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Note: LATEX format adapted from template for lecture notes from CS 267, Applications of Parallel Comput-
ing, UC Berkeley EECS department.

1.1 Vector spaces and linear transformations

These are the main objects in linear algebra.

Definition 1.1. A vector space over a field F is a set V with two operations,

• addition: given x, y ∈ V , we get x+ y ∈ V .

• scalar multiplication: given c ∈ F, x ∈ V , we get cx ∈ V .

satisfying the following axioms,

VS1 ∀x, y ∈ V, x+ y = y + x

VS2 ∀x, y, z ∈ V, (x+ y) + z = x+ (y + z)

VS3 ∃0 ∈ V s. t.∀x ∈ V, 0 + x = x

VS4 ∀x ∈ V,∃y ∈ V s. t. x+ y = 0

VS5 ∀x ∈ V, 1 · x = x

VS6 ∀x ∈ V, a, b ∈ F, a(bx) = (ab)x

VS7 ∀x, y ∈ V, a ∈ F, a(x+ y) = ax+ ay

VS8 ∀x ∈ V, a, b ∈ F, (a+ b)x = ax+ bx

Example 1.1. The canonical example of a vector space is V = Rn = {


a1
a2
...
an

 | ai ∈ R}. The

corresponding field is F = R.

We can verify that this satisfies the vector space axioms. For example, it satisfies
VS1:


a1
a2
...
an

+


b1
b2
...
bn

 =


a1 + b1
a2 + b2

...
an + bn

 (1.1)



VS2:

c ∈ R, x =
[
a1 a2 . . . an

]T
=⇒ c · x =

[
ca1 ca2 . . . can

]T
(1.2)

VS3: define 0 =
[
0 0 . . . 0

]
. VS4: given x =

[
a1 a2 . . . an

]T
, choose

y =
[
−a1 −a2 . . . −an

]T
.

�

Proposition 1.1. Given a vector space V over a field F such that 0 and 0′ both satisfy VS3, 0 = 0′.

Proof. By VS3, ∀x ∈ V, x+0′ = x and also x = x+0′, so we can choose x = 0. Then we get 0 = 0+0′ = 0′+0
by VS1. Then, we apply VS3 to 0, choosing x = 0′. This gives us 0′ + 0 = 0′, therefore 0 = 0′.
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Fix a field F . Then, we can define a vector space over F as a set with two operators (+, ·) satisfying 8
axioms. Now, we can derive some properties of vector spaces from these axioms. We do this by looking at
subsets of a given vector space.

Example 2.1. Fix a point in R2 and consider the set of all vectors whose tails are at that point.
Every point in the plane is associated with a corresponding vector in this set. Let
F = R and define two operations on these vectors:

1. scalar multiplication; for c ∈ R, c~v points in the same direction as ~v if c > 0,
and in the opposite direction if c < 0. The vector has a length of |c||~v|.

2. addition: translate the tail of one vector to the tip of the other, forming a
parallelogram. The vector sum is the vector from the fixed point to the new
tip of the translated vector.

Denote this vector space V ec2. There is a one-to-one mapping between a vector

~v1 ∈ V ec2 and
[
x y
]T ∈ R2. This mapping is called an isomorphism.

�

Definition 2.1. Let V be a vector space over F and S ⊂ V a subset. We say that S is closed under + if
∀x, y ∈ S, x+ y ∈ S. We say that S is closed under · if ∀x ∈ S, c ∈ F, c · x ∈ S.

Example 2.2. Consider the following subsets of V ec2:

S = {~v1, ~v2, ~v1 + ~v2} (2.1)

L = {c · ~v1 | c ∈ R} (2.2)

S is not closed under addition, but L is. L inherits two operations from V ec2, i.e.
addition and multiplication are well defined on L ⊂ V ec2. We want to check if it is
a vector space. If it turns out that it does satisfy the axioms of a vector space, we
will call it a subspace of our vector space.

�

However, we do not have to verify that every axiom is satisfied; it is sufficient to check only one of the
axioms, provided that closure (which we just checked above) is satisfied.

Theorem 2.1. Let V be a vector space over F , and W is a subset of V . Then W is a subspace of V if and
only if the following are true:
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1. W is closed under addition.

2. W is closed under scalar multiplication.

3. The zero vector of V is in W .

An ‘if and only if’ statement means that an implication goes both ways: A if and only if B means A =⇒ B
and B =⇒ A.

Before we prove the theorem, we introduce a lemma and prove it.

Lemma 2.2. Let V be a vector space over F and let x, y, z ∈ V such that x+ z = y + z. Then x = y.

Proof. (of the lemma) We start with

x+ z = y + z (2.3)

We know that ∃ − z ∈ V , therefore we add that to both sides:

(x+ z) + (−z) = (y + z) + (−z) (2.4)

Then, we use associativity to regroup this:

x+ (z + (−z)) = y + (z + (−z)) (2.5)

Simplifying, we get

x+ 0V = y + 0V (2.6)

x = y (2.7)

Proof. (of the theorem) In the forward direction, we let W be a subspace of V and derive the required
properties. (1) and (2) follow from the definition of a subspace. Since W is a vector space, according to (VS
3) there is an element 0W ∈W such that x+ 0W = x ∀x ∈W . Let x = 0W :

0W + 0W = 0W (2.8)

Also, these are all elements of V , so

0W + 0V = 0W (2.9)



Addition commutes in vector spaces, so we get

0V + 0W = 0W (2.10)

Also, in 0W , we can add the zero element, so we get

0V + 0W = 0W + 0W (2.11)

Finally, we apply the lemma to get

0V = 0W . (2.12)

The backward direction was (I’m not lying) left as an exercise for the reader.

Example 2.3. Let W be the set of all continuous functions [0, 1] → R. Prove that this set is a
vector space.

Proof. Given a set T and a field F , let F(T, F ) be the set of all functions f : T → F .
Define + and · pointwise by

(f + g)(t) = f(t) + g(t) (2.13)

(cf)(t) = c · f(t) (2.14)

It can be verified (handwavy again) that this is a vector space. Then, C([0, 1]) ⊂
F(T, F ). If we can show that C([0, 1]) is closed under the two operations (it is) and
that the zero function is in it (it is), we can show that it is a subspace and therefore
a vector space.

�
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tbd: bring tikz back in from notes when you’ve recovered from the shame

3.1 Linear combinations

Even though the vector space V ec2 is infinite, it turns out that we can generate it from just two vectors.
Call them ~u1 and ~u2, and suppose they do not point in the same direction. By the property of scalar
multiplication, we can create a1 ~u1, a1 ∈ R and similarly a2 ~u2, a2 ∈ R; by the property of superposition, we
can sum them to obtain an arbitrary vector a1 ~u1 + a2 ~u2 ∈ V ec2. Therefore, finitely many elements of the
vector space are sufficient to generate the entire infinite space.

test (3.1)

The expression representing an arbitrary element of the vector space is called a linear combination of ~u1 and
~u2.

Definition 3.1. Let V be a vector space over F and S a nonempty subset of V . An element v ∈ V is
called a linear combination of elements of S if there is a finite subset {u1, . . . , un} ⊆ S and a collection
a1, . . . , an ∈ F such that

v = a1u1 + a2u2 + · · ·+ anun =

n∑
i=1

aiui (3.2)

Note that we have not technically defined vector addition for more than two elements, but because of
associativity, we can iteratively compute pairwise sums, and the result is guaranteed to be in the vector
space.

Remark 3.1. S can be finite or infinite. However, we will only consider finite linear combinations.

Example 3.1. Every vector in V ec2 is a linear combination of elements of a subset S = { ~u1, ~u2}.
�

3.2 Span

Definition 3.2. Given a nonempty subset S in a vector space V over F , we define span(S) as the set
of all linear combinations of finitely many elements u1, . . . , un ∈ S. We say that V is generated by S if
span(S) = V .
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Example 3.2. Consider

V = Fn = {

x1...
xn

 | xi ∈ F} (3.3)

and the finite n-dimensional subset,

S = {


1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1

} (3.4)

Then,

span(S) = {a1u1 + a2u2 + · · ·+ anun} = {


a1
0
...
0

+


0
a2
...
0

+ · · ·+


0
0
...
an

} = {


a1
a2
...
an

}
(3.5)

�

This allows us to reduce general problems about vector spaces to systems of linear equations.

Example 3.3. Define v =
[
−2 0 3

]T
, u1 =

[
1 3 0

]T
, u2 =

[
2 4 −1

]
. Is v a linear combi-

nation of u1 and u2?

This would be the case if we could find a1, a2 ∈ R such that v = a1u1 + a2u2.

−2
0
3

 =

 a13a1
0

+

2a2
4a2
−a2

 =

 a1 + 2a2
3a1 + 4a2
−a2

 (3.6)

This is a system of 3 linear equations in 2 variables, which can in general be solved
(will either be overdetermined or inconsistent).
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a1 + 2a2 = 2 (3.7)

3a1 + 4a2 = 0 (3.8)

0a1 − a2 = 3 (3.9)

This gives us a2 = −3 and from that, we can substitute back into either of the other
equations and get a1 = 4.

�

Proposition 3.2. Let V be a vector space over F and S a nonempty subset of V . Then span(S) is a
subspace of V .

Proof. We know that W ⊂ V is a subspace if and only if it is closed under addition and scalar multiplication,
and 0V ∈ W , so it suffices to show that these hold for span(S). Consider v1, v2 ∈ span(S) ⊂ V . We know
that there exist ai, bj such that

v1 =

n∑
i=1

aiui (3.10)

v2 =

m∑
i=1

bjwj (3.11)

for U = {ui}ni=1 and W = {wj}mj=1 finite subsets of S. Then, consider the set {u1, . . . , un, w1, . . . , wm} and
the corresponding scalars

ck =

{
ak 1 ≤ k ≤ n
bk−n k > n

(3.12)

Similarly, span(S) is closed under scalar multiplication by choosing a′i = c · ai for each element of the finite
subset {ui}ri=1 to scalar multiply any element of the span of S keeping it within S.

Finally, we can show that 0V ∈ span(S). Take any u1 ∈ S, and take v = 0 · u1 = 0V , so 0V ∈ span(V ).

Proposition 3.3. If W is a subspace of V containing S, then W contains span(S).

Remark 3.4. This means that span(S) is the smallest subspace of V containing S.

Consider the span of the empty set, span(∅). To figure out what this should be, we view it as a subset of
some vector space V . We define it to be {0V }. With this definition, we can establish a surjection between
the subsets of V and the subspaces of V , namely S ⊂ V → span(S). This is not complete unless we set this
as the definition for what happens to the empty set under this bijection.



3.3 Linear Independence

Definition 3.3. Let V be a vector space over a field F , and let S be a subset of V . S is called linearly
dependent if there exists a finite subset {u1, . . . , un} of S and a1, . . . , an ∈ F not all zero such that

a1u1 + a2u2 + · · ·+ anun = 0V (3.13)

This essentially means that we can obtain the zero vector in more than one way (beyond the trivial solution.)

Example 3.4. Let S = {u1, u2, u3}, where u3 = u1 + u2. Then, if we select a1 = a2 = 1, a3 = −1,
we get the following linear combination:

1 · u1 + 1 · u2 + (−1) · u3 = (u1 + u2) + (−u3) = 0 (3.14)

Since there is a nontrivial linear combination that is equal to zero, we conclude that
S is linearly dependent.

�

Conversely, start with the nontrivial linear combination
∑
j ajuj = 0. We know that ∃i such that ai 6= 0, so

∃a−1i ∈ F as it is nonzero. We first rearrange the linear combination:

−aiui =

n∑
j=1,j 6=i

ajuj (3.15)

Then, we left multiply by −a−1i , to get

ui =

n∑
j=1,j 6=i

(−a−1i · aj)uj (3.16)

10
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4.1 Linear Independence

If S ⊂ V does not satisfy the property of linear dependence, then S is called linearly independent.

Equivalently, S is linearly independent if for any finite subset of distinct elements {u1, . . . , un}, the equation

a1u1 + · · ·+ anun = 0V , ai ∈ F (4.1)

has only one solution, i.e. all ai = 0 ∈ F .

Example 4.1. Consider V = R3 = {
[
x1 x2 x3 | xi ∈ R

]
}, and S = {

[
1 0 0

]>
,
[
0 1 0

]>
,
[
0 0 1

]>}.
We want to verify that S is linearly independent, i.e. that a1u1 + a2u2 + a3u3 =[
0 0 0

]>
has only one solution.

The sum of the three vectors in S scaled by a1, a2, a3 respectively is

a10
0

+

 0
a2
0

+

 0
0
a3

 =

0
0
0

 (4.2)

This can only be satisfied if all three ais are zero. Therefore S is linearly indepen-
dent.

�

Example 4.2. Consider the set

S1 = {

 1
0
−1

 ,
1

1
1

 ,
2

1
0

} (4.3)

Checking if this set is linearly independent is equivalent to solving the system of
equations
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a1 + a2 +2a3 = 0 (4.4)

+ a2 +a3 = 0 (4.5)

−a1 + a2 = 0 (4.6)

(4.7)

Adding the first and third equations gives us 2a2 + 2a3 = 0, which from the second
and third equations gives us a1 = a2 = −a3. Therefore, if we take an arbitrary a3,
that constrains a1 and a2. This gives us a family of nontrivial solutions. Therefore,
the set is linearly dependent.

�

In the above example, the system of equations was homogeneous, meaning all the right-hand-side constant
terms were zero. In general, if we have a homogeneous system, and (a1, . . . , an) is a solution, then ∀k ∈ F ,
(ka1, . . . , kan) is a solution as well.

Proposition 4.1. Suppose we have a homogeneous system of linear equations on a1, . . . , an. Then the set
of solutions is a subspace of Fn.

The set of solutions of an inhomogeneous system is not a subspace, because its solutions cannot be scaled
to obtain new solutions.

Example 4.3. Suppose M is a square upper triangular matrix over R with nonzero diagonal entries.
We want to show that the set of columns of M is linearly independent.

To illustrate the problem, we can pick a particular M and show its columns are
linearly independent.

M =

1 1 2
0 1 1
0 0 2

 (4.8)

This has a corresponding set of equations,

a1 + a2 +2a3 = 0 (4.9)

+ a2 +a3 = 0 (4.10)

2a3 = 0 (4.11)

Therefore, working from bottom to top to eliminate variables, we can show that
a3 = 0 =⇒ a2 = 0 =⇒ a1 = 0. Therefore the columns are linearly independent.

As long as the coefficients on the ais are nonzero (which is guaranteed by a nonzero
diagonal), this procedure works for any n. Therefore the only solution of a1u1 +



Lecture 4: Linear independence, bases 13

· · ·+ anun = 0V is the trivial solution, so the set is linearly independent.
�

4.2 Bases

We’ve established the notions of a generating subset of a vector space V over a field F , and a linearly
independent subset. Now, we can combine them into the idea of a basis of V .

Definition 4.1. A subset S of V is called a basis of V if it generates V , i.e. if span(S) = V , and if it is
linearly independent.

A basis is the minimal subset of a vector space that generates it. A basis is not unique, but any basis of a
vector space has the same size. This size is called the dimension of the vector space.

Example 4.4. In Rn, the standard basis is

β = {


1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1

} (4.12)

We previously saw that span(β) = Rn. Now, we will show that β is linearly inde-
pendent.

�

Lemma 4.2. The set βM of columns of a square upper-triangular matrix M with nonzero diagonal entries
is also a basis of Rn.

Proof. We showed above that βM is linearly independent. We can show that span(βM ) = Rn.

Recall that the system of linear equations generated by M is

M11a1 +M12a2 + . . . +M1nan = x1 (4.13)

+M22a2 + . . . +M2nan = x2 (4.14)

... (4.15)

+Mnnan = xn (4.16)

Working backwards, we can show that an = xn
Mnn

, which gives us a unique value for an−1, which in turn gives
us a unique value for an−2, and so on. Therefore there exists a unique ~a = {a1, . . . , an} such that M~a = ~x
for any ~x ∈ Rn.



Proposition 4.3. Let V be a vector space over F . A subset β ⊂ V is a basis of V if and only if all v ∈ V
can be expressed uniquely as a linear combination of elements of β.

Proof. In the forward direction, we assume β is a basis of V and we show that every v ∈ V can be expressed
as a linear combination of elements of β. Further, we show that this combination is unique.

Since span(β) = V , every v ∈ V can be expressed as a combination of elements of β. To show this expression
is unique, we suppose there are two such expressions,

v = a1u1 + · · ·+ anun (4.17)

v = b1u1 + · · ·+ bnun (4.18)

where ai, bi ∈ F . We subtract these two and use distributivity to collect terms:

0V = (a1 − b1)u1 + · · ·+ (an − bn)un (4.19)

Since β is a basis, it is linearly independent, therefore ai − bi = 0 for all i, so ai = bi.

14
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Suppose a vector space V over F has a finite basis β = {x1, . . . , xn}. Any other basis of V has the same
number of elements, n. This is referred to as the dimension on V . The crucial step in proving this is the
replacement theorem.

Theorem 5.1. Let V be a vector space over F . Let G ⊂ V be a subset of V of cardinality n that generates
V . Further, let L ⊂ V be another subset, of cardinality m, which is linearly independent. Then:

1. m ≤ n

2. ∃H ⊂ G, |H| = n−m such that L ∪H generates V .

The book proof is by induction on m, which is weird because part of what we’re trying to prove is that m
is bounded above.

As an alternative, we state two theorems and prove them more directly.

Theorem 5.2. Suppose V,G,L, |G| = n, |L| = m are defined as above, and suppose that m ≤ n. Then ∃H
defined as above.

Theorem 5.3. Suppose V,G,L, |G| = n, |L| = m are defined as above. Then m ≤ n.

Proof of Theorem ??. We prove this by induction on m ≥ 0. For m = 0, L has cardinality 0, so it must be
the empty set, so H ⊂ G must be G. Then L ∪H = ∅ ∪G = G. This generates V .

Next, we suppose that Theorem ?? is true for |L| = k, and we show it is true for |L| = k+1. Let L = {vi}k+1
i=1 .

Say |G| = n and G generates V . Suppose G = {ui}ni=1. By our inductive hypothesis, Theorem ?? is true for
m = k, so there exists H ⊂ G, |H| = n− k such that L ∪H generates V . Call it H = {w}n−mi=1 .

Now, we take L∪H = {v1, . . . , vm+1, w1, . . . , wn−k}. We claim that this has one degree of linear dependence,
i.e. we can choose a wi that is a linear combination of the others, and remove it to get a set spanning V .

We add vk+1 to L. Since L ∪H spans V , vm+1 can be written as a linear combination of its elements:

vk+1 = a1v1 + · · ·+ akvk + b1w1 + · · ·+ bn−kwn−k (5.1)

We claim that at least one of the bis is nonzero. We prove this by contradiction; if this is not the case,
then all bis are 0, then we get vk+1 as a linear combination of the vis, which contradicts L being linearly
independent. So at least one bi is nonzero. Without loss of generality suppose b1 6= 0. Then, Equation ??
implies

w1 = (−b−11 a1)v1 + · · ·+ (−b−11 ak)vk + b−11 vk+1 + (−b−11 b2)w2 + . . . (−b−11 bn−k)un−k (5.2)

Therefore, w1 ∈ span{v1, . . . , vm, w2, . . . , wn−k} and so we can drop w1. Therefore, L ∪H has cardinality n
and generates V by the inductive hypothesis.



The proof above is based on knowing that n−m > 0, so that there exists at least one bi that can be shown
to be nonzero and so can be inverted to create a linear dependence. We now prove this.

Proof of Theorem ??. Suppose this is not the case. Then there exists a linearly independent subset L ⊂
V, |L| = m > n. Choose L′ ⊂ L with n elements. It is still linearly independent. Apply Theorem ??, so there
exists an H such that L′ ∪H generates V . But |L′| = n, so |H| = 0, i.e. H = ∅. Therefore L′ generates
V . Let vn+1 be an element of L such that vn+1 6∈ L′. But since L′ generates V , vn+1 can be written as a
linear combination of elements of L′. This means L is linearly dependent. This is a contradiction, therefore
m ≤ n.

Corollary 5.4. Let V be a vector space over F , and β be a basis of V . Suppose β is finite and |β| = n.
Then any other basis of V also has n elements.

Proof of Corollary ??. Let γ be another basis of V and let |γ| = m. Take γ equivalent to L in Theorem
??, and take β equivalent to G. By Theorem ??, we get m ≤ n. But if we take γ equivalent to G and β
equivalent to L, we get n ≥ m. Therefore m = n.

Now, we know that every basis has an equal size, which allows us to introduce the notion of dimension.

Definition 5.1. Let V be a vector space over F .

1. Suppose that V has a finite basis β. Then V is called finite-dimensional, and we say that the dimension
is equal to |β|.

2. Otherwise, we say that V is infinite-dimensional.

Remark 5.5. The same set V may be a vector space over different fields. Depending on which field we
choose, V may have different dimensions.

Example 5.1. Let V = C over F = C. The dimension of V is 1. More generally, if V = Cn, its
dimension over C is n. But we can also view C as a vector space over R, with the
same addition but scalar multiplication only by reals. This has dimension 2, with
basis {1, i}. If V = Cn, its dimension over R is 2n.

�

Corollary 5.6. Let V be a vector space over F and let dimV = n. Any generating subset of V has at least
n elements, and any linearly independent subset of V has no more than n elements. If a generating subset
has n elements, then it is a basis; if a linearly independent subset has n elements, then it is a basis.

16
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6.1 Maps Between Vector Spaces

So far, we’ve discussed an individual vector space, which is a set V with an associated field F such that two
operations are defined: addition, + : V × V → V , and scalar multiplication, · : F × V → V , and such that
they satisfy certain axioms. We’ll now look at interactions between different vector spaces, specifically maps
(functions) V →W .

In set theory, we have a notion of a map or function between sets A and B, f : A → B. This is a rule
assigning an element of B to every element of A.

Figure 6.1: A bijection (a special kind of function) between sets X and Y .

Definition 6.1. A function f : A → B is well defined if for every a ∈ A, there is a single specific element
b ∈ B such that f(a) = b.

Figure ?? shows a specific kind of mapping called a bijection, in which the mapping is well defined and
satisfies two additional properties, being injective (one-to-one) and surjective (onto). However, to be a
mapping, it suffices to be well defined according to Definition ??.
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6.2 Linear Transformations

We don’t want to define just any function between V and W ; instead, we want to deal with maps that
respect the structure of V and W . Specifically,

1. V and W should be over the same field F .

2. The map has to be compatible with +, ·.

Let’s call this map T : V+,· → W+,·. Then we can express this notion of respecting structure in more
mathematical terms:

∀x, y ∈ V, T (x+ y) = T (x) + T (y) (6.1)

We view T (x + y), T (x), T (y) as elements of W and require that they satisfy superposition. This means T
is compatible with the addition operation. Similarly,

∀x ∈ V, c ∈ F, T (c · x) = c · T (x) (6.2)

Similarly, we view T (c · x) and T (x) as elements of W and require that they satisfy scaling in the common
field. This means T is compatible with the multiplication operation.

Definition 6.2. Let V,W be two vector spaces over F . A map T : V →W is called a linear transformation
if it satisfies Equations ?? and ??.

Lemma 6.1. For all x1, . . . , xn ∈ V, a1, . . . , an ∈ F ,

T

(
n∑
i=1

ai · xi

)
=

n∑
i=1

aiT (xi) (6.3)

This is a generalization of Equations ?? in conjunction with Equation ??; in particular, associativity shows
that Equation ?? implies Lemma ??:

T (x+ y + z) = T ((x+ y) + z) = T (x+ y) + T (z) = T (x) + T (y) + T (z) (6.4)

Lemma 6.2. V and W both have zero elements 0V ∈ V, 0W ∈ W . For any linear transformation T , the
zero element in V maps to that in W :

T (0V ) = 0W (6.5)

Proof of Lemma ??. We get this from the scaling property of a linear transformation.
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0V = 0 · x ∀x ∈ V (6.6)

(6.7)

Therefore, without loss of generality we choose x ∈ V and apply scaling:

T (0V ) = T (0 · x) = 0 · T (x) = 0W (6.8)

6.3 Vector Space Examples

Example 6.1. Consider the simplest possible vector space, V = {0} over some field F . Let W be
any vector space over F . Then there is only one linear transformation T : V →W ,
namely T (0) = 0W .

�

Example 6.2. We can consider a vector space that is itself the field. Let V = W = F = R. There
are many possible functions f : R → R, and we’ve spent at least a year (Math 1A
and Math 1B) studying them, but the ones we care about satisfy superposition and
scaling:

∀x, y ∈ R, f(x+ y) = f(x) + f(y) (6.9)

∀x, c ∈ R, f(cx) = cf(x) (6.10)

�

Lemma 6.3. If f : R→ R satisfies Equations ?? and ??, then ∃α ∈ R such that f(x) = αx.

It’s a little sad that we have to restrict our purview to only these functions. This is in some sense what we
expected: this is a linear algebra course, so it makes sense that we can only look at linear functions. But it
feels like we’re throwing out a lot. However, it turns out that we can approximate tons of functions to linear
functions. This is what we’re doing when we draw a tangent line to a point:

Example 6.3. Consider f : R2 → R,
[
x1
x2

]
→ α1x1 + α2x2 for fixed α1, α2 ∈ R. We can verify that

this satisfies superposition and scaling, and so this is a valid linear transformation.
�
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Figure 6.2: A tangent line locally approximating a quadratic function.

6.4 Natural Subspaces

Transformations have to satisfy the same linearity requirements as vector spaces, so we can construct certain
vector spaces naturally from valid transformations. There are two natural subspaces of V and W that arise
from a choice of the transformation T .

1. The null space of T,N(T ) = {x ∈ V | T (x) = 0W }.

2. The range of T,R(T ) = {y ∈W | ∃x ∈ V s. t. T (x) = y}

Proposition 6.4. N(T ) and R(T ) are subspaces of V and W respectively.

Proof. We previously saw that if a space was closed under addition and under scalar multiplication, and it
contained the zero element, then it was a subspace. Here, we only check that both of the proposed subspaces
have zero elements (the rest was left as an exercise for the reader, no, really):

1. 0V ∈ N(T ) by Lemma ??.

2. Take y = 0W . Again, by Lemma ??, T (0V ) = 0W , so 0W ∈ R(T ).

Theorem 6.5. Dimension Theorem: let V be a finite-dimensional vector space over F and let W be a vector
space over F . Then N(T ) and R(T ) are also finite-dimensional, and

dimN(T ) + dimR(T ) = dimV. (6.11)
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Proof. N(T ) ⊂ V ; let dimV = n, and let dimN(T ) = k. Then k ≤ n. Since N(T ) is a vector space with
dimension k, it has a basis of k elements. Let T (xi) = 0W for all i = 1, . . . , k form a basis of N(T ). Now,
we extend it to a basis of V , {x1, . . . , xk, xk+1, . . . , xn}.

Now, we can say that if V is a finite dimensional vector space and γ = {x1, . . . , xk} is a linearly independent
subset of V with cardinality k, then there exists a subset H = {y1, . . . , yn−k} such that γ ∪H is a basis of
V . We can see this by the replacement theorem; take as G any basis of V , and take γ as L. Then we see
that there exists H ⊂ G such that |H| = n − k and γ ∪H is linearly independent. Since it has n elements
and is linearly independent, it is a basis.

Next, we apply linearity to each of the basis elements, T (xi) = 0 for i = 1, . . . , k, and T (xi) ∈ W for
i = k+ 1, . . . , n. These are all some element of W , but we don’t know anything specifically about them yet.
We claim that T (xk+1), . . . , T (xn) form a basis in R(T ). If this is the case, then we’re done because we’ve
shown that dimN(T ) = k and dimR(T ) = n− k, so dimN(T ) + dimR(T ) = n.

We first show that the Tk+is are linearly independent, i.e. that

bk+1T (xk+1) + · · ·+ bnT (xn) = 0W , bi ∈ F =⇒ bk+i = 0 (6.12)

“We can put the genie back into the bottle” and apply linearity to the sum to put everything inside of the
transformation:

T (bk+1xk+1 + · · ·+ bnxn) = 0W (6.13)

Therefore, by definition, bk+1xk+1 + · · ·+ bnxn ∈ N(T ). But {x1, . . . , xk} is a basis of N(T ), so there exists
some linear combination of them that adds up to the sum:

bk+1xk+1 + · · ·+ bnxn = a1x1 + · · ·+ akxk (6.14)

Since {xi}ni=1 is a basis, all the ais and bk+is are zero, therefore bk+1 = · · · = bn = 0, which implies that
T (xk+1), . . . , T (xn) are linearly independent.

Now, we show that the Tk+i generate R(T ). Recall the definition of the range,

R(T ) = {T (x) | x ∈ V } (6.15)

Since V is a vector space with dimension n, we can write any element of V as a linear combination of n basis
elements:

x = c1x1 + · · ·+ cnxn (6.16)

Therefore, applying Lemma ??:

T (x) = T (c1x1 + · · ·+ cnxn) = c1T (x1) + · · ·+ ckT (xk) + ck+1 + · · ·+ cnT (xn) (6.17)



We know that T (x1) through T (xk) are zero. Therefore, every element in R(T ) is a linear combination of
the Tk+is. Therefore

R(T ) = span(T (xk+1), . . . , T (xn)) (6.18)

6.5 Numerical Representation

Let V be a finite-dimensional vector space over F and let dimV = n. Fix a basis of V, β = {x1, . . . , xn}.
For all v ∈ V , there exists a unique representation as

∑n
i=1 aixi for some ai ∈ F . We can think of these ais

as the coordinates of v relative to β. Essentially, this creates a map V → Fn,

v →


a1
a2
...
an

 = [v]β (6.19)

This places V and Fn in one-to-one correspondence.

Now, consider V,W to be finite-dimensional vector spaces over F . Let dimV = n, dimW = m. Suppose
there is a transformation between them, T : V → W . Choose a basis of V , β = {x1, . . . , xn}, and choose a
basis of W , γ = {y1, . . . , ym}. For each basis element, we can take the transformation and find the resulting
vector’s representation in Fm. We denote this by [T (xi)]γ . If we do this for all basis elements, we get a
collection of n columns (for each of the xis), each of which is an element of Fm. This constructs a matrix in
Fm×n that encodes the linear transformation. We denote this by [T ]γβ .

22
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7.1 Meta

Let L(V,W ) be the set of all linear transformations from V to W . Define addition of T : V →W,U : V →W
by

∀x ∈ V, (T + U)(x) = T (x) + U(x) (7.1)

Define scalar multiplication: given a ∈ F , we say

∀x ∈ V, (aT )(x) = aT (x) (7.2)

Looks like this is a set with two natural operations.

Lemma 7.1. L(V,W ) with these two operations is a vector space over F .

Suppose dimV = n, dimW = m. The dimension of L(V,W ) is mn, and the dimension of V ⊕W = n+m.

7.2 Compositions and Numeric Representations

Consider functions f : S1 → S2, g : S2 → S3. We can define g ◦ f : S1 → S3 by ∀x ∈ S1, (g ◦ f)(x) = g(f(x)).
f(x) is an element of S2 so it can be considered an input to g.

For vector spaces, consider the mapping

V
T−→W

U−→ Z (7.3)

between vector spaces V,W,Z. Suppose T and U are linear. Then, the composition can be given the name
U ◦ T .

Lemma 7.2. U ◦ T is a linear function.

To help us understand this, we employ a numerical representation. Let V be a finite-dimensional vector
space over F . Choose a basis β in V ; then there is a bijection v ∈ V → [v]β ∈ Fn, v =

∑n
i=1 aivi →[

a1 a2 . . . an
]T

.

Next, consider vector spaces V,W over F and a transformation between them T ∈ L(V,W ). Suppose there
is an ordered basis α = {xi}ni=1 of V and an ordered basis β = {yi}mi=1 of W . The transformation can be
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represented by a matrix in Mm×n(F ). Row j of the matrix, 1 ≤ j ≤ n, is given by [T (xj)]β ; each of these
columns has dimension m, i.e. they are vectors in Fm. We refer to this whole transformation by [T ]βα.

If we know [T ]βα, α, and β, then we know T . Further,

1. [T ]βα tells us what the T (xi)s are.

2. Once we know T (xi),mi = 1, . . . , n, we know T (x) for all x ∈ V because it is sufficient to specify T on
a basis and apply linearity to reach anywhere else in the space.

In general, this can be encoded in a matrix multiplication by

[T ]βα = [x]α · [T (x)](β) (7.4)

The transformation is encoded in an m×n matrix, which by multiplication takes a vector in Fn (isomorphic
to V ) to one in Fm (isomorphic to W ).

Suppose we have ordered bases α, β, γ on V,W,Z which are vector spaces of dimension n,m, p. When we
try to encode the transformation V → Z in terms of the natural ones given by the bases from V → W and
W → Z, we get a composition U ◦T naturally encoded by an p×n that is the product of a p×m and m×n
matrix.

[UT ]γα[x]α = [U ]γβ [T ]βα[x]α (7.5)

Example 7.1. Consider the transformation Tθ : V ec2 → V ec2, representing rotation by an angle θ
counterclockwise. Modulo 2π, this is linear, i.e. Tθ ◦ Tφ = Tθ+φ. We get this from
geometry. Pick a basis of two-dimensional space, α = {x1, x2}; then

[Tθ]
α
α = ([Tθ(x1)]α [Tθ(x2)]α) (7.6)

We use triangles and see that x1 gets mapped to x1

[
cos θ
sin θ

]
, and x2 gets mapped to[

− sin θ
cos θ

]
. We can use linearity to derive the sine and cosine sum laws:

[
cos θ − sin θ
sin θ cos θ

] [
cosφ − sinφ
sinφ cosφ

]
=

[
cos(θ + φ) sin(θ + φ)
− sin(θ + φ) cos(θ + φ)

]
(7.7)

I don’t want to actually multiply matrices, but we get

cos θ cosφ− sin θ sinφ = cos(θ + φ) (7.8)

sin θ cosφ+ cos θ sinφ = sin(θ + φ) (7.9)



The rotations of a circle are a group!
�

Example 7.2. Consider V = W = C viewed as a vector space over R. dimC = 2, and choose
α = {1, i}. Every complex number is uniquely written as a+ bi = a · 1 + b · i.

Let Ta+bi : C→ C, x→ (a+ bi)x. This transforms the basis by 1→
[
a
b

]
, i→

[
−b
a

]
.

That looks a lot like rotation. If we constrain a2 + b2 = 1, we get that eiπ = −1.
�
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8.1

We previously saw that a finite-dimensional vector space V such that dimV = n was isomorphic to Fn for
any particular choice of a basis of V . Consider the basis for Fn,

{


1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1

} (8.1)

This has the corresponding matrix representation In = δij , i.e. a matrix that is 1 down the diagonal and 0
otherwise.

Suppose the linear transformation φβ goes V → Fn, v → [v]β . This linear transformation φβ is invertible;
for all ~y ∈ Fn, there exists a unique v such that φβ(v) = ~y. This follows from the fact that all v have a
unique representation as

∑n
i=1 aixi.

(Definitions of injective and surjective here)

Consider two vector spaces, V,W over the same field, and a linear transformation T : V →W .

Definition 8.1. T is called invertible (an isomorphism) if ∃T−1 : W → V such that T−1 ◦ T = IdV , T ◦
T−1 ◦ IdW .

Lemma 8.1. If it exists, T−1 is a linear transformation.

Proof. ∀y, z ∈ W,T−1(y + z) = T−1y + T−1z as follows. For y,∃!x ∈ V such that T (x) = y, and similarly
there exists a u ∈ V for z. Then

T−1(y + z) = T−1(T (x) + T (u)) = T−1(T (x+ u)) = x+ u = T−1(y) + T−1(z) (8.2)

The proof of scalar multiplication is similar.

Suppose V,W are finite-dimensional vector spaces over F .

Proposition 8.2. There is an isomorphism V →W if and only if dimV = dimW .

Proof. In the forward direction, suppose there exists T : V → W invertible. Then T is one-to-one onto,
meaning that R(T ) = W and N(T ) = {0V }. By the dimension theoremn, dimV = dimN(T ) + dimR(T ) =
dimW .



In the backward direction, suppose dimV = dimW = n. Chooses bases for both, β and γ. Then there
exists a unique linear transformation T : V →W,xi → yi. For all v ∈ V there exists a unique {ai} such that
v =

∑
aixi. This is an invertible linear transformation. I’ll just copy this from someone later, right now I

have priorities.

27
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9.1 Linear Bijections

Example 9.1. Suppose A,B ∈Mn×n(F ) such that AB = In. Show that BA = In.

A encodes a linear transformation LA : Fn → Fn, ~v → A~v. This correspondence
holds both ways, i.e. for a choice of basis of Fn, A is the unique matrix encoding
LA : Fn → Fn. Therefore A corresponds uniquely to LA under an isomorphism

Mn×n
L←→ (Fn, Fn). Similarly B corresponds uniquely to some LB . Since functions

that compose to give the identity element must be the identity, LA◦LB = LB◦LA =
IFn . Therefore we can apply the bijection and show that AB = BA = In.

�

This example relied on the following result,

Lemma 9.1. Suppose f : A→ B and f is invertible, meaning there exists f−1 : B → A. Then if g : B → A
such that g ◦ f = IA and g is invertible, then f ◦ g = IA and in fact g = f−1.

Theorem 9.2. Let T : V →W where both are finite-dimensional vector spaces. If we know either that T is
onto or one-to-one, it must be invertible.

Proof. If T is onto, then R(T ) = W . By the dimension theorem, dimN(T ) = 0, so N(T ) = {0}, meaning T
is one-to-one and therefore bijective, so it is invertible.

If T is one-to-one, then N(T ) = {0}, so dimN(T ) = 0, so dimR(T ) = dimW , so R(T ) = W meaning T is
onto

9.2 Change of Coordinates

Suppose we have two bases β, β′ of V/F . Let β = {xi} and β′ = {x′i}. Suppose there is some linear
transformation LQ between β and β′. Then, any linear transformation using β can be written as follows:

φβ(v) = LQ ◦ φβ′(v) (9.1)

[v]β = Q[v]β′ (9.2)

[x′i]β = Q[x′i]β′ (9.3)

[x′i] in β′ coordinates is just a coordinate vector with one 1 and 0s everywhere else. This allows us to
construct Q:



Q = [[x′i]β | 1 ≤ i ≤ n] (9.4)
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10.1 Cascading Transforms

(lowkey I’m super behind on my SLC reading so I’m gonna do that in parallel, sorry if I miss things)

We previously constructed a change-of-basis matrix β′ → β,

Q =
[
[x′1]β [x′2]β . . . [x′n]β

]
(10.1)

Here, we can get the basis elements by [v]β = Q[v]β′ for all v ∈ V . We can compactly write this by Q = [Iv]
β
β′ .

In general, a linear transformation T : V →W between bases α of V (with dimension n) and γ of W (with
dimension m) is specified by the matrix

[T ]γα =
[
[T (y1)]γ [T (y2)]γ . . . [T (yn)]γ

]
(10.2)

and by applying the transform to each element of the basis α in turn, we get the relationship

[T (v)]γ = [T ]
γ
α[v]α (10.3)

Remark 10.1. Often, if T : V → V , we take α = γ and so we take the matrix [T ]αα or more simply just
[T ]α. In this case, if T = IV , we get the identity matrix,

[IV ]αα =


1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 0 1

 = In (10.4)

Suppose we have T : V → V with matrix A. I really don’t feel like doing tikzpicture (some day!) so here’s
a picture of the diagram he drew on the board.

(note: the arrow going up to φ−1β on the right should be going down.)

Given β′, we get A′ = [T ]β′ .

If we’re translating from one basis of V to another, we have a lot of things going on: translation to Fn,
change of basis in Fn, the actual transformation, and the change back to V . We can do this in any order.
This gives us the Crazy Transformation Cube. That’s the formal math term, trust me I’m an EMS major.
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Figure 10.3: A visualization of the transformations between V and Fn

By carrying out the transformations, we can get the relationship L′A = L−1Q LALQ (where LA is the trans-

formation associated to A in Fn-space and LQ is the Fn change of basis) which gives us that A′ = Q−1AQ;
this is how you transform a change-of-basis formula between bases. A wild concept that arises from this
is that linear change-of-basis transforms are a conceptual normal subgroup of linear transforms. Although
technically any matrix could be associated to a change of basis so this isn’t that surprising. If you spec-
ify something like the matrix has to have unit determinant, you can specify a subgroup and say it has to
be normal. Math is amazing. https://yutsumura.com/special-linear-group-is-a-normal-subgroup-
of-general-linear-group/

10.2 Space of Linear Transformations

Consider finite-dimensional vector spaces V and W , and the space L(V,W ) of linear transformations T :
V → W . Let dimV = n and dimW = m, and say there exist bases β and γ of V and W , corresponding
to which there exist isomorphisms φβ : V → Fn, φγ : W → Fm. Then, we get an isomorphism L(V,W ) →
Mm×n(F ), T → [T ]γβ . Hence dimL(V,W ) = dimMm×n(F ) = mn. A special case of this is where W = F .

Definition 10.1. Given a vector space V over F , the dual vector space V ∗ to V is L(V, F ).

(this is the first thing we’ve done that wasn’t in 54 get hyped)

dimV ∗ = 1 · n = n = dimV . There exist isomorphisms between V and V ∗ but there are many and there is
no preferred isomorphism in general. However, we will prove that V ∗∗ = (V ∗)∗ is canonically isomorphic to
V without having to choose an isomorphism.
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Figure 10.4: The Crazy Transformation Cube

A transformation V → W gets changed to T t : W ∗ → V ∗ under the duals of both vector spaces. Its
associated matrix is just the transpose of the matrix associated to T .

Elements of V ∗ are linear transformations V → F . We call these linear functionals, f : V → F . These are
essentially multivariate functions. For example, let’s say F = R; then V ∗ consists of elements f : V → R.
Further, as V is isomorphic to Rn for some n, these are functions f : Rn → R. For example, take n = 3 and
you get a 53-type vector valued function. More specifically, a linear functional R3 → R can be written as

f

a1a2
a3

 = k1a1 + k2a2 + k3a3 (10.5)

for some k1, k2, k3 ∈ R. Note that this can be equivalently rewritten as



f

a1a2
a3

 =
[
k1 k2 k3

] a1a2
a3

 (10.6)

For another example, let’s take V = Pn(R). Each eleement of V is a function R to R. Then, V ∗ is the space
of all functions on these functions (wild) which take p(t)→ f(p(t)). Let x0 ∈ R, and define fx0(p(t)) = p(a).
For example, if n = 2, P2(R) = {a0 + a1t + a2t

2 | ai ∈ R}. Then fx0
(p(t)) = p(x0), a0 + a1t + a2t

2 →
a0 + a1x0 + a2x

2
0, which is just a number. For x0 = 2, we get f2(p(t)) = a0 + 2a1 + 4a2 which we can see is

linear!

Linear functionals usually correspond to natural operations; for example, integration is linear:

fa,b(p(t)) =

∫ b

a

p(t)dt. (10.7)

Suppose dimV = n and β = {xi} is a basis. Can we construct a basis in V ∗? Yes! This is called the dual
basis to β.

Theorem 10.2. Define fi : V → F by

fi

 n∑
j=1

ajxj

 = ai ∈ F (10.8)

These are linear transformations V → F and {fi} is a basis of V ∗.
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11.1 Basis of a Dual Space

Recall that the dual space of a vector space V over F is V ∗ = L(V, F ) = {f : V → F | f linear}. We want
to construct a basis β∗ of V ∗ based on a basis β of V .

Let β = {x1, . . . , xn}. Define linear functionals fi ∈ V ∗ by the formula

fi(xj) = δij =

{
1 i = j

0 i 6= j
(11.1)

Then, we can use linearity to write

fi(v) = fi

 n∑
j=1

ajxj

 =

n∑
i=1

ajfi(xj) = ai ∈ F (11.2)

We suppose that β∗ = {f1, f2, . . . , fn}. To show this is a basis, we essentially want to show that we can
write any f inV ∗ as a linear combination of the fis.

f =

n∑
i=1

cifi (11.3)

f(xj) =

(
n∑
i=1

cifi

)
(xj) =

n∑
i=1

cifi(xj) = cj (11.4)

Based on this, we make the guess

f =

n∑
i=1

f(xi)fi (11.5)

where f(xi) is in red to denote that it is an element of F , instead of a functional. From this, we will get
that span(β∗) = V ∗. Since |β∗| = n = dimV ∗, we get that β∗ is a basis of V ∗.
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Example 11.1. Let V = P1(R) = {a + bt | a, b ∈ R}. Recall that φc : Pn(R) → R, p(t) → p(c), is
a linear functional (the evaluation homomorphism). Then, define φa,b : Pn(R) →
R, p(t)→

∫ b
a
p(t)dt. This is also a linear functional.

Let f1(p) =
∫ 1

0
p(t)dt, f2(p) =

∫ 2

0
p(t)dt. To show that {f1, f2} is a basis of (P1(R))∗,

it is sufficient to find its dual basis, i.e. to find p
(t)
1 , p

(t)
2 ∈ P1(R) such that fi(pj) =

δij .

We let both of them have free parameters:

p1(t) = a1 + b1t =⇒ f1(p1) =

∫ 1

0

(a1 + b1t)dt = a1 +
1

2
b1 = 1 (11.6)

f2(p1) =

∫ 2

0

(a2 + b2t)dt = 2a1 + 2b1 = 0 (11.7)

From this, we get a1 = −b1 and a1 − 1
2a1 = 1 so a1 = 2 and b1 = −2.

Likewise, we require that f1(p2) = 0 and f2(p2) = 1, which gives us p1(t) = 2 −
2t, p2(t) = − 1

2 + t. These are clearly linearly independent, so they form a basis.
Therefore {f1, f2} form a basis of the dual space.

�

Remark 11.1. Note that we can generalize the above idea to F(S,R) = {p : S → R} where S is a set.
This set has to be such that linearity is satisfied, i.e. (p + q)(s) = p(s) + q(s) and (kp)(s) = kp(s) for all
s ∈ S, k ∈ F .

For example, fix c ∈ S, and let

φc : F(S,R)→ R, p→ p(c) (11.8)

i.e. the evaluation of p at c.

The basis β = {p1, p2} we constructed before can be used to specify the evaluation homomorphism:

φc = φc(p1)f1 + φc(f2) = (2− 2c)f1 +

(
−1

2
+ c

)
f2 (11.9)

For example, for any polynomial in P1(R),

p(10) = −18

∫ 1

0

p(t)dt+
19

2

∫ 2

0

p(t)dt (11.10)



11.2 Linear Transformations on Dual Spaces

Recall that under a dual-space transformation, T : V → W goes to T ᵀ : W ∗ → V ∗. In the original vector
spaces, suppose we have a linear functional g : W → F , g ∈W ∗. We can compose the original transformation
T : V → W with this to get a linear functional V → F , which is an element of V ∗. For a fixed T , this
specifies a transformation from W ∗ to V ∗:

T ᵀ : g → g ◦ T (11.11)

Suppose that V has a basis β = {x1, . . . , xn} and W has a basis γ = {y1, . . . , yn}. Then, to each transforma-
tion T : V →W , we can associate a matrix [T ]γβ : V →W,~v → Am×n~v. There is also a dual transformation

T ᵀ : W ∗ → V ∗. This has an associated matrix [T t]β
∗

γ∗ : W ∗ → V ∗, w(t)→ Aᵀ
n×nw(t) where w(t) ∈W ∗.

The transpose operation is an isomorphism A ∈ Mm×n(F ) → Aᵀ ∈ Mn×n(F ). We don’t yet know for sure
that the matrix transpose says anything about the transformation, but we can show that.

Theorem 11.2.

[T ᵀ]β
∗

γ∗ =
(

[T ]γβ

)ᵀ
(11.12)

The matrix operation A→ Aᵀ is trivial, but it’s not obvious that changing T to T ᵀ would give us anything
meaningful. To make this clearer, we have to start thinking of V and V ∗ as equal dual pairs. Just like how
the time domain is clearly superior to the frequency domain, right up until you come across a convolution
integral.

Consider an operation V ∗ × V → F ; f, v → f(v) = 〈f |v〉. To make this more concrete, let V = Rn with the
canonical basis {e1, . . . , en}. The dual basis is {f1, . . . , fn} where fi(ej) = δij . We can specify these elements
by row vectors; for example, multiplying

[
1 0 . . . 0

]
by an element of V is the same as applying f1 on

it. We can specify the dual space by V ∗ = {(b1, . . . , bn) | bi ∈ R}. Then we can evaluate the generic f(v):

f(v) =
[
b1 b2 . . . bn

]
·
[
a1 a2 . . . an

]ᵀ
= a1b1 + · · ·+ anbn (11.13)

Like we’d expected, this is just a number. More explicitly,
∑n
i=1 aibi is the value of f =

[
b1 b2 . . . bn

]
on
[
a1 a2 . . . an

]ᵀ ∈ Rn.

Now that we have this structure, we can allow both f and v to vary. This gives us |v〉 =
[
a1 a2 . . . an

]ᵀ
and 〈f | =

[
b1 b2 . . . bn

]
as quantities we can look at separately, as well as the product 〈f | |v〉.

The whole notion of dual spaces assumes that V and (V ∗)∗ are isomorphic. We can construct a linear
transformation V → (V ∗)∗ and show it’s an isomorphism to prove that.

36



Math 110: Linear Algebra Fall 2019

Lecture 12: Review
Lecturer: Edward Frenkel 14 October Aditya Sengupta

31 is a Mersenne prime and I’ll thank you to remember it and that’s why Halloween is better than Christ-
mas.
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13.1 Motivation

Diagonalization gives us a new way of looking at a linear transformation, that can tell us more about what
it does. For example, in general, if we don’t specify anything about two transformations then they won’t
commute, i.e. AB 6= BA. However, diagonal matrices do commute.

The structure of a diagonal matrix is aij = λiδij , i.e. values are nonzero only on the diagonal.


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...
0 0 . . . λn


Theorem 13.1. If A and B are diagonal, then AB = BA.

13.2 Eigenstuff

Recall that An×n encodes a linear transformation LA : Fn → Fn, with respect to some basis {x1, . . . , xn}.
For now let’s say it’s the standard basis. A is diagonal if and only if LA(xi) = λiei. This is called the
eigenvector equation.

If xi satisfies this equation, then xi is an eigenvector of A (or equivalently of LA). λi is the eigenvalue of A
on xi.

Definition 13.1. An eigenbasis is a basis of Fn such that every element is an eigenvector.

Theorem 13.2. A is diagonal if and only if the standard basis is an eigenbasis.

Even if A is not diagonal, i.e. the standard basis β is not an eigenbasis, there may be another basis
β′ = {x′1, . . . , x′n} such that x′i ∈ Fn which is an eigenbasis of LA. Then we have the coordinate change
matrix Q:

Q =
[
[x′1]β . . . [x′n]β

]
(13.1)

which is defined so that [v]β = Q[v]β′ . Then, we’ve previously seen that a transformation can be done in
another basis according to

[T ]β′ = Q−1[T ]βQ (13.2)



Lecture 13: Diagonalization 39

We first translate β′ → β, do the transformation in β, and finally translate back β′ → β. Therefore, if we
assume that β′ is our desired eigenbasis, some algebra gives us A = QDQ−1. We say that A is similar to D,
i.e. there exists some change of basis (an invertible n× n matrix) Q such that A = QDQ−1.

13.3 Properties of Matrices Similar to Diagonal Matrices

If we have two matrices that are not diagonal, but are both similar to diagonal matrices with the same Q,
we can see they commute by nice matrix multiplication cancellations:

A = QDQ−1, B = QCQ−1

AB = QDQ−1QCQ−1 = QDICQ−1 = QDCQ−1

= QCDQ−1 = QCIDQ−1 = QCQ−1QDQ−1

= BA

Further, diagonalization makes it easy to raise matrices to arbitrary powers:

An = (QDQ−1)n = (QDQ−1)(QDQ−1) . . . (QDQ−1) (13.3)

= QDnQ−1 (13.4)

where Dn is just λni δij .

13.4 Definitions and Setup

Definition 13.2. Let V be a finite-dimensional vector space over F and let T : V → V be a linear operator.
An element v ∈ V is called an eigenvector of T if

1. v 6= 0

2. T (v) = λv for some λ ∈ F .

We can translate this into a statement on matrices. If β is some basis of V , let A = [T ]β . Let ~y = [v]β .
Then if v is an eigenvector of T with eigenvalue λ, then ~y is an eigenvector of A with eigenvalue λ. At the
outset, we are given A, an ntimesn matrix. We want to find y1, . . . , yn and λ such that

A


y1
y2
...
yn

 = λ


y1
y2
...
yn

 (13.5)

It seems difficult to look for its eigenvalues and eigenvectors, because there are n equations and n+1 variables.
However, it’ll turn out that we can find all of these values withuot solving any systems of equations. As
a first step, say we find {λ1, . . . , λk}k≤n of eigenvalues. Then, we can solve the fully-constrained system
A · ~x = λi~x to find the eigenvectors.
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13.5 Determinants

To find the eigenvalues, we introduce the determinant. This is a function Mn×n(F )→ F,A→ det(A). This
is not a linear functional.

We’re used to the really ugly formula for the determinant, through cofactor expansion. There is a much
nicer formulation of the determinant that involves dual spaces. However, for now let’s just accept the ugly
formula and trust that it will get the job done.

The key properties of the determinant are

(i) A is invertible if and only if det(A) 6= 0.

(ii) The product AB has a determinant det(A) det(B).

To start with 2 × 2 matrices, we attempt to come up with a formula that will tell us when the matrix is
invertible. A 2× 2 matrix is non-invertible if one of its columns is a scalar multiple of the other: if you view

the columns of

[
a11 a12
a21 a22

]
as fractions, then for invertibility we want a11

a21
6= a12

a22
. Cross-multiplying, we get

a natural formula for the determinant: det(A) = a11a22 − a12a21.

For higher dimensions, we define it recursively and decide we hate intuition.

det(A) =

n∑
i=1

(−1)i+1a1i det(Â1i) (13.6)

where Â1i is the matrix we get by removing the first row and ith column of A.

13.6 Finding eigenvalues

Suppose ~x is an eigenvector of A with eigenvalue λ. Then

A~x = λ~x

A~x− λIn~x = ~0

(A− λIn) · ~x = ~0

Recall that ~x 6= ~0; we get that ~x ∈ N(A− λIn) and dimN(A− λIn) > 0. That is, A− λIn is not invertible,
which means its determinant must be zero.

To find all eigenvalues of A, we introduce an unknown t and compute

fA(t) = det(A− tIn) (13.7)

This is called the characteristic polynomial of A, and we have shown that the eigenvalues of A are the roots
of this polynomial, because we want to make its determinant zero.
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Example 13.1. Let

A =

[
1 −1
2 4

]

We subtract tIn and take a determinant:

det(A− tI2) =

[
1− t −1

2 4− t

]
= (1− t)(4− t) + 2 = t2 − 5t+ 6

This has roots t = 2, t = 3. First, we take the eigenvalue λ = 2, and we get

(A− 2I2) · ~x = 0[
−1 −1
2 2

]
· ~x = 0

A vector spanning the null space of this matrix is ~x =

[
1
−1

]
. We see that there’s

only one unique constraint being applied, but the vector ~x is in F 2, so the dimension

of the null space is 1. Therefore, the general eigenvector is

[
a
−a

]
, but we can pick

a representative. We’ll later have the idea of normalizing the eigenvectors, but we
don’t know what an inner product is yet, so we just pick the simplest representative.

Next, we take the eigenvalue λ = 3, and we get

(A− 3I2) · ~x = 0[
−2 −1
1 2

]
· ~x = 0

A vector spanning the null space of this matrix is

[
1
−2

]
.

Therefore, the eigenbasis we wanted is {
[

1
−1

]
,

[
1
−2

]
}. We can construct Q and

Q−1:

Q =

[
1 1
−1 −2

]
, Q−1 =

[
2 1
−1 −1

]



Frenkel just barely remembered how to do an inverse.

Therefore, we can say that

A = Q

[
2 0
0 3

]
Q−1 (13.8)

�
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Theorem 14.1. The eigenvalues of A are the roots of the characteristic polynomial fA(t) = det(A − tIn)
and vice versa.

If λ is a root of f(t), then it can be written as (t− λ)g(t) where g(t) is another polynomial. Continuing this

process, if we have k roots λ1, . . . , λk, then f(t) =
∏k
i=1(t− λi)g(t).

We say that fA(t) is split if we can write it entirely like this, i.e. there exist λ1, . . . , λn such that

fA(t) = (−1)n
n∏
i=1

(t− λi) (14.1)

We can write out the determinant A− tIn as follows to identify the λis and also recognize why we have the
(−1)n above:

∣∣∣∣∣∣∣∣∣
a11 − t . . . . . . . . .
. . . a22 . . . . . .
...

...
...

...
. . . . . . . . . ann

∣∣∣∣∣∣∣∣∣ = (−t)n + (−t)n−1 trA+ · · ·+ t0 detA

There’s no easy expression for the . . . in the middle of that polynomial in t. (Not sure of the purpose of
doing this.)

Let λ1, . . . , λk be the distinct roots; λi 6= λj if i 6= j. Let mi be the algebraic multiplicity of i, i.e. the
exponent if we write out the polynomial in the form

fA(t) = (−1)n
k∏
i=1

(t− λi)mi (14.2)

Each mi is at least 1 and is some integer. For example, if all the mis are 1, then k = n so fA(t) has n
distinct roots.

Suppose we have A such that its characteristic polynomial is split. Then A has eigenvalues λ1, . . . , λk with
multiplicities m1, . . . ,mk. First, consider the generic case k = n. Then there exists yi ∈ Fn such that
Ayi = λiyi for all i = 1, . . . , n.

Theorem 14.2. The set {y1, . . . , yn} is an eigenbasis.

Proof. We know these are all eigenvectors, so it remains to prove they are a basis. Since dimFn = n =
|{y1, . . . , yn}|, it will suffice to prove it is linearly independent, i.e. that if

∑
i aiyi = 0 and ai ∈ F , then all

the ais must be 0.
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We will prove this by induction. If n = 1 then {y1} is trivially linearly independent. Suppose true for some
k < n, that is, {y1, . . . , yk} is linearly independent, then we add in yk+1.

a1y1 + · · ·+ akyk + ak+1yk+1 = 0 (14.3)

Apply (A− λk+1In) to both sides. Then

(A− λk+1In)yi = Ayi − λk+1yi = λiyi − λk+1yi = (λi − λk+1)yi (14.4)

Therefore

a1(λ1 − λk+1)y1 + a2(λ2 − λk+1)y2 + · · ·+ ak(λk − λk+1)yk + ak+1(λk+1 − λk+1)yk+1 = 0 (14.5)

The last term drops out and we’re left with a linear combination of {y1, . . . , yk}. We know this is linearly
independent, so ai(λi−λk+1) = 0. But recall that we took all the λis distinct, so λi−λk+1 is always nonzero.
Therefore the ais up to k are all zero by linear independence. This means ak+1 must also be 0. So we have
shown {y1, . . . , yk+1} is linearly independent.

Next, let’s consider the case where k < n, so there exists at least one mi > 1. Look at 2×2 diagonal matrices.

For example, the characteristic polynomial of

[
λ1 0
0 λ2

]
is (t− λ1)(t− λ2). If we have a multiplicity greater

than 1, this reduces to λ1 = λ2 = λ and the polynomial reduces to (t− λ)2. We’ll find that this corresponds
to two linearly independent eigenvectors with the same eigenvalue.

Definition 14.1. An eigenspace of A corresponding to a given eigenvalue λ is the set of all solutions to
Av = λv where v ∈ Fn.

We denote this by Eλ ⊂ Fn.

Lemma 14.3. 1. Eλ is a subspace of Fn.

2. In the generic case where no two eigenvalues are the same, dimEλi = 1 for all i.

3. Eλ 6= {0} ⇐⇒ λ is an eigenvalue of A.

Lemma 14.4. Suppose A has eigenvalues λ1, . . . , λk with multiplicities m1, . . . ,mk. Then dimEλi ≤ mi.

Proof. Choose a basis of Eλi and extend it to a basis of Fn. Relative to this basis, our matrix is diagonal in
the first k rows and columns, with all the diagonal elements equal to λ1 and is zero below this diagonal block.
(See q5 on the practice midterm.) That means the characteristic polynomial has the form (λ1−t)dimEλ1 g(t).
Therefore dimEλ1

≤ m1.

Theorem 14.5. A is diagonalizable if and only if dimEλi = mi for all i = 1, . . . , k. Suppose βi is a basis
of Eλi ; then an eigenbasis is a disjunctive union β = β1 t β2 t · · · t βk.



Proof. In the backward direction, βi has mi elements, so the cardinality of β is
∑
imi = deg fA(t) = n.

Therefore β is a set with n elements. It remains to be shown that β is linearly independent. This is done
like we did it last time.

In the forward direction, we know that A is diagonalizable. So there is an eigenbasis γ1, . . . , γk where γi
contains all eigenvectors with eigenvalue λi. |γi| ≤ dimEλi ≤ mi by the lemma. Therefore

n =

k∑
i=1

|γi| ≤
k∑
i=1

mi = n (14.6)

Therefore |γi| = mi so dimEλi = mi.
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Recall that A is diagonalizable if there exists some matrix Q such that A = QDQ−1 where D is diagonal.
The existence of Q is equivalent to the existence of an eigenbasis {x1, . . . , xn}; if we have this basis, we can
construct Q just by treating each of the elements of the eigenbasis as a column.

Q =
[
x1 . . . xn

]
Last time, we saw that A is diagonalizable if two conditions are met:

1. fA(t) is split, i.e. there exists an expansion of the characteristic polynomial,

fA(t) = det(A− tIn) = (−1)n
k∏
i=1

(t− λi)mi . (15.1)

λ1, . . . , λk are distinct eigenvalues, and mi is referred to as the multiplicity of λi.

2. dimEλi = mi; recall that Eλi = {v ∈ Fn | (A− λiIn)v = 0} is the eigenspace corresponding to λi. In
general, Eλi 6= {0}, and 1 ≤ dimEλi ≤ mi. This condition is satisfied almost all of the time.

A field F is called algebraically closed if any polynomial over F splits, i.e. the first condition is always
satisfied. For example, C is algebraically closed. Note that R is not algebraically closed, because t2 + 1 has

no solutions in R. Suppose we have the matrix A =

[
0 −1
1 0

]
, which has the characteristic polynomial t2 +1.

This does not split over R but it does split over C. We get eigenvectors defined over C2 instead of R2.

Consider the following matrices over R: A =

[
λ 0
0 λ

]
and B =

[
λ 1
0 λ

]
. Both of these have the characteristic

polynomial (t− λ)2, i.e. they have eigenvalue λ with multiplicity 2. To find the eigenvectors of B, we want
to find the vectors that satisfy

[
λ 1
0 λ

] [
a
b

]
= λ

[
a
b

]
(15.2)

i.e.

[
0 1
0 0

] [
a
b

]
=

[
0
0

]
(15.3)



The solutions to this are of the form

[
a
0

]
, so Eλ = span{

[
1
0

]
} and dimEλ = 1 < 2. The special thing about

B is that we could read the eigenvalues off the diagonal: even though B isn’t diagonalizable, it’s as close to
it as we can get, and this allowed us to read off the eigenvalues.

We say that B is in Jordan canonical form, which is something I don’t feel like TeXing today. Check out
Figure ??.

The Jordan canonical form of a matrix consists of blocks of the same eigenvalue down the diagonal, with 1s
to their right. You can go through some algebra and show that the characteristic polynomial of a Jordan
canonical matrix that only has one block is what we expect:

det(Jp(λ)− tIp) = (−1)p(t− λ)p (15.4)

which is the same as that of a diagonal matrix with λs all down the diagonal.

If A has fA = (−1)n
∏k
i=1(t − λi)mi and A can be brought to Jordan form, then mi is the sum of sizes of

the Jordan blocks Jp(λi).

Definition 15.1. We say that A can be brought to Jordan form if there exists an invertible matrix Qn×n
such that A = QJQ−1 where J is in Jordan form.

Note that this definition includes diagonalizable matrices, because a diagonal matrix is said to just consist
of n 1× 1 Jordan blocks.

Consider the matrix Jp(λ)− λIp, whose null space we want to find to get the eigenvectors of Jp(λ).

Jp(λ)− λIp


0 1 0 . . . . . .
. . . 0 1 . . . . . .
...

...
...

...
...

. . . . . . . . . 0 1

. . . . . . . . . . . . 0

 (15.5)

Conceptually, this annihilates standard basis element x1, sends x2 to x1, sends x3 to x2, and so on. This
creates a cycle whose length corresponds to the multiplicity of λ. This is equivalent to saying there is a basis
of Fn which is a union of cycles like this.

The xis are not all eigenvectors: only the one that is annihilated, x1, is an eigenvector. The rest are so-called
generalized eigenvectors: in general, xi is annihilated by (A− λIn)i, because A− λIn sends xi to xi−1 so if
we apply it i times it gets annihilated.

Definition 15.2. v ∈ Fn is called a generalized eigenvector of A corresponding to λ if (A− λIn)pv = 0 for
some p > 0.

The rest of the lecture is an example with the matrix A =

 3 1 −2
−1 0 5
−1 −1 4

 which feels like a lot to actually

write out, so I just won’t.
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Recall that a generalized eigenvector v has the property that for some p, (A− λI)pv = 0. This gives us the
generalized eigenspace Kλ:

Kλ = {v ∈ V | (A− λI)pv = 0 for some p ∈ {1, 2, . . . }}

When we talked about diagonalization, we introduced the notion of an eigenspace, so this is just a general-
ization of that.

Remark 16.1. We can talk about linear transformations either in terms of the abstraction in which V
over F is a vector space of dimension n, and T : V → V is a linear operator, or in terms of a matrix
A ∈Mn×n(F ).

We previously proved that if T : V → V is diagonalized, then V = ⊕ki=1Eλi . Now, we will prove that
in general we have a similar decomposition in terms of Kλis for any transformation whose matrix can be
brought to Jordan form.

Here, we assume that the characteristic polynomial fT (t) splits over F by

fT (t) = (−1)n
k∏
i=1

(t− λi)mi

where λi 6= λj for all i 6= j. We get a list λ1, . . . , λk of eigenvalues with multiplicities m1, . . . ,mk. This is
going to be more difficult to generalize, because previously we had that every vector in some Eλi satisfied
(T − λiI)v = 0. But now, the equation that we have to satisfy won’t always be the same.

If T is diagonalizable, we just construct the eigenbasis from that process that we already saw. If it is not,
there are two levels of subdivision:

1. V = ⊕ki=1Kλi .

2. Kλi will have a basis that is a union of cycles.

Then, we can take βi = γi1 t γi2 t · · · t γiqi .

A generalized eigenvector has associated to it actual eigenvectors. If v satisfies (A − λI)pv = 0, then
(A − λI)p−1v is an actual eigenvector. We’ll call the generalized eigenvector that starts the chain the final
vector of the cycle, and the generalized eigenvector that’s actually an eigenvector the initial vector.

The full proof of the Jordan canonical form decomposition being valid requires the Cayley-Hamilton theorem.
Basically, this says that if you’ve got a matrix A that has a characteristic polynomial

∑
i ait

i, then
∑
i aiA

i =
0: any matrix satisfies its own characteristic polynomial.



It’s sort of a cornerstone of bad math pedagogy because high school linalg classes (wherever they exist)
tend to just state it as fact and not justify it with anything about why it’s true from a linear transforms
perspective. So I was kind of excited to do it here. PG&E has deprived me of math.

Anyway, we’ve now built up enough machinery that we should just commit to actually doing something.
First, here’s the theorem we want to prove overall:

Theorem 16.2. 1. There exists a basis of V that is a union of cycles of T .

2. V = ⊕ki=1Kλi .

3. dimKλi = mi.

The proof of this relies on the following lemmas.

Lemma 16.3 (Linear independence of cycles). Let γ1, γ2, . . . , γq be cycles of generalized eigenvectors of T
corresponding to λ, whose initial vectors are linearly independent. Then γ1 t · · · t γq is linearly independent.

Lemma 16.4 (Linear independence of vectors from different cycles). Suppose vi ∈ Kλi for i = 1, . . . , k such
that v1 + v2 + · · ·+ vk = 0. Then vi = 0 for all i.

We proved Lemma ?? for the Eλis before.

We can prove part 1 of Theorem ?? from these two lemmas, i.e. that there exists a basis of V that is a union
of cycles of T .

Proof. We induct on dimV = n.

Base case: n = 1. Then V is a one-dimensional vector space over F , and T : V → V is linear, meaning there
exists some a ∈ F such that T (v) = av.

Inductive step: let the inductive hypothesis be true for dimV = n − 1. Recall that λ1, . . . , λk are roots of
fT (t). Let W = R(T −λ1I); this is a subspace of V . We know that dimN(T −λ1I) > 0, so by the dimension
theorem, dimW < n. We claim that W is T−invariant, i.e. that for all w ∈W,T (w) ∈W .

Since W is the range of T − λ1I, there exists some y such that w = (T − λ1I)(y). Therefore

T (w) = T ((T − λ1I)(y)) = (T − λ1I)(T (y)) ∈W

Therefore W ⊂ V and dimW < n = dimV .

By our inductive assumption, W has a basis of cycles of T . There will be cycles corresponding to eigenvalues
λ1, . . . , λk of T . So let’s look at the cycles for λ1 in W. Call them γ′1, . . . , γ

′
q. Since they are inW = R(T−λ1I),

we can extend each γi to a cycle in V by adjoining a vector yi ∈ V such that (T − λ1I)yi is equal to the
final vector in the cycle γi. Therefore each γi = γ′i ∪{yi}, and the γis and γ′is share initial vectors. Since the
disjunctive union tγ′i is a subset of a basis, it follows that this set is linearly independent, therefore the initial
vectors are linearly independent. By Lemma ??, the disjunctive union of the γis is linearly independent, like
we wanted.

49



Lecture 17: Generalized eigenspace basis, Markov chains 50

Math 110: Linear Algebra Fall 2019

Lecture 17: Generalized eigenspace basis, Markov chains
Lecturer: Edward Frenkel 6 November Aditya Sengupta

I walked in ten minutes late, rip.

17.1 Generalized eigenspace basis proof

Previously, we constructed a disjunctive union of cycles γi for λ1, and showed it was a basis. This was based
on two lemmas, the second of which we’ll prove here.

Lemma 17.1. (Previously, this was Lemma 16.4, or in his document Theorem 2). Let Kλi be the generalized
eigenspace on V corresponding to λi. Suppose we have vi ∈ Kλi such that v1 + v2 + · · ·+ vk = 0. Then each
vi = 0.

Proof. We induct on k. This is trivially true for k = 1. Suppose we proved that if v1 + · · · + vm = 0 then
v1, v2, . . . , vm = 0. Then, we consider some combination such that v1 + · · ·+ vm + vm+1 = 0, and we prove
that v1 = · · · = vm+1 = 0.

First, let’s consider the case where vi ∈ Eλi . Apply (T − λm+1I) to both sides of the initial equation:

(λ1 + λm+1)v1 + · · ·+ (λm − λm+1)vm = 0 (17.1)

The m + 1 term got murdered. Then, by the inductive hypothesis, all of (λi − λm+1)vi = 0. Since all the
λis must be distinct, we get that vi = 0 for all i = 1, . . . ,m.

Now, let’s try to generalize this argument to vi ∈ Kλi . Then, the annihilating operator is no longer (T−λiI):
it’s now (T − λiI)pi for some pi. So, we have to apply (T − λm+1I)pm+1 . This gives us

(T − λm+1I)pm+1v1 + · · ·+ (T − λm+1I)pm+1vm (17.2)

The m + 1 term is killed again, but now we don’t know that all of these are eigenvectors. However, this
turns out not to be necessary. All we need to know is that (T − λm+1I)pm+1 sends vi 6= 0 to v′i ∈ Kλi 6= 0.

To do this, we want to show that Kλi is invariant under (T −λm+1I)pm+1 , and that it is an isomorphism for
Kλi .

We know that for all v ∈ Kλi , ∃p such that (T − λiI)pv = 0. We claim that

(T − λiI)p ((T − λm+1I)v) = 0 (17.3)

that is, if v is killed by the power p of the operator, then (T − λm+1I)v is as well. Because of this, we look
at (T − λm+1I)v as an element of Kλi , since it is annihilated. This suggests we look at the transformation
restricted to Kλi :
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(T + λm+1I)|Kλi : Kλi → Kλi (17.4)

We want to prove that its null space is just {0}: this comes out from (T −λm+1I)w = 0 which implies Tw =
λm+1w. This can only hold along with the condition for being an element of Kλi , i.e. that (T − λiI)pv = 0
for some p, if w = 0.

“It won’t do much good for me to keep talking about it, so I’m moving on.”

17.2 Markov chains

A Markov chain is an example of a stochastic process, i.e. a process that evolves over time according to
certain probability laws.

A discrete-time Markov chain describes a process whose state changes in discrete steps and cycles between
a finite set of possible states, with certain probabilities that are stationary and do not evolve over time. It
also satisfies the Markov property, that the state only depends on the previous state:

P(Xn+1 = j | Xn = i,Xn−1 = xn−1, . . . , X1 = x1) = P(Xn+1 = j | Xn = i) = pij (17.5)

In words, “the probability that the chain is in state j at time n + 1 given that it was in state i at time n,
state xn−1 at time n− 1, ..., and state x1 at time 1 is the same as the probability that the chain is in state
j at time n + 1 given that it was in state i at time n”. More simply, the state-transition rules for the next
step only depend on your current state, not on your history. We denote the quantity P(Xn+1 = j | Xn = i)
by pij , the probability of transitioning from i to j.

Note that he’s using the opposite convention to the convention that’s used basically everywhere. Everyone
else says pij is the probability of going i to j, but he uses it as the probability of going j to i.
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Because you have to jump to something (self-loops pii are allowed), we can say that
∑N
j=1 pij = 1 and that

0 ≤ pij ≤ 1. We can encode these in a transition matrix A:

A =


p11 p12 . . . p1n
p21 p22 . . . p2n
...

...
...

...
pn1 pn2 . . . pnn

 (17.6)

Example 17.1. Suppose we want to model the weather over multiple days. Let’s encode “it is
sunny” in state 1, and “it is rainy” in state 2.

1 2p11

p12

p21
p22

Note again that I’m flipping his convention so that it matches the convention that’s
used in every other online resource about Markov chains. This also means that I’m
transposing every matrix he writes.

Suppose the transition matrix is A =

[
0.8 0.2
0.7 0.3

]
. Then, if today, at t = 0, we’re in

state 1, then we can find the probabilities it’ll be sunny or rainy on the next day
by left multiplying a row vector of the current distribution. This is the purpose of
his formulation: if you use the definition j → i has pij , you get to do the usual
right multiplication, but with the canonical definition, you have to think about
distributions as row vectors.
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[
1 0

] [0.8 0.2
0.7 0.3

]
=
[
0.8 0.2

]
(17.7)

Then, at t = 2, the probabilities are

[
0.8 0.2

] [0.8 0.2
0.7 0.3

]
=
[
0.78 0.22

]
(17.8)

�

Is it possible to predict the long-term behaviour of a Markov chain?

~pi = ~pi−1A = ~pi−2A
2 = · · · = ~p0A

i (17.9)

We can predict long-term behaviour if we write A in Jordan canonical form:

A = QJQ−1 =⇒ Ai = QJ iQ−1 (17.10)

If J is diagonal, i.e. it’s λ1, . . . , λn down the diagonal and 0 everywhere else, then Di is just λi1, . . . , λ
i
n down

the diagonal and 0 everywhere else, which is easy to compute.

Example 17.2. In our previous example,

det

[
0.8− t 0.2

0.7 0.3− t

]
= (t− 1)(t− 0.1) (17.11)

If we take the null space in both case, we get that the eigenvector for λ = 1 is[
7
9

2
9

]
and the eigenvector for λ = 0.1 is

[
1 −1

]
. (This bears checking, because I

did it with my convention and might have messed up the transpose.) We construct
Q−1 by stacking up these row vectors - I think this is Q−1 instead of Q because of
some weirdness with transposing. Therefore, we get

A =

[
1 2

9
1 − 7

9

] [
1 0
0 0.1

] [
7
9
2
9

1 −1

]
(17.12)

(I verified this on WolframAlpha, so we’re good)

If we raise both sides to the ith power, we get



Ai =

[
1 2

9
1 − 7

9

] [
1i 0
0 0.1i

] [
7
9
2
9

1 −1

]
(17.13)

As i→∞, J goes to

[
1 0
0 0

]
, therefore our overall i is

[
1 2

9
1 − 7

9

] [
1 0
0 0

] [
7
9
2
9

1 −1

]
=

[
7
9

2
9

7
9

2
9

]
(17.14)

�

This is true for a general transition matrix satisfying regularity, which means that there exists m ∈ {1, 2, . . . }
such that (Am)ij 6= 0 for all i, j: every state is accessible from every other one. If this isthe case, there is
a unique probability vector such that ~p = ~pA: this is the stationary distribution. In this case, every row of
the Markov chain is this vector.
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To analyze (something about) a Markov chain, we impose regularity, i.e. we state that there exists some
m ∈ N/{0} such that all entries of Am are strictly positive. This prevents Markov chains like this one:

1 2

3 4

Here, the class {1, 2} does not communicate with the class {3, 4}. A regular Markov chain has all of its
states connected, i.e. for every pair of states i, j, there exists some n such that (An)i,j > 0: the probability
of transitioning i to j in n steps is nonzero.

Theorem 18.1. Let A be a regular transition matrix. Let λ represent an eigenvalue of A. Then:

1. |λ| < 1 or λ = 1.

2. The eigenspace corresponding to λ = 1 is 1-dimensional.

3. E1 contains a unique probability vector ~p.

4. The unique Jordan block for λ = 1 is 1x1.

5. The limit lim
m→∞

Am exists and is equal to

~p~p
...

.

Proof. Let B = AT . We know that A and B have the same Jordan form. (Note that I’m still flipping his
convention, so B for me is what he considers the normal state-transition matrix A.) We can see this by

det(A− tI) = det((A− tI)T ) = det(AT − tI) (18.1)

The characteristic polynomials therefore both admit the same representation (−1)n
∏k
i=1(t − λi)mi . Since

the eigenvalues and their multiplicities are the same, we know that

dimN((A− λiI)p) = n− rank(A− λiI)p = n− rank(AT − λiI)p = dimN((AT − λiI)p) (18.2)

i.e. the Jordan forms are the same.
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Alternatively, we can say that

A = QJQ−1 =⇒ AT = (QT )−1JTQT (18.3)

If JT were similar to J , i.e. there existed some R such that JT = RJR−1, we could say A and AT shared a
Jordan form (AT similar to JT similar to J similar to A.)

We can see why this is true by looking at the typical Jordan form: on the diagonal, J and JT are the same,
and off the diagonal, a Jordan matrix has 1s below/to the left of each eigenvalue. If we moved those to
above/to the right of each eigenvalue, we’d get the transposed Jordan form, which we can achieve just by a
flipped version of the identity matrix, with 1s down the right diagonal.

All this to say he’s now using the standard convention for Markov chains, and that either formalism works.

Note that the vector ~u =
[
1 1 . . . 1

]
is a left eigenvector of A with eigenvalue 1: ~uA = ~u. Suppose

there is another eigenvector of A with eigenvalue 1, linearly independent from ~u. Denote this by ~v =[
v1 v2 . . . vn

]
. Take ~v − vk~u =

[
v1 − vk v2 − vk . . . 0 . . . vn − vk

]
. Then

(~v − vk~u)Am = (~v − vk~u) (18.4)

For some m, all entries of Am are greateer than 0. But if we multiply the 0 element thus generated by Am,
we’ll get something greater than 0 unless all the other entries are 0, which is a contradiction. Therefore ~u
spans the 1−eigenspace.

It remains to be shown that any eigenvalue that is not 1 must have a magnitude less than 1. We know that∑n
j=1Aij = 1 for all k. Suppose ~x =

[
x1 x2 . . . xn

]
such that ~xA = λ~x. We want to prove that |λ| < 1.

n∑
j=1

Aijxj = λxi (18.5)

Let k = arg max |xi|, i.e. the index of the maximum element of ~x. Then

|λ−Akk||xk| = |λxk −Akkxk| (18.6)

=

∣∣∣∣∣∣
∑
[

j = 1]nAkjxjAkkxk

∣∣∣∣∣∣ (18.7)

=

∣∣∣∣∣∣
n∑
j=1

Akjxj

∣∣∣∣∣∣ (18.8)

≤
∑
j 6=k

|Akj ||xj | ≤
∑
j 6=k

Akj |xk| = (1−Akk)|xk| (18.9)

Therefore, we get that |λ−Akk| ≤ |1−Akk|. Therefore, we can use the triangle inequality to show what we
want:



|λ| = |(λ−Akk) +Akk| ≤ |λ−Akk|+ |Akk| (18.10)

≤ |1−Akk|+ |Akk| = 1−Akk +Akk = 1 (18.11)

(we can drop the absolute values because A is nonnegative everywhere).

It remains to show that |λ| = 1 =⇒ λ = 1. This just comes out of Akk being positive: |λ − Akk| =
| − 1−Akk = 1 +Akk which can’t be less than 1−Akk like we want. (we assume WLOG that Akk > 0.)

We’ve shown the first two statements. The third one comes out of the 1−eigenspace being one-dimensional,
meaning there’s a unique way to normalize it. To show the fourth one, we note that if A is a transition
matrix, then so is Am for any m ∈ N. Therefore, Am is bounded, meaning that Jm can’t grow to infinity as
it’s similar to Am. If J contains a Jordan block with λ = 1 of size greater than 1, we get a contradiction.
To see this, we note that

[
λ 1
0 λ

]m
=

[
λm mλm−1

0 λm

]
∞−−−−→

m→∞
(18.12)

Similarly, any Jordan block with λ = 1 of size R > 1 blows up to infinity as m→∞.

Finally, we note that Am is a transition matrix, and so is the limiting matrix L = lim
m→∞

Am. We want to

enforce that LA = L, i.e. LA = lim
m→∞

Am+1 = L. We get this just by stacking up all the row vectors in L,

denoting them yi:

LA =


~y1A
~y2A

...
~ynA

 = L (18.13)

Therefore ~yiA = ~yi, so it’s an eigenvector with eigenvalue 1. That means that each ~yi must be the same as
~p.
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19.1 Inner Products over R and C

In Rn, we have the notion of a magnitude, and of orthogonality, that are connected to the idea of an inner
product. We’d like to generalize these!

The squared-magnitude of ~x ∈ Rn is ‖~x‖ = ~x · ~x, and two vectors in Rn are orthogonal if they dot to 0:
~x ⊥ ~y ⇐⇒ ~x · ~y = 0. To generalize these, we introduce the following definition of an inner product:

Definition 19.1. Let V be a vector space over R or C. An inner product on V is an operation V × V →
F, (~x, ~y)→ 〈x, y〉 satisfying the axioms

(1) 〈x+ z, y〉 = 〈x, y〉+ 〈z, y〉.

(2) 〈c · x, y〉 = c〈x, y〉.

(3) 〈x, y〉 = 〈y, x〉, or for the complex case, 〈x, y〉 = 〈y, x〉∗.

(4) 〈x, x〉 ≥ 0 for all x ∈ V .

For V = Rn over F = R, the standard inner product 〈~x, ~y〉 =
∑
i xiyi satisfies all of these, but for V = Cn

over C, this doesn’t necessarily work. It satisfies all the axioms, but it doesn’t satisfy the property that we
want, that the inner product of a vector with itself gives us the magnitude of the vector. Therefore, over C,
we take 〈~x, ~y〉 =

∑
i xiy

∗
i .

Lemma 19.1. If F = R, then the first two properties of an inner product also hold on the second argument:

〈y, x+ z〉 = 〈y, x〉+ 〈y, z〉 (19.1)

〈y, cx〉 = c〈y, x〉 (19.2)

That is, the inner product over R is bilinear: it’s linear in both arguments.

If F = C, we have semilinearity: 〈y, x+ z〉 = 〈y, x〉+ 〈y, z〉 and 〈y, cx〉 = c∗〈y, x〉. The inner product over C
is therefore sesquilinear: it’s almost bilinear, but has to be “twisted” a little bit to get it there.

19.2 Inner Products over Other Spaces

Let V = C([0, 1])◦ be the space of real-valued continuous functions on [0, 1]. Suppose f(t), g(t) ∈ V ; then,
set



〈f, g〉 =

∫ 1

0

f(t)g(t)dt (19.3)

This satisfies the fourth axiom, because 〈f, f〉 =
∫ 1

0
f(t)2dt which is always nonnegative, and is positive only

if f(t) = 0.

I’ve tuned out because I just can’t do this today.
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I have no idea what happened here.
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Recall that for any finite-dimensional vector space V over F , we have defined its dual, V ∗, which gives some
meaning to the transpose of a linear transformation: T : V → V goes to T t : V ∗ → V ∗. To make sense of
this equation, we need an isomorphism V ' V ∗. If F is R or C, we can identify what this isomorphism is
through an inner product on V through some relationship T t ' T ∗. Operators that satisfy this are called
Hermitian.

Suppose V is a finite-dimensional vector space over R with an inner product 〈·, ·〉. Construct a linear
transformation

P〈·,·〉 : V → V ∗, y → fy (21.1)

where fy(x) = 〈x, y〉. We can verify that fy is a linear functional by showing that fy(x+ z) = fy(x) + fy(z)
and fy(cx) = cfy(x). Therefore, P〈·,·〉 : V → V ∗ is a linear transformation. We cllaim this is an isomorphism.
Since dim(V ) = dim(V ∗), it is sufficient to show that P〈·,·〉 is onto. Pick g : V → R. Then, we want to y ∈ V
such that g = fy.

We know that every finite-dimensional inner product space has an orthonormal basis. Therefore, we choose
such a basis, {x1, . . . , xn}. We need to choose y such that for all x ∈ V , g(x) = fy(x). We express every
z ∈ V in the orthonormal basis:

z =

n∑
i=1

〈z, xi〉xi (21.2)

So for the y we want, we can decompose it to a linear combination with weights of the form 〈y, xi〉 at which
it must match g. Therefore, we take

y =

n∑
i=1

g(xi)xi (21.3)

Since this choice satisfies the requirement on a basis, it satisfies it everywhere, so g = fy. Therefore P〈·,·〉 is
an isomorphism.

Now, given T : V → V , we have T t : V ∗ → V ∗ and we transport T t to an operator T ∗ : V → V , such that
T tg = g ◦ T . With inner products, this is given by a simple formula that we see in the next definition.

Definition 21.1. The adjoint operator T ∗ to an operator T is defined by the formula

〈T (x), y〉 = 〈x, T ∗(y)〉 ∀x, y ∈ V (21.4)



We can show that such a T ∗ exists:

T ∗(y) =

n∑
j=1

〈y, T (xj)〉xj (21.5)

To check the above, it is sufficient to check it over a basis.

〈T (xi), y〉 = 〈xi, T ∗(y)〉 = 〈xi,
n∑
j=1

〈y, T (xj)〉xj〉 = 〈y, T (xi)〉 (21.6)

Further, we can show it is unique. Suppose we had another operator U : V → V such that 〈T (x), y〉 =
〈x, U(y)〉. Then 〈x, T ∗(y)〉 = 〈x, U(y)〉 for all x, y ∈ V . But then for all y ∈ V , T ∗(y) and U(y) have thee
same inner products with alll x ∈ V .

Lemma 21.1. Suppose u, v ∈ V are such that 〈x, u〉 = 〈x, v〉 for all x ∈ V . Then u = v.

Proof. We can just use linearity:

〈x, u− v〉 = 0 ∀x (21.7)

Pick x = u− v: then ‖u− v‖ = 0, so u− v = ~0.

Therefore, since T ∗ and U match everywhere, they must be the same operator. A couple examples here.
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Skipped.
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Let V be a finite-dimensional inner product space over R or C, and let T : V → V be a self-adjoint operator.

Theorem 23.1. 1. T is diagonalizable.

2. There is an orthonormal basis in V that is an eigenbasis of T .

3. All eigenvalues of T are real.

Proof. We induct on dimV . This is trivially true if dimV = 1, so suppose inductively there is an orthonormal
basis of V that is an eigenbasis of T in the case dimV = k. Now, consider the case dimV = k + 1 We
know that T has at least one eigenvector x1, such that T (x1) = λ1x1. Therefore, let W = span{x1} ⊂ V .
dimW = 1. Then,

W⊥ = {y ∈ V | 〈x, y〉 = 0 ∀x ∈W} (23.1)

We claim that W⊥ is T−invariant: for all y ∈W⊥, T (y) ∈W⊥. We can show this as follows:

〈x1, T (y)〉 = 〈T (x1), y〉 = 〈λ1x1, y〉 = λ1 · 0 = 0 (23.2)

Recall that V = W ⊕W⊥. Therefore, the union of bases of W and W⊥ is a basis of V . The dimension of
the basis of W is 1, and that of W⊥ is k; by the inductive hypothesis, we can choose an orthonormal basis
of W⊥ that is an eigenbasis of T restricted to W⊥. So by induction, we have an orthonormal basis of V that
is an eigenbasis of T .

It remains to show that all eigenvalues of T are real. Let λ be an eigenvalue of T . Then T (x) = λx for some
x 6= 0. Then

λ〈x, x〉 = 〈λx, x〉 = 〈T (x), x〉 = 〈x, T (x)〉 = 〈x, λx〉 = λ̄〈x, x〉 (23.3)

Therefore λ = λ̄, so it must be real.

Given a self-adjoint T : V → V , we can construct a corresponding orthonormal eigenbasis. Consider the
characteristic polynomial,

fT (t) = (−1)n
k∏
j=1

(t− λj)mj (23.4)

Lemma 23.2. Let T : V → V be self-adjoint on an inner product space V . Suppose x1, x2 are eigenvectors
of T with distinct eigenvalues. Then 〈x1, x2〉 = 0.



Proof.

〈T (x1), x2〉 = 〈x1, T (x2)〉 (23.5)

λ1〈x1, x2〉 = λ̄2〈x1, x2〉 (23.6)

Since both eigenvalues are real, we get that

(λ1 − λ2)〈x1, x2〉 = 0 (23.7)

Since we chose λ1 6= λ2, we get 〈x1, x2〉 = 0.

Corollary 23.3. Eλj ⊥ Eλp for all j 6= p.

Now recall that V = Eλ1
⊕ Eλ2

⊕ · · · ⊕ Eλk (these are pairwise orthogonal). Therefore, to construct an
orthonormal eigenbasis of T in V , we choose any orthonormal basis in each Eλj , j = 1, . . . , k, and call it βj .
Then we take β = ∪kj=1βj .

An operator T over an inner product space V is called normal if TT ∗ = T ∗T .

For any linear operator, let

T1 =
1

2
(T + T ∗), T2 =

1

2i
(T − T ∗) (23.8)

Then T1 and T2 are both self-adjoint, and T = T1 + iT2. If we could find a joint eigenbasis β for T1 and T2,
this would be an eigenbasis for T .

Further, T is normal if and only if T1 and T2 commute:

T1T2 = T2T1 (23.9)

(T + T ∗)(T − T ∗) = (T − T ∗)(T + T ∗) (23.10)

2T ∗T = 2TT ∗ (23.11)
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Figure 15.5: An entirely too large picture of the Jordan canonical form
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Figure 16.6: The “dot diagram” for arbitrary cycles
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