖A∗‖‖Ax− f‖︸ ︷︷ ︸
< ε

2

+ ‖A∗f − u‖X︸ ︷︷ ︸
< ε

2

< ε. (3.9)

�

With this foundation set, we can start looking into solutions for inverse problems. To start with, let’s define
what we mean by a solution.

Definition 3.6. An element u ∈ X is

• a least-squares solution of Au = f if ‖Au− f‖Y = inf{‖Av − f‖Y , v ∈ Y}

• a minimal-norm solution of Av = f , which we denote u†, if
∥∥u†∥∥X ≤ ‖v‖X for all least-squares solutions v of

Av = f .

Least-squares solutions are not necessarily unique, but we can obtain uniqueness for the minimal-norm
solution.

Note that if R(A) is not closed, a least-squares solution may not exist. If there exists at least one least-
squares solution, then the minimal-norm solution is unique. This is because the orthogonal projection
of the zero element onto the subspace defined by ‖Au− f‖Y = min{‖Av − f‖Y , v ∈ X} characterises the
minimal-norm solution uniquely.

10
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We’ve been talking about least-squares solution existence and uniqueness.

If a least-squares solution exists, then u† is unique and is the orthogonal projection of the zero element onto
the affine subspace defined by

‖Au− f‖y = min{‖Av − f‖y, v ∈ X} = S. (4.1)

If Au = f , then we can take u0 such that Au0 = f andW = {v ∈ X | Av = 0} = N(A). Here, S is given by
S = {u0 + w | w ∈W}.

If Av = b is not consistent, then the least-squares solution fulfills A∗Au = A∗f .

Theorem 4.1. Let f ∈ Y,A ∈ L(X,Y ). Then the following statements are equivalent:

1. u ∈ X satisfies Au = PR(A)
f .

2. u is a least-squares solution of Au = f .

3. u solves the normal equations A∗Au = A∗f .

The part of this that might be unintuitive is: where did the normal equations come from? What are they
telling us?

We can rearrange them to say A∗(Au − f) = 0, so we can verify that if Au = f , we have a solution. We
haven’t yet shown where this comes from or what the significance of the A∗ is, though – let’s prove it.

Proof .
We show 1 implies 2. Take u ∈ X satisfying Au = PR(A)

f . Look at the residual:

‖Au− f‖Y =
∥∥∥PR(A)

f − f
∥∥∥
Y

= inf
g∈R(A)

‖g − f‖Y ≤ inf
g∈R(A)

= inf
v∈X
‖Av − f‖Y , (4.2)

which is the definition of a least-squares solution.
We show 2 implies 3. If u is a least-squares solution, we want to show it satisfies the normal
equations exactly. Let F : R → R be defined by F (λ) = ‖A(µ+ λv)− f‖2Y . This can be rewritten
as

F (λ) = λ2‖Av‖2Y − 2λ〈Av, f −Au〉Y + ‖f −Au‖2Y . (4.3)

Take a derivative and note that we want F ′(λ)
∣∣
λ=0

= 0. This bcomes equivalent to the cross term
being 0.
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〈Av, f −Au〉Y = 0 (4.4)
〈v,A∗(f −Au)〉X = 0 (4.5)

A∗(f −Au) = 0. (4.6)

We show 3 implies 1. Let u be such that A∗(f − Au) = 0. Then f − Au ∈ R(A)⊥ = R(A)
⊥
. We

also see that Au ∈ R(A), so

Au = PR(A)
f ⇐⇒

{
Au ∈ R(A)

f −Au ∈ (R(A))⊥
. (4.7)

This is the definition of a projection, and it follows directly from the normal equations.
�

Lemma 4.2. Let f ∈ Y and let S be the set of least-squares solutions of Au = f . Then S is nonempty iff
f ∈ R(A)⊕R(A)⊥.

Note that this doesn’t require finite dimension (otherwise this would be trivial).

Proof .
In the forward direction, suppose we have a nonempty space S. There exists u ∈ S such that
A∗(Au− f) = 0, so f = Au︸︷︷︸

∈R(A)

+ (f −Au)︸ ︷︷ ︸
∈R(A)⊥

∈ R(A)⊕R(A)⊥.

In the backward direction, let f ∈ R(A)⊕R(A)⊥. Then f = Au︸︷︷︸
∈R(A)

+ g︸︷︷︸
∈R(A)⊥=R(A)

⊥

. This gives us

PR(A)
f = Au, and this implies a least-squares solution exists by the theorem.

�

Note that if X and R(A) are finite, then R(A) is closed, so a least-squares solution always exists. We can
further formalise this.

Theorem 4.3. Let f ∈ R(A) ⊕ R(A)⊥. Then there exists a unique minimal-norm solution u† to Au = f and all
least-squares solutions can be given by {u†}+N (A).

Proof .
From Lemma 4.2, we know that S is nonempty. Let s ∈ S. We know s satisfies the normal
equations.

A(s− u+) = As−Au+ = PR(A)
f − PR(A)

f = 0 =⇒ s− u+ ∈ N (A). (4.8)

�



If a minimum-norm solution exists, it can be characterised by the Moore-Penrose pseudoinverse.

Definition 4.1. Let A : X → Y be linear (or A ∈ L(X ,Y)) and

Ã := A

∣∣∣∣
N(A)⊥

: N(A)⊥ → R(A). (4.9)

Then theMoore-Penrose pseudoinverseA† is defined as the unique linear extension of Ã−1 toD(A†) = R(A)⊕R(A)⊥

satisfying N(A†) = R(A)⊥.

The restriction Ã is injective and surjective, so it has an inverse. Since D(A†) = R(A) ⊕ R(A)⊥, we can
always decompose an element f ∈ D(A†) into two terms, f = f1 + f2. Then

A†f = A†f1 +A†f2 = A†f1 = Ã−1PR(A)f. (4.10)

Orthogonal complements are always closed, so D(A†) = R(A) + R(A)⊥ = Y , so D(A†) is dense in Y . If
R(A) is closed, thenD(A†) = Y : the domain of the pseudoinverse is the whole space. This goes both ways,
so if the domain is the whole space we can conclude R(A) is closed. This more or less only happens in the
finite-dimensional setting, so it doesn’t come up much in inverse problems, which are mostly formulated in
infinite dimensions.

Theorem 4.4. A† satisfiesR(A†) = N (A)⊥ and

1. A†A = PN(A)⊥

2. AA† = PR(A)

∣∣∣
D(A⊥)

3. AA†A = A

4. A†AA† = A†.

Example 4.1. Let A =

[
2 0 0
0 0 0

]
. The pseudoinverse is A† =

1/2 0
0 0
0 0

, and it satisfies all of the

above. For instance, A†A =

1 0 0
0 0 0
0 0 0

 which is the projection matrix onto
[
1 0 0

]ᵀ, i.e. the

projection matrix onto N (A)⊥.
�
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5.1 Compact operators

A compact operator is a linear operator that maps bounded sets to compact sets.

Definition 5.1. Let A = L(X,Y ). Then A is compact if for any bounded set B ⊂ X , A(B) is compact in Y .

An alternative definition is: for every sequence ⊂ {uj}j∈N, the image set ⊂ {Auj}j∈N ⊂ Y has a convergent
subsequence {Aujk}k∈N ⊂ Y .

The space of all compact operators is denoted byK(X,Y ).

Theorem 5.1. Let A ∈ K(X,Y ) with an infinite-dimensional range. Then the Moore-Penrose pseudoinverse is
discontinuous.

Proof .
Since dimR(A) = ∞, we must also have that dimN (A)⊥ = ∞. Therefore, we can construct
infinitelymanyorthonormal elements. Let {uj}j ⊂ N (A)⊥ be such that ‖uj‖ = 1 and 〈uj , uk〉 = δjk.
Since A is a compact operator, the sequence {Auj : j ∈ N} has a convergent subsequence, so for all
δ > 0 we can find j, k such that ‖Auj −Auk‖ < δ. However,

∥∥A†Auj −A†Auk∥∥2
=
∥∥∥projN (A)⊥uj − projN (A)⊥uk

∥∥∥2

= ‖uj − uk‖2 = ‖uj‖2 + ‖uk‖2 − 2〈uj , uk〉 = 2,

(5.1)

so the Moore-Penrose pseudoinverse is discontinuous.
�

5.2 Singular value decomposition

Theorem 5.2. Let X be a Hilbert space and A ∈ K(X,X) be self-adjoint. Then there exists an orthonormal basis
{Xj}j∈N ⊂ X of R(A) and a sequence of eigenvalues {λj}j∈N ⊂ R with |λ1| ≥ |λ2| ≥ · · · > 0 such that for all
u ∈ X we have

Au =

∞∑
j=1

λj〈u, xj〉xxj . (5.2)

The sequence {λj}j∈N is either finite or {λj} → 0.



Theorem 5.3. Let A ∈ K(X,Y ). Then there exists

1. a not-necessarily infinite null-sequence {σj}j∈N with σ1 ≥ σ2 ≥ · · · > 0

2. an orthogonal basis {xj}j∈N ⊂ X of N (A)⊥

3. an orthogonal basis {yj}j∈N ⊂ Y ofR(A)

such that

Axj = σjyj (5.3)
A∗yj = σjxj . (5.4)

Moreover,

Au =

∞∑
j=1

σj〈u, xj〉yj ∀u (5.5)

A∗f =

∞∑
j=1

σj〈f, yj〉xj ∀f (5.6)

15
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Last time, we covered the decomposition theorem for compact operators on infinite-dimensional vector
spaces. We can extend this:

Theorem 6.1. Let A ∈ K(X ,Y) with SVD {(σj , xj , yj)}j∈N and f ∈ D(A†). Then

A†f =

∞∑
j=1

σ−1
j 〈f, yj〉xj . (6.1)

Proof .
Since f ∈ D(A†), u† = A†f solves A∗Au† = A∗f . Therefore

A∗Au† = A∗
∞∑
j=1

σj〈u†, xj〉xj =

∞∑
j=1

σ2
j 〈u†, xj〉xj (6.2)

A∗f =

∞∑
j=1

σ0〈f, yj〉xj . (6.3)

These imply

〈u†, xj〉 = σ−1
j 〈f, yj〉. (6.4)

Since u† ∈ N (A)⊥, we get

u† =

∞∑
j=1

〈u†, xj〉xj =

∞∑
j=1

σ−1
j 〈f, yj〉xj = A†f. (6.5)

�

Note that A† is unbounded ifR(A) is infinite dimensional. Think about the sequence {yj}, where ‖yj‖ = 1,
so
∥∥A†yj∥∥ · σ−1

j →∞.

Definition 6.1. We say that f satisfies the Picard condition if

∥∥A†f∥∥2
=

∞∑
j=1

|〈f, yj〉|2

σ2
j

<∞. (6.6)
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Observe that as σr → 0, this is a condition on 〈f, yj〉 decaying sufficiently fast.

Theorem 6.2. Let A ∈ K(X ,Y) with SVD {(σj , xj , yj)}j∈N and f ∈ R(A). This measurement belongs to the
range of A (not just the closure) if and only if it fulfils the Picard criterion.

Proof .
Forward direction: let f ∈ R(A). Then there exists u ∈ X such that Au = f .

〈f, yj〉Y = 〈Au, yj〉Y = 〈u,A∗yj〉X = σj〈u, xj〉X . (6.7)

Therefore

∞∑
j=1

σ−2
j |〈f, yj〉Y |

2
=

∞∑
j=1

|〈u, xj〉X |2 ≤ ‖u‖2X <∞. (6.8)

Backward direction: start with the Picard criterion, and let

u =

∞∑
j=1

σ−1
j 〈f, yj〉Y xj ∈ X (6.9)

Au =

∞∑
j=1

σ−1
j 〈f, yj〉YAxj =

∞∑
j=1

〈f, yj〉yj = PR(A)
f = f, (6.10)

so f ∈ R(A).
�

Definition 6.2. A problem is mildly ill-posed if the singular values decay at most with polynomial speed, i.e. three
exists γ, c > 0 such that σj ≥ cj−γ for all j.

Definition 6.3. A problem is severely ill-posed if the singular values decay faster than polynomial speed, i.e. there
exist γ, c > 0 such that σj ≤ cj−γ for all j big enough.

Example 6.1. Consider the differentiation operator, A : L2([0, 1])→ L2([0, 1]),

(Au)(t) =

∫ t

0

u(s)ds =

∫ 1

0

K(s, t)u(s)ds, (6.11)

whereK(s, t) =

{
1 s ≤ t
0 otherwise

. Then

(A∗f)(s) =

∫ 1

0

K(t, s)f(t)dt =

∫ 1

s

v(t)dt. (6.12)



We are interested in the SVD of A∗A, so we want σ2, x ∈ L2([0, 1]) such that

σ2x(s) = (A∗Ax)(s) =

∫ 1

s

∫ t

0

x(r)drdt, (6.13)

which implies x(1) = 0.

Also

σ2x′(s) =
d

ds

∫ 1

s

∫ t

0

x(r)drdt = −
∫ s

0

x(r)dr =⇒ x′(0) = 0. (6.14)

Also

σ2x′′(s) + x(s) = 0, (6.15)

so we solve this as we usually solve a second-order ODE,

x(s) =
√

2 cos

(
2

(2j − 1)π
s

)
(6.16)

for j ∈ N, where we chose the leading
√

2 to be a normalising constant. We can use the xjs to find
the yjs, by computing Axj = σjyj .

yj(s) =
√

2 sin

((
j − 1

2

)
πs

)
. (6.17)

�
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Regularisation consists of replacing a problemwith another one that’s easier to solve, and whose solution is
close to that of the original problem. We’ll have to show that the problem and its regularisation are related
in some way, but that the regularised one is easier to solve.

If we have a measurement fδ (i.e. ‖f − fδ‖ ≤ δ), then A†fδ 9 A†f as δ → 0 in general. So how do we find
an operator that does this and is close to A†?

We take a family of operators Rα, parameterised by some α(δ, fδ) such that Rδ,fδ(fδ) → A†f as δ → 0, for
all f ∈ D(A†) and fδ ∈ Y such that ‖f − fδ‖Y ≤ δ.

Definition 7.1. Let A ∈ L(X ,Y) be bounded. A family {Rα}α>0 of continuous operators is called a regularisation
of A† if Rαf → A†f = u† for all f ∈ D(A†) as α→ 0.

Observe that since A† may not be continuous, Rα might not be bounded when α→ 0.

Theorem 7.1. Let X ,Y be Hilbert spaces and {Aj}j∈N ⊂ L(X ,Y) be a family of pointwise bounded operators, that
is, for all u ∈ X , there exists c(u) > 0 such that if supj∈N ‖Aju‖ ≤ c(u), then supj∈N ‖Aj‖L(X ,Y) <∞.

Corollary 7.2. Let X ,Y be Hilbert spaces and let {Aj}j∈N ⊂ L(X ,Y). The following are equivalent:

1. There exists A ∈ L(X ,Y) such that Au = lim
j→∞

Aju for all u ∈ X .

2. There exists a dense subspace X ′ ⊂ X such that lim
j→∞

Aju exists for all u ∈ X ′ and supj∈N ‖Aj‖L(X ,Y).

Theorem 7.3. Let X ,Y be Hilbert spaces, let A ∈ L(X ,Y) and let {Rα}α>0 be a regularisation of A†. If A† is not
continuous, {Rα}α>0 cannot be uniformly bounded. In particular, there exists f ∈ Y and a sequence αj → 0 such
that

∥∥Rαjf∥∥j→∞ →∞.

Proof .
We proceed by contradiction. Assume {Rα}α>0 is uniformly bounded. Then, there exists C such
that ‖Rα‖L(X ,Y) ≤ C for all α > 0. Given the definition of regularisation, Rαj → A† on D(A†) for
all αj → 0, sinceD(A†) is dense in Y . So if the limit exists in the whole space Y , then we can extend
A† to the whole Y as this limit, so A† is a bounded operator on L(X ,Y). But this is a contradiction
as A† is not continuous on Y .
In the other direction,we alsoproceedby contradiction. Assume that for all f ∈ Y andany sequence
αj → 0, we have supj∈N

∥∥Rαjf∥∥ ≤ c(f) <∞. Then we would have supj∈N
∥∥Rαj∥∥L(X ,Y)

≤ C <∞,
which is a contradiction.

�

Theorem 7.4. Let A ∈ L(X ,Y) and let {Rα}α>0 be a linear regularisation of A†. If supα>0 ‖ARα‖L(X ,X ) < ∞,
then ‖Rαf‖X →∞ for all f ∈ D(A†).



Proof .
Define uα = Rαf for f 6∈ D(A†) = R(A) ⊕ R(A)⊥. Assume there exists a sequence αk → 0 such
that ‖uαk‖X is uniformly bounded.
At this point, we’ll need a few functional analysis tools:

• Bounded sets in Hilbert spaces are weakly precompact, i.e. there exists a weakly convergent
subsequence uαkl with limit u ∈ X .

• Continuous operators are weakly continuous.

Putting these two together, we can conclude that Auαkl → Au.
In the reverse direction, for any g ∈ D(A†) we have that ARαkl g = AA†g = PR(A)

g. Since D(A†)

is dense in Y , using the corollary, we can conclude that ARαkl f → PR(A)
f , and (as we did it

in the first part of the proof) we know that Auαkl ⇀ Au, so we get Au = PR(A)
f ∈ R(A). But

Y = R(A)⊕R(A)⊥, so f ∈ R(A)⊕R(A)⊥ = D(A†).
�

So far, we’ve worked with an arbitrary α, but for concrete problems we’d like a particular way to choose it,
preferably as a function of the noise δ. We’d like to set things up such that α→ 0 as δ → 0.

Consider

∥∥Rαfδ − u†∥∥X ≤ ‖Rαfδ −Rαf‖X +
∥∥Rαf − u†∥∥X (7.1)

≤ δ‖Rα‖L(X ,X ) +
∥∥Rαf −A†f∥∥X . (7.2)

The first term could be complicated; we saw above that it isn’t necessarily uniformly bounded. These
represent a regularisation tradeoff: the more you regularise, the more the magnitude of the first term goes
down and the more the magnitude of the second term goes up. As α → 0, the data error goes to infinity
and the approximation error goes to 0, and as α→∞, the reverse happens.

20



Lecture 8: Parameter choice 21

Inverse Problems Lent 2022

Lecture 8: Parameter choice
Lecturer: Malena Sabaté Landman 15 February Aditya Sengupta

8.1 Parameter choice rules

Definition 8.1. A function α : R>0 × Y → R>0, (δ, fδ)→ α(δ, fδ) is a parameter choice rule.

In particular, we can have

• a priori parameter choice rules, in which the rule depends only on the noise level δ and not on the
measurements fδ ;

• a posteriori parameter choice rules, in which the rule depends on both δ and fδ ; and,

• an heuristic parameter choice rule, in which the rule depends only on the measurement.

Definition 8.2. Let {Rα}α>0 be a regularisation of A†. If f ∈ dom(A†), there exists a parameter choice rule such
that

lim
δ→0

(
sup

fδ|‖f−fδ‖Y<δ

∥∥Rαfδ −A†f∥∥X
)

= 0. (8.1)

and

lim
δ→0

(
sup

fδ|‖f−fδ‖Y<δ
α(δ, fδ)

)
= 0. (8.2)

In this case, we say (Rα, α) is a convergent regularisation.

In words, we’re taking the supremum over a noise level δ, i.e. we’re taking the worst case, and ensuring we
can still control it, i.e. the (regularised function on noisy data) and (pseudoinverse on true data) still match
up for sufficiently small δ.

8.1.1 A priori parameter choice rules

Theorem 8.1. Let {Rα}α>0 be a regularisation of A†, where A ∈ L(X , Y ). There is always a parameter choice rule
depending only on δ such that we have a convergent regularisation.

Theorem 8.2 (Linear convergent regularisation). Let {Rα}α>0 be a linear regularisation and α : R>0 → R>0 be
an a priori parameter choice rule. Then (Rα, α) is a convergent regularisation method if and only if limδ→0 α(δ)→ 0
and limδ→0 δ

∥∥Rα(δ)

∥∥
L(X ,Y)

= 0.
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Proof .
In the backward direction, we assume the two limits hold. For any f ∈ dom(A†) and any fδ ∈ Y
such that ‖f − fδ‖Y ≤ δ, using the two limits

lim
δ→0

sup
fδ:‖f−fδ‖<δ

∥∥Rα(δ)fδ −A†fδ
∥∥ ≤ lim

δ→0
sup

fδ:‖f−fδ‖<δ

∥∥Rα(δ)fδ −Rα(δ)f
∥∥

+ lim
δ→0

∥∥Rα(δ)f −A†f
∥∥

+ lim
δ→0

sup
fδ:‖f−fδ‖<δ

‖f − fδ‖.

(8.3)

The first term goes to 0 by the operator norm on Rα. The second term goes to 0 by α going to 0
with δ and by Rα being a regularisation. The third term goes to 0 because of the condition on the
supremum. Therefore we have

∥∥Rα(δ) −A†f
∥∥
X

δ→0−−−→ 0, (8.4)

and so (Rα, α) is a convergent regularisation method.
In the forward direction, we take the contrapositive: we need to show that if either limit does not
hold individually, then (Rα, α) is not a convergent regularisation method. If limδ→0 α(δ)→ 0 does
not hold, then the definition of being a convergent regularisation is violated, so assume it does
hold, and consider the case where limδ→0 δ

∥∥Rα(δ)

∥∥
L(X ,Y)

= 0 does not hold. Then there exists a
null sequence {δk}k∈N such that δk‖Rα(δk)‖L(X ,Y) ≥ c > 0 for some c.
This implies we can find a sequence {gk}k∈N ⊂ Y with ‖gk‖Y = 1 and δk

∥∥Rα(δk)gk
∥∥
X ≥ c̃. Let

f ∈ dom(A†) and define fk = f + δkgk. Then

‖f − fk‖ ≤ δk (8.5)
Rα(δk)fk −A†f = Rα(δk)f −A†f + δkRα(δk)gk︸ ︷︷ ︸

bounded from below

6→ 0. (8.6)

Therefore, this is not a convergent regularisation.
�

8.1.2 A posteriori parameter choice rules

Most parameter choice rules used in practice fall into this category.

Note that if α = α(δ) defines a convergent regularisation method, then so does α̃ = α(cδ) for any c > 0.
Asymptotically they are equivalent, but for a given δ they might give very different results. This adds in
a level of degeneracy we might not want, that might be corrected by adding in direct dependence on the
measurements.

The idea behind a posteriori parameter choice rules is as follows. We have f ∈ dom(A†) and fδ ∈ Y such that
‖f − fδ‖ ≤ δ, and we want to look at the residual associated to uα = Rαfδ .

If we define



µ = inf{‖Au− f‖, u ∈ X} = ‖Au∗ − f‖, (8.7)

then

∥∥Au† − fδ∥∥ ≤ ∥∥Au† − f∥∥+ ‖fδ − f‖ ≤ µ+ δ. (8.8)

In a lot of cases, this is a pretty tight bound.

Definition 8.3 (Morozov’s discrepancy principle). Let uα = Rαfδ with α(δ, fδ) chosen by

α(δ, fδ) = sup{α > 0 | ‖Auα − fδ‖ ≤ ηδ}, (8.9)

where η > 1 is a fixed constant representing a “safety threshold”.

Then we say uα(δ,fδ) = Rα(δ,fδ)fδ satisfies the discrepancy principle.

Note that the discrepancy principle yields a convergent regularisation method.

8.1.3 Heuristic parameter choice rules

In some settings, you don’t have a good estimate of the error and would like parameter choices to be based
only on the data itself. This has a massive drawback, though.

Theorem 8.3 (Bakushinskii veto). Let A ∈ L(X ,Y) and {Rα} be a regularisation where we let α = α(fδ). Then
if (Rα, α) is a convergent regularisation of A†, then A† is continuous from Y to X .

23
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9.1 Parameter choice

Recall

A†f =

∞∑
j=1

1

σj
〈f, yj〉xj , (9.1)

where {σj , xj , yj} is the SVD of A. Let us consider the regularization

Rαf =

∞∑
j=1

gα(σj)〈f, yj〉xj ∀f ∈ Y, (9.2)

where gα : R+ → R+, and for all σ > 0, gα(σ)
σ→0−−−→ 1

σ , and gα(σ) ≤ cα for all σ ∈ R>0.

Theorem 9.1. Let gα : R+ → R+ be a piecewise continuous function such that

1. gα(σ) ≤ cα ∀σ ∈ R+

2. lim
σ→0

gα(σ) = 1
σ

3. supα,σ σgα(σ) ≤ γ for some γ > 0.

Then Rαf =
∑∞
j=1 gα(σj)〈f, yj〉xj satisfies Rαf

α→0−−−→ A†f .

It’s important that this is piecewise continuous.

Proof .
This proof is based on the spectral decomposition, and becausewe’ve defined both the components
ofA† andRα in this decomposition, this basically just comes down to comparing basis components.
Using the SVD of A†,

Rαf −A†f =

∞∑
j=1

(
gα(σj)−

1

σj

)
〈f, yj〉Yxj (9.3)

=

∞∑
j=1

(σjgα(σj − 1)〈u+, xj〉xxj (9.4)
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So we can look at the norm-squared,

∥∥Rαf −A−1f
∥∥2

X =

∞∑
j=1

(σjgα(σj)− 1)2
∣∣〈u+, xj〉X

∣∣2. (9.5)

From the third condition in the theorem, we have (σjgα(σj) − 1)2 ≤ (1 + γ2), and further we can
say

∑∞
j=1(1 + γ2)|〈u+, xj〉X |

2
= (1 + γ2)‖u+‖2 <∞. Therefore

lim
α→0

sup
∥∥Rαf −A†f∥∥2

X = lim
α→0

sup

∞∑
j=1

(σjgα(σj)− 1)
2(〈u+, xj〉X

)2 (9.6)

≤
∞∑
j=1

(
lim
α→0

sup(σjgα(σj))
2
∣∣〈u+, xj〉X

∣∣2) = 0, (9.7)

where the ≤ is done due to the reverse Fatou lemma and the equality to 0 comes via the pointwise
convergence of gα(σj) to 1

σj
.

�

Theorem 9.2 (Parameter choice rules for filtering methods). Let the assumptions of the previous theorem hold.
Let α = α(δ), i.e. we take a regularisation parameter that just depends on the noise level. Then (Rα(δ), α(δ)) is a
convergent regularisation method if

lim
δ→0

δCα(δ) = 0. (9.8)

The proof follows from
∥∥Rα(δ)

∥∥
α(Y,Y)

≤ Cα(δ) and the previous theorem.

Example 9.1. Truncated singular value decomposition: this is pretty self-explanatory. We’ve seen
a decay rate (for σj against the number of singular values) for true problems that isn’t replicated
by regularisers, which tend to just level out. An easy way to avoid this is to just cut off the series.

Rαf =
∑
σj≥α

1

σj
〈f, yj〉Yxj =

∞∑
j=1

gα(σj)〈f, yj〉Y xj , (9.9)

where gα(σ) =

{
1
σ σ ≥ α
0 σ < α

.

We can look at the conditions on the spectral regularisation theorem:

1. Cα = 1
α

2. limα→0 gα(σ) = 1
σ for all σ
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3. If γ = 1, this holds.

So TSVD is a convergent regularisationmethod if lim
δ→0

δ
α(δ) = 0. It remains to be seen how to choose

this threshold.

LetA ∈ L(X ,Y) with an SVD {(σj , xj , yj)}j∈N and choose for j > 0 an index function j∗ : R+ → N,
such that j∗(δ) δ→0−−−→∞ and limδ→0

δ
σj∗(δ)

= 0. Then α(δ) = σj∗(δ) as a parameter choice rule leads
to a convergent regularisation method.

�

9.2 Tikhonov regularisation

We can think of Tikhonov regularisation as a shift in the eigenvalues of the normal equations. We have
A∗Au = A∗f , andA∗A admits a decomposition toXΣXᵀ. If we know the singular values don’t behave very
well, we can approximate this expansion by a problem where they do. We take XΣXᵀ ≈ X(Σ + αI)Xᵀ.
We can prove this approximation corresponds to

Rαf =

∞∑
j=1

σj
σ2
j + α

〈f, yj〉Yxj , (9.10)

which is the standard regularisation form for gα(σ) = σ
σ2+α .

Let’s look at the conditions of the theorem of spectral regularisation, and see if they’re satisfied.

1. 0 ≤ (σ −
√
α)2 = σ2 − 2σ

√
α + α =⇒ σ2 + α ≥ 2σ

√
α, so 1

2
√
α
≥ σ

σ2+α , so condition 1 holds for
Cα = 1

2
√
α
.

2. Taking the limit is trivial: limα→0 gα(σ) = 1
σ → 0.

3. This is satisfied for γ = 1.

Therefore Tikhonov regularisation is a convergent regularisation method if limδ→0
δ√
α

= 0.

Applying A∗A+ αI to uα = Rαf , we have

(A∗A+ αI)uα =

∞∑
j=1

(σ2
j + α〈uα, xj〉Xxj =

∞∑
j=1

(σ2
j + α)

σj
σ2
j + α

〈f, yj〉Yxj = A∗f. (9.11)

This proves that computing a Tikhonov solution is equivalent to solving the original equation.

(A∗A+ αI)uα = A∗f, (9.12)

or



A∗(Auα − f) + αuα = 0, (9.13)

which looks like a first-order optimality condition of

min
u∈X

{
‖Au− f‖2 + α‖u‖2

}
. (9.14)
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Variational regularisation can be written as the following minimisation problem:

min
u∈X

1

2
‖Au− fδ‖2 + αJ(u), (10.1)

where the first term is the “fit-to-data” or fidelity term, and the second is the regulariser, which penalises
unwanted behaviour in the solution.

Variational regularisation has a nice link to Bayesian statistics, as the fit-to-data term is related to the noise
and the regularisation term is related to the prior.

The regularisation operator is defined as

Rαfδ ∈ arg min
u∈X

1

2
‖Au− fδ‖2 + αJ(u). (10.2)

In general, the minimiser does not have to be unique, so we express this with ∈ not =.

We’ll go into some background on functional analysis first.

A Banach space is a complete normed vector space. They aren’t necessarily inner product spaces.

Definition 10.1. The dual spaceX ∗ to a Banach spaceX is the space of all continuous linear functionals f ∈ L(X ,R).

Note that given u ∈ X and p ∈ X∗, we usually write the dual product as 〈p, u〉 instead of p(u).

We can use this to define the adjoint operator of a linear operator: given A ∈ L(X , Y ), there exists a unique
operator A∗ : Y∗ → X∗ called the adjoint of A, such that for all u ∈ X , p ∈ Y ∗,

〈A∗p, u〉 = 〈p,Au〉. (10.3)

The dual space of a Banach space X can be equipped with a norm

‖p‖X∗ := sup
u∈X ,‖u‖X≤1

〈p, u〉. (10.4)

With this norm, X ∗ is a Banach space. We can do this again, to get the bidual space X∗∗ which is also a
Banach space.

Every u ∈ X defines a continuous linear mapping on the dual space X∗ defined as 〈E(u), p〉 := 〈p, u〉. The
mapping E : X → X∗∗ is well defined. It can be shown that E is linear, continuous, and an isometry (and
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therefore injective). We call this mapping the canonical embedding from X to X ∗∗. We also say that if the
canonical embedding E is surjective, then X is reflexive: that is, the space X coincides with its bidual.

Examples of reflexive Banach spaces include Hilbert spaces, Lp spaces (spaces of functions with norms that
are generalisations of p−norms in infinite dimensions) or `p spaces (spaces of sequences with associated
norms which are generalisations of p-norms).

Definition 10.2. A Banach space X is separable if ∃X ′ ⊂ X of at most countable cardinality such that X ′ = X .

A problem with infinite-dimensional spaces is that bounded sequences might not have convergent subse-
quences.

Example 10.1. Take {uk}k∈N ⊂ `2 such that ukj = δkj . This is a sequence of sequences like
(1, 0, 0, . . . ), (0, 1, 0, . . . ), (0, 0, 1, . . . ), . . . . Then

∥∥uk∥∥
`2

= 1, but there is no u ∈ `2 such that uk → u.
This is a bounded sequence without a convergent subsequence.

�

To work around this, we’ll introduce weak convergence.

Definition 10.3. A sequence {uk}k∈N ⊂ X converges weakly to u ∈ X , denoted by uk ⇀ u if for all p ∈ X∗, the
sequence of real numbers {〈p, uk〉}u∈N converges to 〈p, u〉.

Definition 10.4. A sequence {pk}k∈N ⊂ X ∗ converges weakly-* to p ∈ X , denoted by pk ⇀∗ X ∗ if 〈pk, u〉 → 〈p, u〉
for all u ∈ X .

Theorem 10.1 (Banach-Alaoglu). Let X∗ be the dual space of a Banach space X . Then the unit ball BX = {p ∈
X ∗ | ‖p‖ ≤ 1} is compact in the weak-* topology. If X is separable, then the weak-* topology is metrisable on bounded
sets, and every bounded sequence {uk}u∈N ⊂ X has a weak-* convergent subsequence.

Theorem 10.2. Each bounded sequence {uk}k∈N in a reflexive, separable Banach space X has a weakly convergent
subsequence.

Definition 10.5. LetX be a Banach space with a given topology τX . Then the functionalE : X → R = R∪{−∞,∞}
is said to be sequentially lower semi-continuous with respect to τX at u ∈ X if

E(u) ≤ lim inf
j→∞

E(uj), (10.5)

for all sequences {uj}j∈N ⊂ X such that uj → u in the topology τX .

Note that if a topology is induced by a metric, then continuity and sequential continuity are equivalent.

Example 10.2. The functional ‖·‖1 : `2 → R defined as

‖u‖1 =

{∑∞
j=1 |uj | u ∈ `1

∞ u 6∈ `1
(10.6)

is weakly lower semi-continuous in `2.
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�

Proof .
Take a weakly convergent sequence {uj}j∈N ⊂ `2, and let its limit be u. If we take the element in
the dual δk : `2 ∈ R such that

〈δk, v〉 = vk ∀k ∈ N, (10.7)

then we have that ujk = 〈δk, uj〉 → 〈δk, u〉 = uk. We can now see that the 1-norm ‖·‖1 is lower-semi
continuous, because

‖u‖1 =
∞∑
k=1

|uk| =
∞∑
k=1

lim
j→∞

∣∣∣ujk∣∣∣ ≤︸︷︷︸
Fatou’s lemma

lim inf
j→∞

∞∑
k=1

∣∣∣ujk∣∣∣ = lim inf
j→∞

∥∥uj∥∥
1
. (10.8)

Note that it is not clear whether either side of this inequality is finite.
�

The other bit of background we’ll pull from is convex analysis. We’ll look at functions E : X → R =
R ∪ {−∞,∞}, where we treat ±∞ as elements of R such that x < +∞ and x > −∞ for all x ∈ R.

We define operations with these elements (where x ∈ R and λ > 0) as follows:

x±∞ = ±∞+ x = ±∞ (10.9)
λ · (±∞) = (±∞) · λ = ±∞ (10.10)

−1 · (±∞) = ∓∞ (10.11)
x/(±∞) = 0 (10.12)

+∞+∞ =∞,−∞−∞ = −∞ (10.13)

Note that we don’t define +∞−∞, or (±∞)(±∞).

This is a useful language with which to model constraints. For example, if we want to minimise

E : [−1,∞)→ R (10.14)
x→ x2, (10.15)

we can model this as

Ẽ : R→ R (10.16)

Ẽ(x) =

{
x2 x ≥ −1

∞ else
. (10.17)



This makes theoretical arguments easier, as Ẽ(x + y) is always well defined, and it makes practical imple-
mentations easier, as unconstrained optimisation is in general easier than constrained optimisation. This
has the drawback of making it so that Ẽ is not everywhere differentiable.

Definition 10.6. The characteristic function XC : X → R of a set C ⊂ X

XC(u) =

{
0 u ∈ C
∞ else

(10.18)

We can use this to write constrained optimisation problems as unconstrained ones.

min
u∈C

E(u)↔ min
u∈X

E(u) +XC(u). (10.19)

With this, we get the drawback of not having a well-defined domain, so we make a definition to deal with
that.

Definition 10.7. Let X be a vector space and let E : X → R. Then the effective domain of E is

dom(E) = {u ∈ X | E(u) <∞}. (10.20)

Definition 10.8. A functional E is proper if its effective domain is not empty.

31
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11.1 Convexity

Definition 11.1. Let X be a vector space. A subset C ⊂ X is called convex if λu + (1 − λ)v ∈ C for all u, v ∈ C
and λ ∈ (0, 1).

We can extend this concept to functionals.

Definition 11.2. A functional E : X → R is called convex if

E(λu+ (1− λ)v) ≤ λE(u) + (1− λ)E(v), (11.1)

for all u, v ∈ dom(E) with u 6= v and for all λ ∈ (0, 1). It is called strictly convex if the inequality is strict, and it is
called strongly convex with constant θ if E(u)− θ‖u‖2 is convex.

We have that strong convexity implies strict convexity implies convexity.

Example 11.1. f : R→ R, x 7→ |x| is convex.
�

Example 11.2. g : R → R, x 7→ x4 is strictly convex, but not strongly convex as x4 − θx2 has roots
at ±
√
θ and at 0, creating non-convex bumps.

�

Example 11.3. h : R→ R, x 7→ x2 is strongly convex.
�

Lemma 11.1. Let α ≥ 0 andE,F : X → R be two convex functionals. ThenE+αF : X → R is convex. Moreover,
if α > 0 and F is strictly convex, then E + αF is strictly convex.

The second property is really useful: even if we start with something that is just convex (not strictly), we
can perturb it a bit with something that’s strictly convex to get a strictly convex result.
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Definition 11.3. Let E : X → R be a functional. The Fenchel conjugate of E is defined as

E∗ : X ∗ → R, E∗(p) = sup
u∈X

[〈p, u〉 − E(u)] . (11.2)

Theorem 11.2. For any functional E : X → R, the following inequality holds:

E∗∗(u) = (E∗)∗(u) ≤ E(u) ∀u ∈ X . (11.3)

If E is proper, lower semicontinuous, and convex, then E∗∗ = E.

11.2 Subgradients

Definition 11.4. A functional E : X → R is called subdifferentiable at u ∈ X if there exists an element p ∈ X ∗ such
that

E(v) ≥ E(u) + 〈p, v − u〉 ∀v ∈ X . (11.4)

We call p the subgradient at u.

Definition 11.5. The collection of subgradients of E at u is called the subdifferential of E at u:

∂E(u) = {p ∈ X∗ | E(v) ≥ E(u) + 〈p, v − u〉 ∀v ∈ X}. (11.5)

The intuitive idea here is that a straight line always has to go below the function we’re looking at. A straight
line is a (possibly bad) approximation from below.

For a differentiable functional, the subdifferential consists of just one element, so this isn’t a very interesting
idea (for example, x 7→ x2 has just the slope 2xwith the appropriate intercept at whatever point you choose).

For nondifferentiable functionals, the subdifferential is multivalued. For example, consider E : R→ R, u 7→
|u|. The subdifferential is

∂E(u) =


{1} u > 0

[−1, 1] u = 0

{−1} u < 0

(11.6)

because you can put any line between y = x and y = −x down and have it lower-bound |x| at x = 0.

If a convex functional E : X → R is proper, then for all u 6∈ dom(E), the subdifferential is empty.

Proposition 11.3. Let E : X → R be a convex functional and let u ∈ dom(E) such that E is continuous at u. Then
∂E(u) 6= ∅.
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Theorem 11.4. Let E : X → R be a proper convex functional and u ∈ dom(E). Then ∂E(u) is a weak-* compact
convex subset of X ∗.

Theorem 11.5. Let E : X → R and F : X → R be proper, lsc convex and we have u ∈ dom(E)∩ dom(F ) such that
E is continuous at u. Then pd(E + F ) = ∂E + ∂F .

Theorem 11.6. An element u ∈ X is a minimiser of the functional E : X → R iff 0 ∈ ∂E(u).

Proof .
By definition, 0 ∈ ∂E(u) ⇐⇒ for all v ∈ X , E(v) ≥ E(u) + 〈0, v − u〉 = E(u).

�

Theorem 11.7. Let E : X → R be a convex function and E∗ : X ∗ → R be its convex conjugate. Then

p ∈ ∂E(u) ⇐⇒ E(u) + E∗(p) == 〈p, u〉. (11.7)

11.3 Bregman distances

Definition 11.6. LetE : X → R be a convex functional. Moreover, let u, v ∈ X such thatE(v) <∞ and q ∈ ∂E(v).
Then the (generalised) Bregman distance of E between u and v is defined as

Dq
E(u, v) = E(u)− E(v)− 〈q, u− v〉. (11.8)



Note that this looks almost like a metric, because it’s always greater than or equal to 0, and the distance
between a point and itself is 0. However, in general, Dq

E(u, v) = 0 ; u = v. Further, this isn’t symmetric.

However, for some specific cases, the Bregman distance is actually ametric. For example, forE(u) = 1
2‖u‖

2
X ,

if X is a Hilbert space, we have a familiar metric:

Dq
E(u, v) =

1

2
‖u− v‖2X . (11.9)

To fix this in general, we introduce the symmetric Bregman distance.

Definition 11.7. Let E : X → R be a convex functional and let u, v ∈ X . Let E(u) < ∞, E(v) < ∞, q ∈
∂E(v), p ∈ ∂E(u). Then the symmetric Bregman distance of E between u and v is defined as

Dsymm
E (u, v) := Dq

E(u, v) +Dp
E(v, u) = 〈p− q, u− v〉. (11.10)

35
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Definition 12.1. Let E : X → R be a convex functional and let u, v ∈ X , E(u) < ∞, E(v) < ∞. Let q ∈ ∂E(v)
and p ∈ ∂E(u). Then, the symmetric Bregman distance of E between u and v is defined as

Dsymm
E (u, v) = Dq

E(u, v) +Dp
E(v, u) = 〈p− q, u− v〉. (12.1)

Definition 12.2. A functional E : X → R is called absolutely one-homogeneous if E(λu) = |λ|E(u) for all
λ ∈ R, x ∈ X .

Note that absolutely one-homogeneous convex functionals have E(0) = 0.

Proposition 12.1. LetE be a convex absolutely one-homogeneous functional and let p ∈ ∂E(u). ThenE(u) = 〈p, u〉.

Note that Dp
E(v, u) = E(v)− 〈p, v〉.

Proposition 12.2. LetE : X → R be a proper, convex, l.s.c. and abs one-hom functional. Then the Fenchel conjugate
E∗ is the characteristic function of the convex set ∂E(0).

Proposition 12.3. For any u ∈ X , p ∈ ∂E(u) iff p ∈ ∂E(0) and E(u) = 〈p, u〉.

12.1 Minimisers

Definition 12.3. Let X → R be a functional. We say that u∗ ∈ X solves the minimisation problem minu∈X E(u)
when E(u∗) <∞ and E(u∗) ≤ E(u) for all u ∈ X . We call u∗ the minimiser of E.

Definition 12.4. A functional E : X → R is bounded from below if there exists a constant C > −∞ such that for all
u ∈ X , E(u) ≥ C.

Forminimiser existence, it’s important to place certain “sanity conditions”, becausewe can create convergent
sequences whose image under E aren’t necessarily bounded. One such condition is coercivity.

Definition 12.5. E : X → R is coercive if for all sequences {uj}j∈N with ‖uj‖X →∞ we have E(uj)→∞.

Equivalently, a coercive functional is one such that if {E(uj)}j∈N ⊂ R then so is {uj}j∈N ⊂ X .

Lemma 12.4. Let E : X → R be a proper, concave functional bounded from below. Then, the infimum infu∈X E(u)
exists in R, there are minimising sequences (i.e. {uj}j∈N ⊂ X with E(uj) → infu∈X E(u)) and all minimising
sequences are bounded.
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Proof .
AsE is proper andbounded frombelow, there existsC1 > 0 such that−∞ < −C1 < infuE(u) <∞.
Then there exist minimising sequences.

�

Let {vj}j∈N be any minimising sequence. Then there exists j0 ∈ N such that for vj>j0 we have that
E(vj) ≤ inf E(u) + 1︸ ︷︷ ︸

C2

<∞. Therefore |E(vj)| < max {C1, C2} for all j > j0 and from the coercivity it follows

that {vj}j∈j0 is bounded, and so {uj}j∈N is bounded.

Theorem 12.5 (“Direct method”, or the fundamental theorem of optimisation). Let X be a Banach space and
τX be a topology onX (not necessarily the one induced by the norm), such that bounded sequences have τX -convergent
subsequences. Let E : X → R be proper, bounded from below, coercive, and τX lsc. Then E has a minimiser.

Proof .
We know that infu∈X E(u) is finite, and that minimising sequences exist and that they are finite.
Let {uj}j∈N ⊂ X be a minimising sequence. From the assumptions on the topology, there exist
{ujk}k∈N and u∗ ∈ X , such that ujk

τx,k→∞−−−−−→ u∗. From the l.s.c. property of E,

E(u∗) ≤ lim inf
k→∞

E(ujk) = lim
j→∞

E(vj) = inf
u∈X

E(u) <∞. (12.2)

So E(u∗) <∞, E(u∗) ≤ E(u) for all u ∈ X , and therefore u∗ is the minimiser of E.
�

There are some cases where these assumptions aren’t really satisfied.

Corollary 12.6. Let X be a reflexive Banach space, and let E : X → R be a functional which is proper, bounded from
below, coercive, and l.s.c. with respect to the weak topology. Then the functional E has a minimiser.

This is just the direct method without the constraint on τX sequences, because that’s provided by X being
reflexive.

A convex function is lower semi-continuous with respect to the weak topology iff it’s lower semi-continuous
with respect to the strong topology.

Basically, all we’ve done is apply the Bolzano-Weierstrass theorem from R to general Banach spaces, by
saying that bounded sequences need to have convergent subsequences for unique minimisers to work.

Theorem 12.7. Assume E : X → R is strictly convex and has at least one minimiser. Then the minimiser is unique.

Proof .
Let u, v be two minimisers of E, u 6= v. Then

E(u) ≤ E
(

1

2
u+

1

2
v

)
<

1

2
E(u) +

1

2
E(v) ≤ E(u), (12.3)



as E(v) ≤ E(u) (wlog).
�

38
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13.1 Duality in convex optimisation

Consider the following optimisation problem: let E : Y → R, F : X → R be proper, convex, and lsc. Let
A ∈ L(X ,Y) be linear and bounded.

P : inf
uinX

(E(Au) + F (u)). (13.1)

We call P the primal problem.

Since E is convex and lower semi-continuous, the conjugate of the conjugate is the functional itself: E =
(E∗)∗. As a reminder, the Fenchel conjugate of E is given by

E∗(y) = sup
y∈Y

(〈p, y〉 − E(y)). (13.2)

This allows us to rewrite E,

E(y) = (E∗)∗(y) = sup
η∈Y∗

(〈η, y〉 − E∗(η)), (13.3)

and using this we can also rewrite P :

P : inf
u∈X

(
sup
η∈Y ∗

(〈η,Au〉 − E∗(η))

)
+ F (u) (13.4)

P : inf
u∈X

sup
η∈Y ∗

(〈η,Au〉 − E∗(η) + F (u)). (13.5)

We call this form of P the saddle point problem.

Optimising over two spaces at once is awkward, so we’d like to change it. We can use the property that
inf sup ≥ sup inf to bound P by some other problem that may be more tractable.

inf
u∈X

(E(Au) + F (u)) ≥ sup
η∈Y∗

inf
u∈X

(〈η,Au〉 − E∗(η) + F (u)) (13.6)

= sup
η∈Y∗

inf
u∈X

(〈A∗η, u〉 − E∗(η) + F (u)) (13.7)

= sup
η∈Y ∗

(−E∗(η)− sup [〈−A∗η, u〉 − F (u)]), (13.8)
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where in the last step we’ve used the property inf x = − sup(−x), along with the lack of dependence of
E∗(η) on the supremum over u.

We end up with the Fenchel conjugate of F , so we can rewrite to get rid of the inner sup and get

D : sup
η∈Y∗

(−E∗(η)− F ∗(A∗η)).

This is the dual problem. Due to the ≥ in the middle, the optimal value of the primal problem is always
greater than or equal to the optimal value of the dual problem; if it’s less, we have weak duality, but if they’re
equal we have strong duality. The difference between the two is called the dual gap.

Theorem 13.1. Suppose that

(i) the functional E(Au) + F (u) : X → R is open, convex, lsc, and coercive.

(ii) there exists some u0 ∈ X such that F (u0) <∞, E(Au0) <∞, and E(y) is continuous at y = Au0.

Then

1. the dual problem D has at least one solution η̂;

2. there is no dual gap; and

3. if P has an optimal solution û, then −A∗η̂ ∈ ∂F (û), η̂ ∈ ∂E(Aû).

These conditions show the existence of a solution to D and characterise a solution to P if it exists, but they
do not ensure a solution to P exists.

13.2 Well-posedness and regularisation properties

We are interested in the properties of the variational regularisation minimisation problem:

min
u∈X
‖Au− f‖2 + αJ(u) (13.9)

Specifically, we want to find when this is a convergent minimiser of Au = f . Here, A : X → Y is a
linear bounded operator, Y is a Banach space, and X is the dual of a separable Banach space. We’ll look
at the existence of minimisers and at parameter choice rules for α, and how the minimisers converge to a
regularised solution to the inverse problem.

Definition 13.1. Let u†J be a least-squares solution to Au = f . That is,
∥∥∥Au†J − f∥∥∥Y = infv∈X ‖Av − f‖Y . If

J(u†J) ≤ J(ũ) for all least-squares solutions ũ, we say that u†J is a J-minimising solution of Au = f .

We’ll usually assume there is a least-squares solution having a finite value of J . It may not be unique, so we
may have to select one using some selection operator later, but we won’t worry about this too much.

First, let’s clarify what kinds of functionals we’re thinking about.
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Lemma 13.2. Let J(u) =
∑n
i=1 Ji(u), where each Ji is convex and pi-homogeneous, meaning that for pi > 0, we

have

Ji(λu) = |λ|piJi(u) ∀u ∈ X , λ ∈ R (13.10)

Then the null set N(J) := {u ∈ X | J(u) = 0} is a linear subspace of X

We’ll always end up looking at regularising functionals of this kind.

Proof .
First, we can see that Ji(u) ≥ 0 identically as follows:

0 = Ji(0) pi homogeneity with λ = 0

= Ji

(
1

2
u− 1

2
u

)
≤ 1

2
Ji(u) +

1

2
Ji(−u) convexity

= Ji(u) pi homogeneity with λ = −1 .

(13.11)

We use this to show that if u, v ∈ N(J), so is λu+ v. Let u, v ∈ N(J). Then Ji(u) = 0, Ji(v) = 0 for
i = 1, . . . , n. Therefore

0 ≤ Ji(λu+ v) as above

= 2piJi

(
λu

2
+
v

2

)
pi homogeneity with λ = 2

≤ 2pi
(

1

2
Ji(λu) +

1

2
Ji(v)

)
convexity

= 2pi−1(Ji(λu) + Ji(v)) pi homogeneity
= 2pi−1(|λ|piJi(u) + Ji(v)) = 0.

(13.12)

Therefore Ji(λu + v) = 0 for all i, so J(λu + v) = 0. N(J) therefore satisfies superposition and
scaling, so it is a linear subspace, which was what we wanted.

�

Lemma 13.3. Let J be defined as above. Suppose u ∈ X and v ∈ N(J). Then J(u+ v) = J(u).

IfN(J) is finite-dimensional, then it is complemented in X , meaning there exists a closed subspace X0 ⊂ X
such that X = X0 ⊕N(J) and X0 ∩N(J) = {0}.

This is building towards an idea where we decompose elements of X into those that do and don’t vanish
under J . Let’s add more lemmas to make this easier:

Lemma13.4. Suppose J : X → R+ as defined above is proper (and from above, convex and the sum of pi-homogeneous
terms). Let A ∈ L(X ,Y) be a bounded linear operator. Further, suppose



(i) dimN(J) <∞ and J is coercive on X0 (where X0 is defined as above)

(ii) the null spaces of A and J intersect only at 0.

Then, the function

φα(u) =
1

2
‖Au− f‖2Y + αJ(u) (13.13)

is coercive on X for any α > 0.

Coercivity is one of the key tools that we saw earlier to guarantee a minimiser exists, so we’re building up
these conditions to ensure we have that.

Proof .
Recall that coercivity ensures that if {φα(uj)}j∈N is bounded, then {uj}j∈N ⊂ X have bounded
norms.
Let {uj}j∈N ⊂ X . We use the decomposition X = X0 + N(J): for each uj there are unique
u0
j ∈ X0, u

N
j ∈ N(J) such that uj = u0

j + uNj .
Next, suppose {φα(uj)}j∈N is bounded, that is, there is some C such that φα(uj) ≤ C for all j. This
gives us J(uj) ≤ C. We know that J is coercive in X0, so we can say

∥∥u0
j

∥∥ ≤ C ′.
It remains to show the boundedness of uNj . To do this, we need to consider A. We restrict our
linear operator A to the relevant region by working with the restriction Ã = A

∣∣
N(J)

, so that its
domain is N(J) and its codomain is the range AN(J) ⊂ Y . By this restriction, A is surjective, and
since the null spaces of A and J have a trivial intersection, A is also injective. Therefore Ã−1 exists
and is bounded. For convenience, let

∥∥∥Ã−1
∥∥∥ = C̃.

We can now show that uNj has bounded norm:

∥∥uNj ∥∥ =
∥∥∥Ã−1(ÃuNj )

∥∥∥ ≤ C̃∥∥AuNj ∥∥ (13.14)

So it suffices to prove that AuNj is bounded:

∥∥AuNj ∥∥ =
∥∥AuNj +Au0

j − f − (Au0
j − f)

∥∥ ≤ ‖Auj − f‖+
∥∥Au0

j − f
∥∥ ≤ C + ‖A‖

∥∥u0
j

∥∥+ ‖f‖ ≤ C ′′

(13.15)

where in the last step we used the boundedness ofA and u0
j , and that ‖Auj − f‖ is upper-bounded

by the condition from the start on φα.
�
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Finally, we can show there is a J−minimising solution and a regularised solution for any choice of α > 0.
Theorem 14.1. LetX ,Y be Banach spaces, and let τX , τY be any topologies on them (not necessarily the ones induced
by the norm). Suppose

(i) bounded sequences in X converge in τX ;

(ii) J : X → R+ is proper, convex, τX l.s.c., and satisfies the prior assumptions (is a sum of convex pi-homogeneous
components);

(iii) A : X → Y is continuous in τX , τY (open sets in τX are mapped to open sets in τY );

(iv) the norm ‖·‖Y is lower semi-continuous in τY .

Then there exists a J−minimising solution u†J of the inverse problem. Further, for any α > 0 and f ∈ Y , there exists
a minimiser

uα ∈ arg min
u∈X

1

2
‖Au− f‖2Y + αJ(u). (14.1)

Proof .
We’ll write the set of least-squares solutions as a sublevel set:

L = {u ∈ X | ‖Au− f‖Y ≤ µ},
µ = inf{‖Av − f‖Y | v ∈ X}.

This rewriting seems a bit redundant, as we can only have equality with µ and not<, but it actually
allows us to make use of the continuity of A. Since A is τX → τY continuous and ‖·‖Y is lower
semi-continuous in τY , we have that L is closed in τX .
For some intuition on this step, first note that level sets of lower semi-continuous functions are
closed. A level set of ‖Au− f‖Y will either pass through a continuous point of the norm, in which
case it is closed as it includes the limit point µ, or it will pass through a discontinuity, in which case
lower semi-continuity means we include the limit point below. Without lower semi-continuity, the
≤ µmay not have included a limit point, and the set may not be closed.
Consider the following infimum:

inf
u∈L

J(u) = inf
u∈X

J(u) + χL(u) (14.2)

where χL is an indicator function for L. Assuming this is feasible, there exists a candidate solution
u ∈ L with J(u) < ∞. Since Equation 14.2 is bounded from below (by 0, at least), we proceed as
in the proof of coercivity of φα to show that it is coercive.
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Next, since L is closed in τX , the indicator function χL is l.s.c. (try an example after going back to
the definition of lower semi-continuity). Since we’ve taken J to also be l.s.c., we can conclude that
Equation 14.2 is l.s.c. in τX . Therefore, by the direct method, a minimiser exists.
Next, we show that φα has a minimiser. By the preceding lemma we know that φα is coercive.
Since it is a combination of a τX l.s.c. function (J) and a τY l.s.c. function ‖·‖Y composed with a
τX → τY continuous function A, we can see that φα is l.s.c., so the direct method applies and a
minimiser exists.

�

Having developed the theory for a general regularising parameter α, we can finally go back to a realistic
scenario. We consider f → fδ where δ parameterises the level of noise, and relate α to a noise level δ in the
measurements.

In this case, we aim to solve

min
u∈X

1

2
‖Au− fδ‖2Y + α(δ)J(u). (14.3)

We are interested in studying the behaviour as δ → 0, because we want to ensure that everything is
well-behaved in the limit of no noise.

For simplicity, we’ll assume our least-squares solutions are actual solutions.

Theorem 14.2. Let the conditions of Theorem 14.1 hold and suppose that inf{‖Av − f‖Y | v ∈ X} = 0. Let
α = α(δ) satisfy

lim
δ→0

α(δ) = 0 and lim sup
δ→0

δ2

α(δ)
= 0. (14.4)

Then uδ := u
α(δ)
δ

τX−−→ u†J as δ → 0 (possibly along a subsequence) and J(uδ)→ J(u†J), where u†J is a J−minimising
solution.

The proof essentially consists of checking conditions for previous theorems and applying them. This
theorem proves convergence in τX , but this might not be a strong topology and in general isn’t the one
induced by the norm. Howver, we can get convergence in the norm topology if we require that J satisfy the
Radon-Riesz property, which says that if uj

τX−−→ u and J(uj)→ J(u) then ‖uj − u‖ → 0.

For example, the norm in a Hilbert space, where τX is the weak topology, satisfies this property.

Examples of regularisers include the norm in aHilbert space J(u) = ‖u‖2. This is weakly l.s.c., andwe know
(from just after Banach-Alaoglu) that norm-bounded sequences have weakly convergent subsequences, so
the regularised solutions are weakly convergent. Further, since the norm has the Radon-Riesz property,
this implies convergence in the norm (strong convergence). This is sometimes referred to as the smoothing
functional, as when we let the Hilbert space be H1 (continuous and weakly differentiable, with continuous
derivative) it ensures that regularised solutions are H1 as well.

Another example is the `1 regulariser, J(u) =
∑
i |ui|. This operates on the Banach space X = `2 of square-

summable sequences. This is helpful in sparse settings, i.e. if u ∈ `2 has finite support. Geometrically, we
can see the relationship between these two as follows.



Let f = Au, u ∈ R2, and letAu = f be indeterminate, with infinite solutions. These form an affine subspace,
say a line L ⊂ R2. If we wanted to find a solution u ∈ L that minimised the 2-norm ‖u‖2 =

√
u2

1 + u2
2, we

would conceptually start with r = 0 and increase r until the circle x2 + y2 = r2 intersected L. This is easily
generalised past R2. However, this approach doesn’t favour sparsity, which we may care about for physical
reasons. We could also look at the “0-norm”, which just counts how many components are nonzero, but
this is NP-hard. Geometrically, we look for intersections of Lwith the coordinate axes, but it’s hard to scale
this up past two dimensions. Can we make a relaxation that includes both? Yes: this is the `1 norm. This
works similarly to `2, but expanding outwards in diamonds |x| + |y| = r. In the R2 case, we can see that
this approach finds a sparse solution (intersecting a coordinate axis) without the computational difficulty
of looking for “zero hyperplanes”.

We can also take combinations of these regularisers as long as they are individually pi-homogeneous. For
instance, elastic regularisation is characterised by

J(u) = α‖u‖1 + β‖u‖22. (14.5)
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In this lecture, we’ll look at a particular choice of regulariser, the total variation. The reason why we’re
interested in it is it allows for reasonably regular reconstructions on top of underlying data that may be
discontinuous.

Consider the set of vector-valued test functions on a domain Ω ⊂ Rn,

D(Ω) = {ϕ ∈ C∞0 (Ω) | sup
x∈Ω
‖ϕ(x)‖2 ≤ 1}. (15.1)

Definition 15.1. The total variation of u ∈ L1(Ω) is

TV(u) = sup
ϕ∈D(Ω)

∫
Ω

u(x) divϕ(x)dx. (15.2)

This seems kind of awkward to work with, but we can make it more natural by adding some assumptions.
We won’t always make these assumptions; we’re just introducing them for now to make TV seem more
intuitive.

Suppose u ∈ W 1,1(Ω); that is, u is in L1(Ω) and has a weak derivative ∇u that is also in L1(Ω). This lets us
integrate by parts:

TV(u) = sup
ϕ∈D(Ω)

∫
Ω

−〈∇u(x), ϕ(x)〉dx. (15.3)

Recall that ϕ is vector-valued and so is the gradient ∇u of the scalar function u, so this is a vector dot
product. By Cauchy-Schwarz, we can say

|∇u(x), ϕ(x)| ≤ ‖∇u(x)‖2‖ϕ(x)‖2 ≤ ‖∇u(x)‖2, (15.4)

almost everywhere for x ∈ Ω. We can make a choice of ϕ that achieves equality:

ϕ(x) = − ∇u(x)

‖∇u(x)‖2
(15.5)

This may not live in D, but we can proceed as if it does by approximation. Therefore, the supremum is
attained at this value, and the TV becomes

TV(u) =

∫
Ω

‖∇u(x)‖2dx := ‖∇u‖1. (15.6)
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So we see that TV enforces sparsity on the gradient. A sparse gradient would be 0 in most places, but with
occasional big jumps, so regularising by TV favours, for example, piecewise constant solutions.

Note that the space of functions with bounded total variation is actually bigger than the Sobolev spaceW 1,1.
For example, functions with discontinuities aren’t inW 1,1, but they do have bounded total variations.

Proposition 15.1. TV is a proper, convex, and absolutely 1-homogeneous functional L1(Ω) → R. For any constant
function c(x) = c ∈ R ∀x ∈ R and any u ∈ L1(Ω),

TV(c) = 0 (15.7)
TV(u+ c) = TV(u). (15.8)

Note that TV(u) = 0 implies u is constant, so this goes both ways the null space of TV is exactly the set of
constant functions.

Definition 15.2. The functions u ∈ L1(Ω) with a finite TV form a normed space called the space of bounded variation
(the BV-space):

BV(Ω) := {u ∈ L1(Ω) | ‖u‖BV := ‖u‖1 + TV (u) <∞} (15.9)

It can be shown that this space has some nice properties. It is the dual of a separable Banach space. Further,
weak-* convergence un ⇀∗ u in BV is equivalent to strong convergence un → u in L1 and convergence of
TV(un)→ TV(u).

There are a few slightly more technical results: that BV(Ω) is compactly embedded in L1(Ω). We can
show this using Rellich-Kondrachov: let Ω ⊂ Rn be a nonempty, open, connected domain with Lipschitz
boundary. Let p, k ∈ N. Let

p∗ :=

{
np

n−kp if n > kp

∞ if n ≤ kp.
(15.10)

Then the embeddingW k,p(Ω)→ Lq(Ω) is continuous for all 1 ≤ q ≤ p∗ and compact for all 1 ≤ q < p∗.

Some functions from BV(Ω) can be approximated by functions in the Sobolev space W 1,1(Ω), and we can
embed this in higher Lp spaces using Rellich-Kondrachov. The threshold value here for (integrability 1,
differentiability 1) is 1, so for n at least 2, we have compactness. For (integrability 2, differentiability 1), we
have a threshold of 2, so for n = 2, we get that p∗ = 2.

Corollary 15.2 (of Rellich-Kondrachov). For any bounded Lipschitz domain Ω ⊂ Rn, the embedding BV(Ω) ⊂⊂
L1(Ω) is compact for any n ≥ 2, and the embedding BV(Ω) ↪→ L2(Ω) is continuous for n = 2.

Remember that a compact embedding is also continuous: being compact is a stronger condition.

We make use of this to show what we need to in order to show that TV admits a minimiser.

Theorem 15.3. Let Ω ⊂ Rn be open and bounded. Then the total variation is l.s.c. in L1(Ω).
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Proof .
Let {uj}j∈N ⊂ BV(Ω) converge in L1(Ω) to u ∈ L1(Ω). We want to show that TV (u) ≤
lim inf TV (uj), which we can do by taking a test function ϕ ∈ D(Ω) and using the fact that
strong convergence implies weak convergence:

∫
Ω

uj(x) divϕ(x)dx→
∫

Ω

u(x) divϕ(x)dx. (15.11)

Therefore,

TV (u) = sup
ϕ∈D(Ω)

∫
Ω

u(x) divϕ(x)dx (15.12)

= sup
ϕ∈D

lim
j→∞

∫
Ω

uj(x) divϕ(x)dx (15.13)

Now, we’d like to swap the supremum and the limit, but the limit of the supremum over all
sequences may not exist. To fix this, we use the lim inf. The reasoning for this is as follows. We
want to work with the sequence tj := supϕ

∫
uj(x) divϕ(x)dx, where we fix uj and let ϕ vary

element-to-element. tj may not converge, but it has subsequential limits (that may be infinity).
How do these subsequential limits relate to TV(u)? We’d like it if they were all greater than TV(u),
because then in particular we could say their greatest lower bound (lim infj→∞ tj) was greater
than TV(u), which would show lower semi-continuity. We can in fact say this, with the following
reasoning: say the test function optimising the TV argument is ϕ∗. Because each tj gets to optimise
over the entire space of test functions, we can’t have any subsequence (tjk ) converging to something
less than TV(u). If we did, we could replace the choice of test function ϕjk made by each tjk with
ϕ∗, and we’d have a convergent sequence that was at least TV(u). So the only subsequential limits
that can remain are TV(u) or more, and therefore the lim inf is at least TV(u), so we can say

TV(u) ≤ lim inf
j→∞

sup
ϕ∈D

∫
Ω

uj(x) divϕ(x)dx (15.14)

= lim inf
j→∞

TV(uj). (15.15)

Note that neither side is necessarily finite, because u isn’t necessarily in BV(Ω), and tj may diverge
to infinity.

�

TV is not actually coercive on L1, because its null space is nontrivial; specifically, we already saw that it
consists of the set of constant functions. This means you could take a sequence converging in the functional,
and add arbitrarily large constants to it to create an unbounded sequence whose image converges.

This wasn’t really our intent when we were requiring coercivity; we meant to capture more pathological
behaviour. In this case, we can characterise the null space really well, so we can “mod out” constant
functions and work with some notion of almost-coercivity. We formalise this as follows:

Proposition 15.4. Let Ω ⊂ Rn be a bounded Lipschitz domain. Then there exists a constant C > 0 such that for all
u ∈ BV(Ω), the Poincaré inequality



‖u− u‖L1 ≤ C TV(u) (15.16)

holds, where u = 1
|Ω|
∫

Ω
u(x)dx.

This lets us consider the subspace of zero-mean functions BV0(Ω) ⊂ BV(Ω), defined by

BV0(Ω) := {u ∈ BV(Ω) |
∫

Ω

u(x)dx = 0}. (15.17)

The above proposition then lets us show that TV is coercive on this subspace, as it is within a constant factor
of the `1 norm.

It isn’t really a practical problem to make this restriction: we just compute the mean of the function in
some other way, subtract it off, work with the zero-mean version, and add it back later. TV also has a
finite-dimensional null space, so it allows the decomposition L1 = L1

0 ⊕ N(TV), where L1
0 = {u ∈ L1 |∫

Ω
u(x)dx = 0}. This is the formal way of saying we can split any integrable function into its zero-mean

component and its constant mean component.

Now, we can show that minimisers exist as we want.

Theorem 15.5. Let X = L1(Ω) where Ω ⊂ Rn is bounded Lipschitz, and let Y be a Banach space. Let A : L1 → Y
be a linear bounded operator such that A(1) 6= 0, where 1 is the function that is 1 everywhere. Then minimisers of the
problem

min
u∈L1(Ω)

1

2
‖Au− fδ‖2Y + α(δ) TV(u) (15.18)

exist and converge strongly in L1 to a TV-minimising solution as δ → 0 if α(δ) is chosen as required by the relevant
preceding theorem (lecture 14).

The only unusual condition here is the requirement that A1 6= 0, which comes about because we have to
enforce no nontrivial intersections of the kernels of A and TV. Since the kernel of TV is constant functions,
A needs to not vanish when given a constant function, so we enforce this extra condition.
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In the previous chapter, we established the necessary conditions for a regularised solution uδ to converge
to a J−minimising solution u†J . Here, we ask: how fast does this happen? We want the convergence to be
relatively fast, so that these methods are useful in practice.

The usual way of looking at these is via the Bregman distances associated with J . We’d like to establish that

Dsymm
J (uδ, u

†
J) ≤ ψ(δ)

δ→0−−−→ 0, (16.1)

where ψ : R+ → R+ is some known function.

16.1 The dual problem

We know that uδ solves the primal problem

min
u∈X

1

2
‖Au− fδ‖2Y︸ ︷︷ ︸
E(Au)

+αJ(u)︸ ︷︷ ︸
F (u)

(16.2)

with all the usual assumptions (α = α(δ), A is linear and bounded between Banach spaces, J satisfies
the required assumptions, and both functionals go to the extended real line.) We’ll also assume that J
is absolutely one-homogeneous, i.e. J(λu) = |λ|J(u), and that least-squares solutions exactly satisfy the
unregularised noiseless problem, i.e. Au†J = f .

Lemma 16.1. Let J be an absolutely one-homogeneous, convex, proper, lsc functional. Then its convex (Fenchel)
conjugate J∗ is the characteristic function of the convex set ∂J(0).

Lemma 16.2. Let X be a Banach space and X ∗ its dual. Let ϕ(x) = 1
2‖x‖

2
X . Then the convex conjugate of ϕ is

ϕ∗(ξ) = 1
2‖ξ‖

2
X∗ where ξ ∈ X ∗.

Using a result from the preceding lectures, we know that p ∈ ∂E if and only if E(u) +E∗(p) = 〈p, u〉. So for
x ∈ X , ξ ∈ ∂ϕ(x), we get

1

2
‖x‖2X +

1

2
‖ξ‖2X∗ = 〈ξ, x〉 ≤ ‖ξ‖X∗‖x‖X , (16.3)

and this has the form 1
2 (a2 + b2) ≤ ab, which is only possible if a = b, so this gives us

‖ξ‖X∗ = ‖x‖X . (16.4)
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So we can use this to write the dual of the first term of the primal problem:

E∗(η) = sup
y∈Y
〈η, y〉 − 1

2
‖y − f‖2Y = 〈η, f〉 − sup

z∈Y

(
〈η, z〉 − 1

2
‖z‖2Y

)
= 〈η, f〉+

1

2
‖η‖Y∗ (16.5)

and so, putting everything together, we get the dual problem

sup
η∈Y∗

−〈η, f〉 − 1

2
‖η‖2Y∗ − χ∂J(0)

(
−A∗η
α

)
. (16.6)

For convenience, we write µ = − η
α ∈ Y

∗, and we get rid of the χ by just restricting the range of the sup:

sup
µ∈Y∗,A∗µ∈∂J(0)

α
(
〈µ, f〉 − α

2
‖µ‖2Y

)
(16.7)

From here, we can check all the assumptions we need to ensure the existence of a solution (the conditions
on strong duality). We need to check coercivity, which is guaranteed by a finite-dimensional null space,
coercivity of the regularising function (the Y-norm-squared term), and a trivial intersection of the null
spaces of 〈·, f〉 and the regularising function. We also need continuity at a point, which is satisfied at u0 = 0.
We also have the existence of a primal solution uδ .

This tells us that for any δ > 0, there exists a solution µδ of the dual problem, and further that strong duality
holds:

1

2
‖Aµδ − fδ‖2Y + αJ(uδ) = α〈µδ, fδ〉 −

α2

2
‖µδ‖2Y . (16.8)

We also have the optimality conditions

• A∗µδ ∈ ∂J(uδ)

• −αµδ ∈ ∂
(

1
2‖·‖

2
Y

)
(Auδ − fδ).

We can conclude that ‖αµδ‖Y∗ = ‖Auδ − fδ‖Y .

Further, using the definition of a subgradient at 1
2‖·‖

2
Y and looking at the subgradient −αµδ at (Auδ − fδ),

we obtain

0 ≥ 1

2
‖Auδ − fδ‖2Y + 〈−αµδ, 0− (Auδ − fδ)〉. (16.9)

This givs us the estimate

〈αµδ, Auδ − fδ〉 ≤ −
1

2
‖Auδ − fδ‖2Y . (16.10)

So we’ve done all this work. What does it have to do with convergence rates?



16.2 Source condition and convergence rates

We consider the formal limits when δ = 0 of the primal and dual problems: for the primal, we have

inf
u|Au=f

J(u) = inf
u∈X

χ{f}(Au) + J(u) (16.11)

and for the dual, we have

sup
µ:A∗µ∈∂J(0)

〈µ, f〉 = sup
µ:A∗µ∈∂J(0)

〈µ,Au†J〉 (16.12)

= sup
µ:A∗µ∈∂J(0)

〈A∗µ, u†J〉 = sup
v∈R(A∗)∩∂J(0)

〈v, u†J〉. (16.13)

Since χ{f} is continuous nowhere, we can’t guarantee that a solution to the dual problem exists in this limit.
So when is there a noiseless dual solution?
Theorem 16.3. Let X ,Y be Banach spaces and let Y be separable. Let all the conditions exist that ensure the existence
of a J−minimising solution u†J of the primal problem, and let α(δ) be chosen appropriately. If the dual solution µδ
is bounded uniformly in δ,then u†J satisfies the source condition, which means that there exists µ† ∈ Y∗ such that
A∗µ† ∈ ∂J(u†J) (belongs to the subdifferential of J at the J−minimising solution.)

Another way of saying this is that the range of A∗ has at least one point in common with the subdifferential
of J at the J−minimising solution.

This is a necessary condition for the boundedness of dual solutions, but we can also show it is a sufficient
condition, meaning we have an if-and-only-if.
Theorem 16.4. Let X ,Y be Banach spaces and let Y be separable. Let all the conditions exist that ensure the existence
of a J−minimising solution u†J of the primal problem, and let α(δ) be chosen appropriately. If u†J satisfies the source
condition, then µδ is bounded uniformly in δ. Moreover, µδ ⇀∗ µ† in Y∗ as δ → 0 (maybe up to a subsequence),
where µ† is the solution of the dual limit problem with minimal norm.

Finally, we can see the relationship to convergence rates!

Theorem 16.5. Let the source condition be satisfied at a J−minimising solution u†J and let uδ be a regularised
solution of the primal problem. Then we have

Dpδ,p
†

J (uδ, u
†
J) ≤ 1

4α

(
δ + α

∥∥µ†∥∥)2 + δ
∥∥µ†∥∥. (16.14)

where pδ = A∗µδ ∈ ∂J(uδ), p† = A∗µ† ∈ ∂J(u†J). Further, for the optimal choice of α, given by α(δ) = δ
‖µ†‖ , ths

simplifies to

Dpδ,p
†

J (uδ, u
†
J) ≤ 3δ

∥∥µ†∥∥. (16.15)

We don’t actually know
∥∥µ†∥∥ up front, but it’s still a useful limit to know. Further, we have a linear bound

on the Bregman distance with the noise level, and we get an upper limit on what the error should be.
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