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Lecture 1: January 23 1

Math 113: Abstract Algebra Spring 2019

Lecture 1: Introduction: Sets, Functions, and Relations
Lecturer: Sylvie Corteel January 23 Aditya Sengupta

Note: LATEX format adapted from template courtesy of UC Berkeley EECS dept.

1.1 Logistics

Book will be followed closely. corteel@berkeley.edu. Office in Evans 859, office hours on Wednesday 11-12
and Friday 1:30-2:30. Course website: math.berkeley.edu/~corteel/MATH113.html.

The midterms will be on 25 February and 8 April, both worth 20% of the grade. Homework will be due at
the start of class every week and be worth 20% of the grade (with two drops), and the final is worth 40%.

The first homework will be due on 1 February.

1.2 Introduction

Abstract algebra looks at addition and multiplication in an abstract way. Instead of taking integers, we can
take abstract sets and define their own notion of addition. We will study abstract properties of sets with
operations, to reveal similarities between operations on matrices, numbers, polynomials, etc. In this way we
will gain familiarity with abstractions and proofs.

The first half of this class will be group theory. A group is a set with one operation and certain properties.
The second half will deal with rings and fields, which are sets with two operations. We will see that everything
we know about groups can generalize nicely to rings.

1.3 Sets and Relations

1.3.1 Sets

A set is a collection of given elements. It can be given explicitly, e.g. S = {2, 5, 7}, or it can be given by a
characteristic property, e.g. T is the set of perfect squares, which is represented as T = {n2 | n is an integer}.
Some common sets are

N set of all nonnegative integers
Z set of all integers
Q set of rational numbers
R set of real numbers
C set of complex numbers

Note that Q is explicitly given by {mn | m,n ∈ Z, n 6= 0}. The superscript + on any set, e.g. Z+, refers to
the set of positive elements of the regular set (such as the positive integers), and the superscript ∗ means
nonnegative.
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Some more general notation includes

a ∈ S a is an element of S
a 3 S a is not an element of S
∅ the empty set (the set with no elements)

A ⊆ B A is a subset of B
A ⊂ B A is a proper subset of B

If A is a subset of B, that means every element of A is in B: ∀x ∈ A, x ∈ B. If A is a proper subset of B,
then A ⊆ B and A 6= B.

As an example, S = {0, 1} has the subsets ∅, 0, 1, 0, 1, so there are 4 subsets and 3 proper subsets.

1.3.2 Functions

A function f : X → Y, x→ f(x) goes between sets X and Y , x ∈ X and f(x) ∈ Y . If A ⊆ X, then

f(A) = {f(x) | x ∈ A}

and f(X) is referred to as the image of f .

If B ⊆ Y and f−1(B) = {x ∈ X | f(x) ∈ B}, then f−1(Y ) is the inverse image or preimage of f .

Some important properties of functions are as follows:

1. f is injective or one-to-one if f(x1) = f(x2) =⇒ x1 = x2. Different elements of X map to different
elements of Y . For example, f : R→ R, x→ x2 is not injective, because f(3) = f(−3) = 9. However,
the function f : R+ → R+, x→ x2 is injective.

2. f is surjective or onto if f(X) = Y , that is, every value in Y is attained by f . For example, f :
R → R, x → x2 is not surjective, because @x ∈ R such that f(x) = −1. However, the function
f : R+ → R+, x→ x2 is surjective.

3. f is bijective if it is injective and surjective. If f is bijective, there exists an inverse correspondence
f−1Y → X, mapping y → the unique x such that f(x) = y.

We have seen that f : R+ → R+, x → x2 is injective and surjective, which suggests that we can make this
inverse relationship: f−1 : R+ → R+, y → √y.

1.3.3 Cardinality

We say that X and Y have the same cardinality if there exists a bijection between them. If the sets are
finite, they have the same number of elements.

We claim that Z and Z+ have the same cardinality. To prove or disprove this, we want to build a bijection
Z→ Z+. This bijection can be constructed as
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n→

{
2n n > 0

2|n|+ 1 n ≤ 0

Similarly, we can show that Z+ and Q have the same cardinality. The sets in bijection with Z+ are countable
sets. We produce this bijection by listing the elements of Q in a table, where the nth row has a denominator
of n, and go down the diagonals:

http://cglab.ca/~discmath/functions-countability.html

An example of a set that is not countable is R. Subsets, such as {x ∈ R | 0 < x < 1}, are also not countable.

1.3.4 Relations

Definition 1. A relation between two sets A and B is a subset R of A×B = {(a, b) | a ∈ A, b ∈ B}.

For example, f : A→ B, {(x, f(x)) | x ∈ A} is a relation; we can see that Rf ⊆ A×B.

Definition 2. A partition of a set S is a collection of non empty disjoint subsets whose union is S.

The subsets are called the cells of the partition. For example, if a set S = {0, 1, 2}, a partition of S is 0, 2, 1.
0, 2, 1, 2 is not a partition because 2 is in two different cells, and 0, 2 is not a partition as 1 is not in any cell.

Given a partition, we can define a relation R on S, xRy iff x and y are in the same cell. For instance, in the
valid example 0, 2, 1 above, a valid relation is 1R1, 0R2, 0R0, 2R0, 2R2.
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Math 113: Abstract Algebra Spring 2019

Lecture 2: Equivalence Relations and Binary Relations
Lecturer: Sylvie Corteel 25 January Aditya Sengupta

Definition 3. An equivalence relation ∼ on a set S is a relation which is:

1. reflexive: ∀x ∈ S, x ∼ x

2. symmetric: ∀x, y ∈ S, if x ∼ y then y ∼ x

3. transitive: ∀x, y, z ∈ S, if x ∼ y and y ∼ z then x ∼ z.

The canonical example of an equivalence relation is congruence modulo n on Z. We say a 'n b or a ' b mod n
if n | (a− b). It can be shown that all three properties stated above are satisfied for this relation.

Theorem 2.1. Let S be a nonempty set and let ∼ be an equivalence relation on S. Then ∼ yields a partition
of S into equivalence classes of the form ā = {x ∈ S | x ∼ a}. Conversely, any partition of S determines an
equivalence relation ∼ on S, where a ∼ b if and only if a and b are in the same cell of the partition (that is,
ā = b̄.)

Proof. Let a ∈ S. We want to show that a is in exactly one equivalence class. Since a ∼ a, by definition,
a ∈ ā. So a is in at least one equivalence class. To show that it is in only one, suppose that a ∈ b̄ for some
b ∈ S. We want to show that b ∈ ā and therefore that ā = b̄, so that a is in exactly one equivalence class.
To show that ā = b̄, we show that each one is a subset of the other: ā ⊆ b̄ and b̄ ⊆ ā.

Let x ∈ ā. Then by definition of the equivalence class, x ∼ a. Since we are assuming that a ∈ b̄, we know
that a ∼ b, so by transitivity, x ∼ b and therefore x ∈ b̄. In the other direction, let y ∈ b̄, so y ∼ b. We know
that a ∼ b, therefore by symmetry, b ∼ a. Therefore y ∼ b ∼ a =⇒ y ∼ a =⇒ y ∈ ā. Therefore every
element of ā is an element of b̄ and vice versa, so ā = b̄.

The canonical example of a set of equivalence classes is Zn, the set of congruence classes modulo n:

Zn = {0̄, 1̄, . . . , n− 1}

For example, Z3 = 0̄, 1̄, 2̄. Explicitly, 0̄ = {0,±3,±6,±9, . . . } = {3k | k ∈ Z}, and similarly for the others,
1̄ = {3k + 1 | k ∈ Z} and 2̄ = {3k + 2 | k ∈ Z}.

2.1 Binary Operations

Definition 4. A binary operation ∗ on a set S is a function S × S → S. For a, b ∈ S, we write a ∗ b to
denote the function output.

Common examples are the usual operations (addition, subtraction, multiplication) on the usual sets of
numbers (Z,Q,R, . . . ). Note that division is not a binary operation on Q, because 0 ∈ Q but division is
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not defined for q ∗ 0 for any q ∈ Q. More examples include addition of matrices in Mn(R), the set of n× n
matrices of real numbers, the min operation on Z+, and exponentiation a ∗ b = ab.

More generally, binary operations can be defined on the set of functions f : R→ R: we know that

(f + g)(x) = f(x) + g(x)

(fg)(x) = f(x)g(x)

(f ◦ g)(x) = f(g(x))

All of these are valid binary operations.

To extend the canonical example, we consider Zn again. Consider addition: we claim that ā + b̄ = a+ b.
We need to check that this is well-defined, i.e. that it does not depend on the choice of representatives.
In other words, we need to check that if ā = ā′ and b̄ = b̄′, then ¯a+ b = a′ + b′, where ā′, b̄′ are different
representations of the same equivalence class. This turns out to be the case.

If ā = ā′ then n | a− a′, and if b̄ = b̄′ then n | b− b′. Since (a+ b)− (a′ + b′) = (a− a′) + (b− b′), we have
n | (a+ b)− (a′ + b′) or a+ b = a′ + b′.

This also works for multiplication, with ā · b̄ = ab. The proof that this is well-defined uses the following:
ab− a′b′ = (a− a′)b+ (b− b′)a.

It is important to note that for a binary operation ∗ to be well-defined, a ∗ b needs to be defined for every
a, b ∈ S unambiguously, and the value of a ∗ b must be an element of S.

Definition 5. If ∗ is a binary operation on S and T ⊆ S, then we say that T is closed under ∗ if a ∗ b ∈
T∀(a, b) ∈ T × T .

Example 2.2. Let

un = {e2πik/n | k ∈ Z} = {“the nth roots of unity”}

and consider multiplication as the operation. If ζn = e2πi/n, then ζkn · ζln = ζk+ln .
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Lecture 3: Binary operations and isomorphisms
Lecturer: Sylvie Corteel January 28 Aditya Sengupta

3.1 Binary Operations contd.

Recall that a binary operation is a function ∗ : S × S → S for all (a, b) ∈ S × S. A property of a binary
operation is its set is closed under the operation, i.e. a ∗ b ∈ S for any choice of a and b.

Definition 6. A binary operation is well-defined on S if

1. a ∗ b is defined ∀ a, b ∈ S

2. a ∗ b ∈ S

Example 3.1. Consider the set H = {n2 | n ∈ Z}. H is not closed under addition, because 12+12 = 2 /∈ H.
However, 〈H, ·〉 is well defined.

3.2 Structural Properties of Binary Operations

Definition 7. ∗ is commutative if ∀ a, b ∈ S, a ∗ b = b ∗ a.

For example, addition and multiplication on Z,Q,R are commutative, but multiplication of 2 × 2 matrices
are not commutative.

Definition 8. ∗ is associative if ∀ a, b, c ∈ S, a ∗ (b ∗ c) = (a ∗ b) ∗ c.

For example, addition and multiplication on Z,Q,R are associative, and so is multiplication of n×n matrices.
Composing functions is also associative:

f ◦ (g ◦ h)(x) = f(g(h(x))) = (f ◦ g) ◦ h(x)

Subtraction over Z is not associative.

3.3 Tables

A binary operation on a finite set S can be defined by a table:

∗ . . . b . . .
...

...
...

...
a . . . a ∗ b . . .
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Example 3.2. Consider the set S = x, y, z with a binary operation defined as follows:

* x y z
x z y z
y x z y
z y x z

It is easy to check from this table that this operation is, for example, not commutative, as x ∗ y 6= y ∗ x.

3.4 Isomorphic binary structures

Consider two sets with their own binary operations defined over them 〈S, ∗〉 , 〈S′, ∗′〉.

Definition 9. An isomorphism φ : S → S′ is a map such that φ is a bijection (it is injective and surjective:
for every x ∈ S, there exists a unique element y ∈ S′ such that φ(x) = y, and φ(x1) = φ(x2) implies x1 = x2)
and such that φ is homomorphic, that is, ∀ x, y ∈ S, φ(x ∗ y) = φ(x) ∗′ φ(y).

Remark 3.3. A map satisfying the homomorphic property as stated above is called a homomorphism.

We can show that two binary structures are isomorphic by constructing the map φ : S → S′, then showing
that φ is well-defined, that is ∀ x ∈ S, φ(x) ∈ S′, and that φ is surjective and injective, and finally showing
that the homomorphic property holds.

Example 3.4. Show that 〈R,+〉 and 〈R+, ·〉 are isomorphic.

We want to find a function that translates addition to multiplication of positive real numbers. A candidate
is φ : R → R+, x → ex. This is well-defined becuse ∀ x ∈ R, ex ∈ R+, it is injective because ex = ey =⇒
ln(ex) = ln(ey) =⇒ x = y, and it is surjective. Therefore, we check the homomorphic property, which gives
us

∀ x, y ∈ R, φ(x+ y) = ex+yex · ey = φ(x) · φ(y)

as required.

Example 3.5. Consider the set Zn = {0̄, 1̄, . . . , n− 1}, with the property that k ∈ Z implies k ∈ a
if k ' a mod n. Then, consider the roots of unity, Un = {

(
e2iπ/n

)k | k ∈ Z}. Show that these sets
are isomorphic.

We define a map a → ζa =
(
e2iπ/n

)a
and show that it is isomorphic. We see that it is well-defined and

surjective, and that it is injective because ζa = ζb =⇒ a ' bmodn. Finally, we check the homomorphic
property by showing that

φ(a+ b) = φa+ b = ζa+b = ζaζb = φ(a)φ(b)

as required. Therefore Zn is isomorphic to Un.
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3.5 Showing that two binary structures are not isomorphic

There are several sufficient conditions to show that binary structures are not isomorphic.

1. Showing that S and S′ do not have the same cardinality.

2. Showing that the structural properties are different, e.g. if ∗ is commutative but ∗′ is not.

3. Showing the existence of an identity element for one operation but not the other.

4. Existence of solutions of equations

Definition 10. e ∈ S is an identity element for ∗ if ∀ s ∈ S, e ∗ s = s ∗ e = s.

For instance, on Z,Q,R, 0 is an identity element for addition and 1 is an identity element for multiplication.

Theorem 3.6. If an identity element exists, it is unique.

Proof. If we have two identities e and e′, then

e ∗ e′ = e′

e ∗ e′ = e′ ∗ e = e

e = e′

Theorem 3.7. Let φ : S → S′ be an isomorphism. If e is the identity element of ∗ on S, then φ(e) is the
identity element of ∗′ on S′.

Corollary 3.8. If 〈S, ∗〉 has an identity element and 〈S′, ∗′〉 does not have an identity element, then 〈S, ∗〉
and 〈S′, ∗′〉 are not isomorphic.

Proof.

∀ b ∈ S′∃!a ∈ S s.t.φ(a) = b

Then

φ(e) ∗′ b = φ(e) ∗′ φ(a) = φ(e ∗ a) = φ(a) = b

and

b ∗′ φ(e) = φ(a) ∗′ φ(e) = φ(a ∗ e) = φ(a) = b

Therefore φ(e) is an identity for ∗′.

The fourth possible condition, existence of solutions, can be shown via the following example: 〈Z,+〉 and
〈Q,+〉 are not isomorphic because x+ x = 1 has a solution over Q but not over Z.
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4.1 Definition and Examples

Definition 11. A group (G, ∗) is a set G closed under ∗ such that

1. ∗ is associative: (∀ a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c)

2. G has an identity element: ∃ e ∈ G such that ∀ g ∈ G, g ∗ e = e ∗ g = g

3. Every element of G has an inverse: ∀ a ∈ G,∃a′ ∈ G such that a ∗ a′ = a′ ∗ a = e.

Definition 12. A group is abelian if ∗ is also commutative.

When G is abelian, we often use the following notation:

Operation Identity Inverse
+ 0 −a
· 1 a−1

Some examples of groups are (Z,+), (Q,+), (R,+), and (C,+). (Z+,+) is not a group as no inverses exist
and there is no identity element. (Z+, ·) is not a group as inverses do not exist for every element.

(Q∗, ·) is an abelian group, but (Q, ·) is not a group because it includes zero which does not have an inverse.

Consider the set of n×n matrices with real entries, under addition and matrix multiplication. The former is a
group, as its elements follow the same logic as (R,+) being a group (adding term by term). It is also abelian.
The latter is not a group, as inverses do not exist for matrices with determinant zero. We can exclude these
to make the set GLn(R) = M ∈Mn(R) | det(M) 6= 0, which gives us the valid (though non-abelian) group
{GLn(R), ·}.

Consider the set of ismorphisms φ : G → G, with composition as the operation. This is a group, with the
identity operation being the identity isomorphism φ : G→ G, g → g.

We return to the canonical example (Zn,+). Recall that this is defined as Zn = {m | m ∈ Z}, where a ∈ m
iff a ' m mod n. Therefore Zn = {0, 1, . . . , n− 1}. We can see that this is a valid group under addition.
Addition is associative, 0 is a valid identity element, and the inverse of any element a is n− a. Addition
modulo n follows the rule a+ b = a+ b, therefore we can say a+ n− a = n = 0.

We can extend the definition to only include coprime elements,

Z∗n = {m | m ∈ Z and gcd(m,n) = 1}

For example, Z∗3 = {1, 2}, and Z∗4 = {1, 3}.
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Here, multiplication is well defined, and a · b = a · b. To check that this is well-defined, take any m1,m2 ∈ a
and any m3,m4 ∈ b. Then, we can show that

m1 ·m3,m2 ·m4 ∈ a · b

We do this by rewriting m1. By definition, m1 ∈ a means ∃ k1 such that m1 = k1n + a, and similarly for
m3,∃ k3 such that m3 = k3n+ b. Multiply them explicitly:

m1 ·m3 = (k1n+ a)(k3n+ b) = n(k1b+ k3a+ k1k3n) + ab ∈ a · b

We also know that multiplication is associative. To check for a group, we now have to find an identity
element, i.e. some e such that e · k = k · e = k. This is true of 1. Finally, we need to find an inverse element.
Recall that if gcd(m,n) = 1, then ∃! x, y ∈ Z such that xm+ yn = 1. With this, we can say that the inverse
of m is x.

4.2 Left and right cancellation laws

Theorem 4.1. ∀ a, b, c ∈ G, if a ∗ b = a ∗ c, then b = c, and if b ∗ a = c ∗ a, then b = c.

This can be proved using the fact that every element has an inverse and that the operation is associative.

Proof. Suppose a ∗ b = a ∗ c. Let a′ be the inverse element of a, that is, a′ ∗ a = e. Then, we left multiply
by a′, to get

a′ ∗ (a ∗ b) = a′ ∗ (a ∗ c)

Using associativity,

(a′ ∗ a) ∗ b = (a′ ∗ a) ∗ c
e ∗ b = e ∗ c

b = c

The proof for the right cancellation law proceeds similarly.

Theorem 4.2. If (G, ∗) is a group and a, b ∈ G, then the equations

a ∗ x = b

y ∗ a = b

have unique solutions in G.
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Proof. Let a′ be the inverse of a. Then,

a′ ∗ (a ∗ x) = a′ ∗ b

By associativity, this is also

(a′ ∗ a) ∗ x = a′ ∗ b
e ∗ x = a′ ∗ b

x = a′ ∗ b

Therefore a solution exists. Uniqueness can be shown through the uniqueness of the identity and inverse in
a group.

Theorem 4.3. For any group (G, ∗), the identity element and inverse element of every element is unique.

Proof. For some a ∈ G, suppose ∃a′, a′′ ∈ G, such that a′∗a = a′′∗a = e. We apply the right cancellation law
and find that a′ = a′′. (Note: convince yourself that this is not circular. It seems like the right cancellation
law is dependent upon inverses being unique.)
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5.1 Inversion Law

Theorem 5.1. Let (G, ∗) be a group and let a, b ∈ G. Then (a ∗ b)−1 = b−1 ∗ a−1.

Proof. By associativity, we can write

(a ∗ b) ∗ (b−1 ∗ a−1) = a ∗ (b ∗ b−1) ∗ a−1

This simplifies to

(a ∗ b) ∗ (b−1 ∗ a−1) = a ∗ e ∗ a−1 = (a ∗ e) ∗ a−1

which is

(a ∗ b) ∗ (b−1 ∗ a−1) = a ∗ a−1 = e

5.2 Finite Groups

Definition 13. If G has n elements, we say that G is finite and has order n.

We denote this by |G| = n.

IfG is isomorphic toG′, we writeG ∼= G′. Recall that this means there exists a bijection φ : G→ G′, g → φ(g)
which satisfies the homomorphic property. Note that ∼= is an equivalence relation on the set of groups.

5.3 Groups of order 2

Suppose there is a group (G, ∗) with G = {e, a}. We can construct a table defining the binary operation on
these two.

∗ e a
e e a
a a e
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These arise from necessary conditions on a group, i.e. that the identity must be such that a ∗ e = e ∗ a = a
and all elements must have an inverse. We can see this in the group (Z2,+), where we send e → 0 and
a→ 1.

5.4 Groups of order 3

We can analyze this similarly.

∗ e a b
e e a b
a a b e
b b e a

For the operation to be well-defined, this must be tbe table. Each element must show up once per row. This
group is isomorphic to (Z3,+)

5.5 Groups of order 4

In general, this is not an easy problem, but for order 4, we can write out both the possibilities. We can write
(Z4,+),

+ 0̄ 1̄ 2̄ 3̄
0̄ 0̄ 1̄ 2̄ 3̄
1̄ 1̄ 2̄ 3̄ 0̄
2̄ 2̄ 3̄ 0̄ 1̄
3̄ 3̄ 0̄ 1̄ 2̄

and we can make the Klein 4-group that is not isomorphic to this,

∗ e a b c
e e a b c
a a e c b
b b c a e
c c b e a

Although these are not isomorphic, they are both abelian. The Klein 4-group (V, ∗) is isomorphic to (Z2 ×
Z2,+).

5.6 Products of groups

Theorem 5.2. Let G1 and G2 be groups under ∗1 and ∗2. Then G1 × G2 is a group where ∀ x1, y1 ∈ G1

and ∀ x2, y2 ∈ G2, (x1, x2) ∗ (y1, y2) = (x1 ∗ y1, x2 ∗ y2).

Proof. As ∗1 and ∗2 are associative, ∗ is associative. The identity is (e1, e2), and the inverse of (x1, x2) is
(x−11 , x−12 ).
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5.7 Subgroups

Definition 14. A subgroup (H, ∗) of a group (G, ∗) is a subset H of G which is closed under ∗.

We denote this by H ≤ G, with the idea that H is a proper subgroup of G denoted by H < G.

Remark 5.3. 1. The operations need to be the same. For example, Q+ ⊂ R and (Q+, ·) is a group but
it is not a subgroup of (R,+).

2. Every nontrivial group (G, ∗) has at least two subgroups: G itself and (e, ∗).

We can list the subgroups of (Z4,+). A candidate for a two-element subgroup is 0̄, 1̄, but this is not closed
under addition as 1̄ + 1̄ = 2̄. A two-element subgroup is 0̄, 2̄, and this is isomorphic to (Z2,+). The zero
element with addition would be a subgroup of this. The subgroups of V can be enumerated as e, a, e, b, e, c.

Theorem 5.4. If H ≤ G then e ∈ H.

Proof.

∀ a ∈ H, a ∗ x = a

The above equation has a unique solution in G and in H, that is the same in both. In G this solution is
x = e by definition. Therefore this is also the solution in H, and so e ∈ H.

Theorem 5.5. If a ∈ H and H ≤ G, then a−1 ∈ H, where a−1 is the inverse of a in G.

Proof.

∀ a ∈ H, a ∗ x = e

The above equation has a unique solution in H and G. In G the solution is a−1, therefore a−1inH.

Theorem 5.6. A subset H of a group G is a subgroup of G if and only if H is closed under the binary
operation of G, the identity element e ∈ H, and ∀ a ∈ H, a−1 ∈ H.

Proof. If H is a subgroup, it is itself a group, therefore the three conditions hold. Conversely, if the three
conditions hold, it must be shown that these are sufficient to show that it is a subgroup. First, the operation
is well-defined, the binary operation is associative, there is an identity element, and finally, there is an inverse
for every element. Therefore H ≤ G.
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6.1 Examples of subgroups

Consider GLn(R), the set of invertible n×n matrices: GLn(R) = {A ∈Mn(R) | det(A) 6= 0}. Then, consider
SLn(R), the set of n× n matrices with determinant 1. Then, we claim that SLn(R) ≤ GLn(R).

Proof. 1. Closure under the binary operation.

det(AB) = det(A)det(B)

Therefore if A,B ∈ SLn(R), then det(AB) = 1 · 1 = 1.

2. The identity element.

I is the identity element. We know that det(I) = 1, and therefore I ∈ SLn(R).

3. The inverse.

For some matrix A ∈ SLn(R), we know that the following condition on the determinant holds true:

1 = det(I) = det(AA−1) = det(A)det(A−1) = 1 · det(A−1)

Therefore the determinant of A−1 must be 1, so A−1 ∈ SLn(R)∀ A ∈ SLn(R) and the proof is complete.

Definition 15. The center of a group G with operation ∗ is

Z(G) = {a ∈ G | ∀x ∈ G, x ∗ a = a ∗ x}

The center of an abelian group is the whole group, and otherwise it is a subgroup. Therefore this definition
claims that Z(G) ≤ G.

Proof. We first show that commutativity is closed under the operation ∗:

∀ a, b ∈ Z(G), (a ∗ b) ∗ x = a ∗ (b ∗ x) = a ∗ (x ∗ b) = (a ∗ x) ∗ b = (x ∗ a) ∗ b = x ∗ (a ∗ b)

Therefore if two elements commute with any element x of a group for which ∗ is defined, then their product
also commutes with x.
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Then, by definition of the identity, we can show that e ∈ Z(G):

∀ x ∈ G, x ∗ e = e ∗ x = x =⇒ e ∈ Z(G)

Finally, we can show that inverses of elements of Z(G) are also in Z(G). Consider an arbitrary commutative
product, and left and right multiply it with the inverse,

x ∗ a = a ∗ x =⇒ a−1 ∗ (x ∗ a) ∗ a−1 = a−1 ∗ (a ∗ x) ∗ a−1

(a−1 ∗ x) ∗ (a ∗ a−1) = (a−1 ∗ a) ∗ (x ∗ a−1)

a−1 ∗ x ∗ e = e ∗ x ∗ a−1

a−1 ∗ x = x ∗ a−1

6.2 Cyclic subgroups

Lemma 6.1. Let a ∈ G. If a subgroup H ≤ G contains a, then it also contains an∀ n ∈ Z, i.e. it contains
a2 = a ∗ a, a3 = a ∗ a ∗ a, . . . and a−1, a−2 = a−1 ∗ a−1, a−3 = a−1 ∗ a−1 ∗ a−1, . . . .

In addition to this, the set of exponentials of any element of a group forms a subgroup of that group:

Theorem 6.2. Let G be a group and let a ∈ G. Then H = {an | n ∈ Z} is a subgroup of G.

Proof. We can show closure as being equivalent to addition in Z; ∀ s, r ∈ Z, as ∗ ar = as+r. The identity
element a0 is present, and the inverse of any an is present: an ∈ H∀ n ∈ Z =⇒ (an)−1 = a−n ∈ H because
−n ∈ Z∀ n ∈ Z. Therefore this is a subgroup.

Remark 6.3. Given a ∈ G, H = {an | n ∈ Z} is the smallest subgroup of G that contains a. (This is
intuitively true but prove?)

Definition 16. Call {an | n ∈ Z} the cyclic subgroup generated by a, and denote it by 〈a|a〉.

6.3 Cyclic groups

Definition 17. A group G is cyclic if there exists a ∈ G such that G = 〈a〉. We say that a generates G.

We claim that if a generates G then so does a−1:

〈a〉 = {an | n ∈ Z} = {a−n | n ∈ Z} = 〈a−1〉

For example, consider the integers modulo 4 under addition, (Z4,+). The group is generated by 1̄. Applying
1̄ to itself under addition repeatedly, we get
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1̄, 1̄ + 1̄ = 2̄, 1̄ + 1̄ + 1̄ = 3̄, 1̄ + 1̄ + 1̄ + 1̄ = 0̄

which generates the whole group.

As stated above, we know that a−1 also generates G if a does. Here, 3̄ is the inverse of 1̄, and we can see by
repeatedly applying 3̄ to itself under addition that G is also generated by 3̄.

Another example is (Z,+), which is cyclic and is generated either by 1 or -1.

Z = {n · 1 | n ∈ Z} = 〈1〉

(Zn,+) is also cyclic and is generated by either 1̄ or n− 1. Another example that somewhat explains the
origin of the term cyclic is the nth roots of unity under multiplication.

Un = {e2iπk/n | k ∈ Z}

Consider the Klein 4-group V from the previous lecture, as defined by a table. We want to find out whether
this group is cyclic. We look at the subgroups generated by each element individually,

〈a〉 = {e, a}
〈b〉 = {e, b}
〈c〉 = {e, c}

Therefore this group is not cyclic.

(Q,+) is not cyclic, because ∀q ∈ Q, 〈q〉 = {nq | n ∈ Z} < Q.

Theorem 6.4. Every cyclic group (G, ∗) is abelian.

Proof. Consider a cyclic group G that is generated by a. Then, take x, y ∈ G. Then there exist r, s ∈ Z such
that x = ar, y = as. Therefore

x ∗ y = ar ∗ as = ar+s = as ∗ ar = y ∗ x

Definition 18. Let G be a group and let a ∈ G. If am = e for some m ∈ Z+, then we define the smallest
such m to be the order of a, and we write O(a) = m. We say that a has finite order.

We propose that if G is a finite group, then all the elements of G have finite order.

Proof. Suppose that |G| = n, then, ∀ a ∈ G, a, a2, a3, . . . , an+1, · · · ∈ G. By the pigeonhole principle, ∃r < s
such that ar = as. Therefore as−r = e and so a has finite order.
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7.1 Cyclic Subgroups

Recall the definition of a cyclic group as given by Definition 17. We state a theorem on cyclic groups:

Theorem 7.1. Any subgroup of a cyclic group is cyclic.

The proof of this will depend on the division theorem,

Theorem 7.2. n ∈ Z, m ∈ Z+ means ∃q, r ∈ Z such that n = qm+ r and 0 ≤ r < m.

We can now prove that any subgroup of a cyclic group is cyclic.

Proof. Let G be generated by a and let H ≤ G. In the case where H = {e}, then H = 〈e|e〉, which means H
is cyclic as required. In the case where H 6= {e}, there exists ak ∈ H for k ∈ Z+, because G is generated by
a. Let m be the smallest positive integer such that am ∈ H, and let c = am. We claim that H is generated
by c. Since c ∈ H, 〈c|c〉 ⊆ H. So we need to show that H ⊆ 〈c|c〉. To show this, let b ∈ H, then ∃n ∈ Z
such that b = an. By the division theorem, n = qm+ r with q ∈ Z and 0 ≤ r ≤ m. Therefore

b = an = aqm+r = cq ∗ ar

Since b ∈ H, c ∈ H, by closure of H under ∗ we can say

c−q ∗ b = ar

Therefore ar ∈ H. However, we started with the claim that m was the smallest positive integer such that
am ∈ H, and now we have found an r such that 0 ≤ r < m and ar ∈ H. This means r = 0 and the identity
element a0 = e ∈ H. This means

c−q ∗ b = e =⇒ b = cq

Therefore, every element of H is a power of c, which implies that H ⊆ 〈c〉. Since we also showed that
〈c〉 ⊆ H, we can conclude that H = 〈c〉, i.e. H is the cyclic group generated by c. This completes the
proof.
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7.2 Subgroups of (Z,+)

We previously proved that (Z,+) is cyclic, which means we now know that all the subgroups of it are cyclic.
For any n ∈ Z, the subgroup generated by n is

〈n〉 = {nk | k ∈ Z} = nZ

which is all the multiples of n. The subgroups of (Z,+) are precisely (nZ,+), n ∈ N.

Definition 19. Given r, s ∈ Z, let H = {nr +ms | n,m ∈ Z}.

We claim that H is a subgroup of (Z,+) with addition.

Proof. We first show that H is closed under addition. Let n1,m1 ∈ Z and let n2,m2 ∈ Z. We know that

n1r +m1s ∈ H, n2r +m2s ∈ H, (n1 + n2)r + (m1 +m2)s ∈ H

because n1 + n2,m1 +m2 ∈ Z.

Then, we can show that the identity element exists: 0 · r + 0 · s = 0. Finally, we can show the existence of
an inverse: if nr +ms ∈ H, then −(nr +ms) = (−n)r + (−m)s ∈ H. Therefore H ≤ Z.

As H ≤ Z, H is cyclic, therefore ∃d ∈ Z such that H = 〈d〉 = dZ. We claim that this number is the greatest
common divisor of r and s: if H = dZ, then d = gcd(r, s).

Proof. Since d ∈ H, we know that ∃n,m ∈ Z such that d = nr + ms. r, s ∈ H, because r = 1r + 0s and
s = 0r+ 1s. Therefore d is a divisor of r and a divisor of s. For any divisor d′ of r and s, we know that n · r
is a multiple of d′ and m · s is a multiple of d′ as well. Therefore nr +ms is a multiple of d′. But we know
that this is a multiple of d. This means d < gcd(r, s).

7.3 Structure of cyclic groups

Theorem 7.3. Let G be a cyclic group. If the order of G is infinite, then G is isomorphic to (Z,+). If the
order of G is m, then it is isomorphic to (Zm,+).

Proof. Let a ∈ G and G = 〈a〉. Consider the first case, with a G of infinite order. ∀k ∈ Z+, ak 6= e, then
every element of G can be expressed as am for a unique m ∈ Z.If this were not unique, then there exist
m1,m2 such that m1 < m2 and am1 = am2 , i.e. am2−m1 = e which is a contradiction. Then, we build
an isomorphism φ : G → Z, am → m. We can verify that this is a bijection, and also that it fulfils the
homomorphic property,

φ(am ∗ an) = φ(am+n) = m+ n = φ(am) + φ(an)

Therefore (G, ∗) ' (Z,+).
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Now, consider the second case, with a G of finite order. We know that ak = e for some k ∈ Z+. Let m ∈ Z+

be the smallest such k, i.e. the smallest positive integer such that am = e. For s ∈ Z, we use the division
theorem, s = mq + r with 0 ≤ r < m and q ∈ Z. Therefore

as = (am)q ∗ ar = ar

Therefore every element of G is one of a0, a1, . . . , am−1. We know that none of these are equal, otherwise
there would be a contradiction with the definition of m. Finally, we can build the isomorphism φ : G→ Zm,
ar → r. We can check that it is a bijection, and homomorphic:

φ(ar ∗ as) = ar+s = r + s = φ(ar) + φ(as)
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8.1 Logistics

Homework 3 is Section 6, problems 8, 9, 17, 18, 24, 32, 50; Section 7, problems 1, 2, 5; and Section 8,
problems 3, 4, 16. Office hours for next week are Tuesday 10am-12pm.

8.2 Structure of cyclic groups

Theorem 8.1. If G is cyclic and finite and |G| = n then (G, ∗) ∼= (Zn,+).

Lemma 8.2. Every subgroup of a cyclic group is cyclic.

Theorem 8.3. If G is a cyclic group of order n generated by a, and b = ar, then b generates a cyclic
subgroup H ≤ G of order n

gcd(n,r) .

For example, consider Z12. It has subgroups 〈2̄〉 and 〈3̄〉, which share a subgroup 〈6̄〉. 〈2̄〉 has a subgroup
〈4̄〉, and 〈3̄〉 and 〈4̄〉 share a subgroup 〈0̄〉. Here, 〈n̄〉 represents the set of subsets of Z12 such that they are
multiples or divisors of n, e.g. 〈4̄〉 = 〈8̄〉 = {0̄, 4̄, 8̄}. (Maybe this is actually addition mod 12? I’m a bit
confused).

Proof.

(G, ∗) ∼= (Zn,+)

φ : G→ Zn, ak → k

〈r̄〉 = {ūr | u ∈ Z} = {ur + vn | u, v ∈ Z}

Let d be the GCD of n and r. Then

〈d〉 = dZ = {ur + vn | u, v ∈ Z}

therefore

〈
d̄
〉

= {ur + vn | u, v ∈ Z} = 〈r̄〉

As there are n
d multiples of d in the set {0, 1, . . . , n− 1}, the order of

〈
d̄
〉

= n
d .

Corollary 8.4. If a is a generator of a cyclic group G of order n, then the other generators of G are the
elements of the form ar where gcd(n, r) = 1. We say that n and r are relatively prime.

(Zn,+) is generated by 1̄ but also by all ā that are relatively prime to n.
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8.3 Generating sets

Let G be a group and let a, b ∈ G. Let 〈a〉 be the smallest subgroup containing a. Let 〈a, b〉 be the smallest
subgroup containing a and b, which is the same as the set of all finite products of integral powers of a and
b. For example, a3b4a−2b5a7 ∈ 〈a, b〉. (If the group is abelian, this can be simplified, but in general we say
that it is not.)

For example, consider the Klein 4-group V . 〈a〉 = {e, a}, 〈b〉 = {e, b}, and 〈c〉 = {e, c}. Also, V = 〈a, b〉 =
〈a, c〉 = 〈b, c〉. We can see by computing products on the Klein 4-group that any 〈x, y〉 will contain all the
elements of V and will therefore be V . For example, 〈a, c〉 = {e, a, c, a ∗ c = b}.

Theorem 8.5. Let G be a group such that ai ∈ G ∀i ∈ I. The smallest subgroup containing all ais is the
subgroup generated by {ai | i ∈ I}, that is, the set of all finite products of integral powers of G.

Proof. Closure is trivial, the identity is given by a0i = e, and inverses are given by

(am1
1 am2

2 . . .)
−1

= . . . a−m2
2 a−m1

1

Remark 8.6. If this subgroup is all G then {ai | i ∈ I} generates G, and if I is finite, G is finitely generated.

8.4 Presentation of a group

A group G can be written as

G = 〈generators | relations〉

A relation of a set of generators of a group is an equation that equates some product of generators and their
inverses to the identity.

For example, say G has two generators a and b, and is abelian. We can write this as a relation,

aba−1b−1 = e

Another example of a relation is when G has two generators a and b, where b is its own inverse. For this,
we can write

b2 = e

For example, a dihedral group Dn is the group of the symmetries of the n−gon. Dn can be generated by two
generators, the rotation operator r which rotates the n− gon by 2π

n , and the reflection operator s. Then the
group is defined by

Dn =
〈
r, s | rn = e, s2 = e, (rs)2 = e

〉
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8.5 Permutation Groups

These are our first non-abelian groups.

Definition 20. A permutation σ of a set A (usually, but not always, finite) is a bijection from A to itself,
i.e. a shuffling of the elements of A.

We denote a permutation by a two-column bracketed table. Let A = {1, 2, . . . , n}, then a general permutation
is given by

σ =
( 1 2 3 ··· n−1 n
σ(1) σ(2) σ(3) ... σ(n−1) σ(n)

)
The binary operation on permutations is composition, which is essentially applying two permutations one
after another (right to left). For example, let the two permutations σ and τ be given by

σ =
(
1 2 3 4
4 2 1 3

)
τ =

(
1 2 3 4
2 3 1 4

)
Then their product is

στ =
(
1 2 3 4
2 1 4 3

)
We claim that στ is a permutation.

Proof. We first check that it is one-to-one. If στ(a1) = στ(a2), and by definition στ(a1) = σ(τ(a1)) and
στ(a2) = σ(τ(a2)), then we can use the fact that σ is one-to-one to show that τ(a1) = τ(a2). We also know
that τ is one-to-one, therefore a1 = a2. Then, we check that it is onto. Given a ∈ A, σ is onto, therefore
∃a′ ∈ A such that σ(a′) = a. Also, τ is onto, so ∃a′′ ∈ A such that τ(a′′) = a′. Therefore ∃a′′ ∈ A such that
στ(a′′) = a.
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9.1 Permutation Groups

Let A be a set (not necessarily finite). Recall that a permutation σ of A is a bijection from A to itself.
We denote by SA the set of all permutations of A.. The product of two permutations is their composition,
στ = σ ◦ τ .

Theorem 9.1. (SA, ·) is a group.

Proof. We check all of the group axioms.

1. SA is closed under composition; if σ, τ ∈ SA then στ ∈ SA. (See the previous lecture.)

2. · is associative, because composition of functions is associative.

∀ σ, τ, u ∈ SA, σ · (τ · u) = (σ · τ) · u

This is because ∀a ∈ A, σ · (τ · u)(a) = σ(τ(u(a))) = (σ · τ) · u(a).

3. There is an identity element, which is the permutation that maps every object to itself. id : A →
A, a→ a. By composition, it is easy to see that σ · id = id · σ = σ.

4. Every element has an inverse. We denote the inverse of σ by σ−1.

∀y ∈ A∃!x ∈ A such that σ(x) = y

Then, we define σ−1(y) = x. σ−1 is a permutation, and σ · σ−1 = σ−1 · σ = id.

For example, let σ be defined as follows:

σ =
(
1 2 3 4
4 2 1 3

)
Then, σ−1 is

σ =
(
1 2 3 4
3 2 4 1

)
It can easily be observed that by carrying out these two permutations one after another, we get the
identity.
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Remark 9.2. It does not matter what the elements of A are called; if A and B have the same cardinality,
then (SA, ·) ∼= (SB , ·).

We can build this isomorphism by assuming there exists a bijection f : A → B. Then the isomorphism is
φ : SA → SB , σ → f ◦ σ ◦ f−1. We see that this is an isomorphism because it is a composition of bijections.
We can check the homomorphism property,

φ(στ) = f ◦ σ ◦ τ ◦ f−1 = f ◦ σ ◦ f−1 ◦ f ◦ τ ◦ f−1 = φ(σ)φ(τ)

9.2 Symmetric Groups

Definition 21. For n ∈ Z+, the symmetric group on n letters is the set of all permutations of {1, 2, . . . , n}.

For the case n = 2, the symmetric group is given by

{
(
1 2
1 2

)
,
(
1 2
2 1

)
}

For the case n = 3, it is

{
(
1 2 3
1 2 3

)
,
(
1 2 3
1 3 2

)
,
(
1 2 3
2 1 3

)
,
(
1 2 3
2 3 1

)
,
(
1 2 3
3 1 2

)
,
(
1 2 3
3 2 1

)
}

Here, we are building a pattern relating to the order of Sn. We claim that |Sn| = n!.

Proof. In a permutation of the integers from 1 to n, there are n choices for the output corresponding to 1,
n−1 choices for the output corresponding to 2, and so on; overall, we get n(n−1)(n−2) · · · = n! choices.

Note that S3 is not an abelian group. This can be easily shown by multiplying together
(
1 2 3
1 3 2

)
and

(
1 2 3
2 1 3

)
in both orders and comparing them.

S3 is also not cyclic, which can be explicitly confirmed.

9.3 Geometric Interpretation

We can examine S3 by the symmetries of a triangle. We claim that S3
∼= D3, the group of the symmetries

of an equilateral triangle. The symmetries of an equilateral triangle are the rotations and reflections of the
plane mapping the triangle to itself.
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The symmetries are reflections about each of the three axes of the triangle (going through each vertex to
the midpoint of the opposite line segment), and rotations of multiples of 2π

3 . We claim that every symmetry
acts on the vertices by a permutation, and is uniquely determined by this permutation. By reflection about
1, we generate the mapping (123) → (132); about 2, we generate (123) → (321); about 3, we generate
(123)→ (213). These are the Levi-Civita indices that output -1. A rotation of 2π

3 generates (123)→ (231),
and another generates (123)→ (312). There is also the identity transformation with a rotation of 0, which
generates (123)→ (123). Therefore, we see that φ3 : D3 → S3 is an isomorphism that maps the symmetries
of the triangle to the permutations of 1, 2, 3.

Is this true for any n? To investigate this, we look at the symmetries of the regular n−gon in the hopes of
finding that Dn and Sn have the same order. Another way of asking this is: is it possible, using reflections
and rotations, to reach any combination of indices? An example would be, in a square, the mapping
(1234)→ (2314).

This turns out to be false; rotations and reflections cannot change the neighbours of vertices, so there is no
way to go from 4 being the neighbour of 1 and 3 to that of 1 and 2.

So what is the order of Dn? We claim that it is 2n, which just happens to match up with n! for n = 3
(because every node has two neighbours).

Proof. Let 1 → i, 1 ≤ i ≤ n, so that there are n choices for the output to 1. For adjacency, 2 must be
mapped to i± 1 modulo n, which leaves 2 choices. After this, the other elements are fixed. Therefore there
are 2n choices.

We get an injective homomorphism, i.e. a mapping φn : Dn → Sn such that φn is injective and φn(xy) =
φn(x)φn(y). We view the elements of Dn as permutations of the vertices. This is the first time an injective
homomorphism has come up, so it is defined as follows:

Definition 22. An injective homomorphism φ : G→ G′ is an injective map such that φ(x∗y) = φ(x)∗′φ(y),
where (G, ∗) and (G′, ∗′) are groups.
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Lemma 9.3. Let φ : G→ G′ be an injective homomorphism, where

φ[G] = {g′ ∈ G′ | ∃g ∈ G such that φ(g) = g′}

Then (φ[G], ∗′) ∼= (G, ∗).

Proof. We start by claiming that φ[G] ≤ G′. We see this because we know that φ[G] is closed under ∗′,
φ(e) ∈ φ[G], and inverses are present, φ(x−1) = φ(x)−1. To prove that φ : G→ φ[G] is an isomorphism, we
need to show it is a bijection and homomorphic. We know that it is injective and homomorphic, but it is
also surjective by definition.
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10.1 Cayley’s theorem

Theorem 10.1. Every group is isomorphic to a subgroup of a group of permutations.

This is Cayley’s theorem. We can prove it as follows,

Proof. We will show that G is a subgroup of SG. The key observation is that in a group table, each row is
a permutation in SG. For example, we can define G as shown,

∗ e a b
e e a b
a a b e
b b e a

Then, each row is a permutation of the elements of the group, i.e. each row is a member of SG. We can
therefore construct an injective homomorphism, φ : G→ SG. For x ∈ G, λx : G→ G, g → x ∗ g.

We claim that λx ∈ SG. To do this, we need to prove that φ is a bijection. ∀ y ∈ G, λx(x−1∗y) = x∗x−1∗y =
y, therefore λx is onto. ∀ y1, y2 ∈ G, λx(y1) = λx(y2) implies x∗y1 = x∗y2. By the cancellation law, y1 = y2
and so λx is one-to-one.

Therefore we construct the map φ : G → SG, x → λx. We claim that φ is an injective homomorphism. To
show that it is injective, let x1, x2 ∈ G such that φ(x1) = φ(x2). This implies x1 ∗ y = x2 ∗ y, so by the
cancellation law x1 = x2 and the map is injective. To show that it is a homomorphism, let x, y ∈ G. Given
g ∈ G, we can say

λx∗y(g) = x ∗ y ∗ g = x ∗ λy(g) = λx(λy(g))

Therefore λx∗y = λx ·λy and we have the homomorphism property. By the lemma, since we know that there
exists an injective homomorphism between an arbitrary group and a subgroup of the group of permutations,
we know that there exists an isomorphism between them, and the theorem follows.

10.2 Orbits and cycles

Let σ be a permutation of a set A. σ determines an equivalence relation on A. Given a, b ∈ A, a ∼ b if and
only if ∃n ∈ Z such that b = σn(a).

We claim that ∼ is an equivalence relation. To do this, we have to show the reflexive, symmetric, and
transitive properties.
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1. Reflexive: ∀a ∈ A, a = σ0(a).

2. Symmetric: if a ∼ b then ∃n ∈ Z such that σn(a) = b, therefore σ−n(b) = a, so b ∼ a.

3. Transitive: if a ∼ b and b ∼ c, then ∃n ∈ Z such that b = σn(a) and ∃m ∈ Z such that c = σm(b).
Then c = σm(σn(a)) = σm+n(a), so a ∼ c.

We can therefore partition A into the equivalence classes of A, which are called the orbits of σ. For example,
consider the following permutations,

σ = ( 1 2 3 4 5 6 7 8
4 5 3 7 6 2 1 8 )

τ = ( 1 2 3 4 5 6 7 8 9 10
3 10 6 1 9 4 2 5 8 7 )

We repeatedly apply σ to itself, starting with the input 1. We see that σ(1) = 4, σ2(1) = 7, σ3(1) = 1.
Therefore, an orbit of σ is {1, 4, 7}. Similarly, we find that the other orbits are {2, 5, 6}, {3}, and {8}. The
size of an orbit is its number of elements. If an orbit has size 1, it is called a trivial orbit.

Similarly, τ has the cycles {1, 3, 4, 6}, {2, 7, 10}, and {5, 8, 9}.

Definition 23. Given σ ∈ SA, on each orbit, σ acts by a cyclic permutation. σ ∈ SA is a cycle if it has at
most one nontrivial orbit.

For example, consider a permutation given as follows,

µ = ( 1 2 3 4 5 6 7 8 9 10
3 2 6 1 5 4 7 8 9 10 )

The orbits of µ are {1, 3, 4, 6} and the trivial orbits {2}, {5}, {7}, {8}, {9}, {10}. We write µ as the cycle
(1, 3, 6, 4) and stipulate that µ ∈ S10, which we note is equivalent to (3, 6, 4, 1) or any other rotation of µ.
This means that µ(1) = 3, µ(3) = 6, µ(6) = 4, µ(4) = 1. An integer not appearing in the cyclic notation is
assumed to map to itself, i.e. it is fixed by the permutation.

Theorem 10.2. Every permutation σ of a finite set is a product of disjoint cycles.

Proof. Let B1, B2, . . . , Br be the orbits of σ and 1 ≤ i ≤ r. Define µ(i) to be the cycle defined by

µ(i)(x) =

{
σ(x) x ∈ Bi
x otherwise

We claim that ∀i, µ(i) is a cycle. The µ(i)s are disjoint because the Bis are disjoint. Clearly σ = µ(1) . . . µ(r),
so it is the product of disjoint cycles and the proof is complete.
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11.1 Order of a permutation

The order of a permutation σ in Sn is the smallest possible m such that σm = e. If σ is a cycle, (a1, a2, . . . , ak)
then its order is k. If σ is the product of disjoint cycles, σ = τ1τ2 . . . τn, then exponentiation works:
σk = τk1 τ

k
2 . . . τ

k
n . Therefore the order o(σ) is the least common multiple of the length of the τis.

Consider a perfect shuffle of a deck of 16 cards, in which cards alternate going into the left and right hands.
This can be represented by a permutation,

( 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 16 )

How many times do we have to do this shuffle before we get back to where we started? This number is equal
to o(σ). To find this, we write σ in cyclic notation,

σ = (2 3 5 9)(4 7 13 10)(6 11)(8 15 14 12)

The LCM of the lengths of the cycles (4, 4, 2, 4) is 4, so the order of σ is 4.

11.2 Transpositions, even and odd permutations

Definition 24. A transposition is a cycle of length 2. That is, it swaps two elements and leaves all other
elements fixed.

Theorem 11.1. Every cycle can be written as a product of transpositions.

Consider a cycle (a1, a2, . . . , ak). This is the product of left multiplying a series of transpositions,

(a1, a2, . . . , ak) = (a1ak) . . . (a1a4)(a1a3)(a1a2)

Since any permutation can be written as a product of cycles, it can also be written as a product of transpo-
sitions. This representation is not unique; for example, (1 5)(3 2) = (1 5)(1 3)(1 2)(1 3).

Theorem 11.2. A product of an even number of transpositions cannot equal a product of an odd number of
transpositions.
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Proof. We can denote a transposition by a matrix. The composition of two permutations then corresponds
to matrix multiplication. Let Aσ be an n× n matrix with entries

aij =

{
1 i = σ(j)

0 otherwise

The action of the permutation σ on (1 2 . . . n) corresponds to left multiplication. For example, if the
permutation is σ = ( 1 2 3

3 1 2 ) then the corresponding matrix is

Aσ =

0 1 0
0 0 1
1 0 0


We can verify by left multiplying that this creates the desired permutation of (1 2 3). We can check that
Aστ = AσAτ . Component-wise, this corresponds to

AσAτ =
∑
k

aikbkj =

{
1 aik = 1 and bkj = 1

0 otherwise

which is the same as

Aστ,ij =

{
1 i = σ ◦ τ(j)

0 otherwise

Suppose that σ = τ1τ2 . . . τm where each τi is a transposition. Then Aσ = Aτ1 = Aτ2 . . . Aτm , so by properties
of determinants we have

det(Aσ) = det(Aτ1) . . . det(Aτm)

Since each transposition corresponds to interchanging two rows of the identity matrix, we have det(τi) = −1,
and so

det(Aσ) = (−1)m

If σ can be written as an even number of transpositions, its determinant is 1. If it can be written as an odd
number of transpositions, its determinant is -1. So no permutation σ can be written as both.

Definition 25. If a permutation can be written as an even number of transpositions, we call it even, and if
it can be written as an odd number of transpositions, we call it odd.

Theorem 11.3. Let An be the set of all even permutations in Sn. Then An is a subgroup of Sn.
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Proof. If σ, τ ∈ An then clearly στ ∈ An. Since e = (1 2)(1 2), for example, e is even. For inverses, assume
that σ ∈ An and we can show that σ−1 ∈ An. This can be written as transpositions,

σ = τ1τ2 . . . τ2m

σ−1 = τ−12mτ
−1
2m−1 . . . τ

−1
2 τ−11 = τ2mτ2m−1 . . . τ2τ1

Therefore the inverse exists, and is also even.

An is called the alternating group on n letters.

We propose that |An| = n!
2 .

Proof. Left multiplication by (1 2) is a bijection from Sn to Sn. This maps even transpositions to odd ones
and vice versa. Therefore the number of even and odd permutations must be equal, and they must sum to
n!. We conclude that |An| = n!

2 .
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12.1 Lagrange’s Theorem

Theorem 12.1. Let H be a subgroup of a finite group G. Then, the order of H divides the order of G.

For example, let H be (Zn,+). We saw previously that the subgroup generated by some element r, 〈r〉, is
of order n

d where d = gcd(n, r). Another example is (Sn, ·), which has subgroups An of order n!
2 , n ≥ 2 and

Dn of order 2n.Both of these divide n!

To go about proving Lagrange’s theorem, we introduce some new terminology. If H ≤ G, then ∀a, b ∈ G,

a ∼L b↔ a−1b ∈ H
a ∼R b↔ ba−1 ∈ H

Then ∼L and ∼R are equivalence relations. If G is abelian, then ∼L and ∼R are the same. We can prove
that these are equivalence relations.

Proof. To show that ∼L is an equivalence relation, it must be shown that it is reflexive, symmetric, and
transitive. We know it is reflexive:

∀ a ∈ G, a−1a = e ∈ H

Symmetric:

∀ a, b ∈ G, a ∼L b =⇒ a−1b ∈ H =⇒ (a−1b)−1 ∈ H
b−1a ∈ H =⇒ b ∼L a

Transitive:

a ∼L b, b ∼L c =⇒ a−1b ∈ H, b−1c ∈ H

H is closed under the binary operation, so

(a−1b)(b−1c) ∈ H =⇒ a−1c ∈ H =⇒ a ∼L c
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The equivalence classes for ∼L are the cells of a partition. For a ∈ G, what is the cell containing a?

Given b ∈ G, a ∼L b if and only if a−1b ∈ H. Therefore ∃h ∈ H such that h = a−1b, or ah = b. Therefore,
the cell containing a is {ah | h ∈ H}. We call this cell the left coset of H containing a, and we denote it by

aH := {ah | h ∈ H}

Similarly for ∼R, we define the right coset of H containing a,

Ha := {ha | h ∈ H}

If G is abelian, the right and left cosets are the same. Later, we will see examples of groups having identical
right and left cosets without the group being abelian.

Definition 26. A subgroup H ≤ G is normal if its right and left cosets coincide.

∀ a ∈ G, aH = Ha

For example, consider (Z4,+), with a subgroup generated by 2,
〈
2
〉

= {0̄, 2̄}. We want to compute the left
cosets of this group.

0̄ + {0̄, 2̄} = {0̄, 2̄}
1̄ + {0̄, 2̄} = {1̄, 3̄}

2̄ and 3̄ are the same as 0̄ and 1̄ under addition of the subgroup elements in turn. Therefore, there are two
left cosets, {0̄, 2̄} and {1̄, 3̄}.

Another example is the Klein 4-group V = {e, a, b, c}, with the subgroup 〈a〉 = {e, a}.

a ∗ {e, a} = {e, a} = e ∗ {a, e}
b ∗ {e, a} = {b, c} = c ∗ {e, a}

Therefore there are two left cosets, {e, a} and {b, c}.

Another example is (Z,+) with a subgroup (nZ,+). There are n cosets, which are 3Z, 1 + 3Z, etc.

Now, we can prove Lagrange’s theorem. We do this by first proving that all cosets have the same cardinality.

Proof. We want to show that if H ≤ G, then for all a ∈ G, |aH| = |H|. We do this by constructing a
bijection,

φ : H → aH, h→ ah
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φ is onto or surjective by the definition of aH, and φ is one-to-one:

∀h1, h2 ∈ H, ah1 = ah2 =⇒ h1 = h2

Therefore φ is a bijection, so |aH| = |H|. Therefore all cosets have the same cardinality.
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13.1 Consequences of Lagrange’s Theorem

Last time, we showed that aH and H have the same cardinality for any left coset aH. We can use this to
prove Lagrange’s theorem.

Proof. Given that H ≤ G for a finite G, we want to show that |H| divides |G|. Let |G| = n and let |H| = m.
As shown before, every coset of H has the same cardinality as H, i.e. it has m elements. Let r be the
number of cosets. As the cosets form a partition of G, we know that n = r ·m. Therefore m divides n.

Theorem 13.1. Every group of prime order (a finite group whose order is a prime number) is cyclic.

Proof. Let |G| = p where p is prime. Lagrange’s theorem tells us that G has two subgroups; G itself and
{e}. This is because the order of any subgroup must divide the order of the group, and by definition only
1 and p divide p. Let a ∈ G, a 6= e, and consider the subgroup H = 〈a〉. We know that H must include e,
so its order is at least 2. Since its order is greater than 1, it must be p because this is the only other valid
order of a subgroup for a group of prime order. Therefore H = G, so G is cyclic.

Corollary 13.2. If p is prime, there exists only one group of order p up to isomorphism.

Recall the definition of an order of an element of a finite group,

Definition 27. The order of an element a ∈ G is the smallest integer m ∈ Z+ such that am = e. We denote
this by O(a) = m.

We can use this to state the following theorem.

Theorem 13.3. Let a ∈ G where G is finite. The order of a divides the order of the group.

Proof. Let a ∈ G and let m = O(a). We know that 〈a〉 = {an | n ∈ Z}. The order of 〈a〉 is m, and it is a
subgroup. Therefore, since the order of a is the same as the order of 〈a〉, by Lagrange’s theorem, m divides
|G|.

13.2 Indices of subgroups

Definition 28. The index of H in G, denoted (G : H), is the number of left cosets of H in G.

For example, if G = Z4 and H = 〈2̄〉, then (G : H) = 2. Another example is if G = S3 and H = 〈(12)〉 then
(G : H) = 3. This does not just apply to finite groups: if G = Z and H = mZ then (G : H) = m.

Remark 13.4. If G is finite, then (G : H) = |G|
|H| .
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Theorem 13.5. Let H,K be subgroups of G such that K ≤ H ≤ G. If (H : K) is finite and (G : H) is
finite, then (G : K) = (G : H)(H : K).

We can prove this by explicitly multiplying the quotients of orders that make up the indices (G : H) and
(H : K). If G is infinite, but the indices are finite (say (G : H) = m and (H : K) = r), then G is partitioned
into m left cosets, denoted aiH, for ai ∈ G. Similarly H is partitioned into r left cosets denoted bjK. We
claim that G is now partitioned into mr left cosets for K, by combining these two cosets. We want to show
that ∀g ∈ G∃!i, j such that g ∈ aibjK, but this is left as an exercise.

13.3 Maximal subgroups

Definition 29. A subgroup K of a group G is maximal if there is no subgroup H such that K < H < G.

Corollary 13.6. If K < G and (G : K) = p with p prime then K is maximal.

Proof. By contradiction, if there exists an H such that K < H < G then (G : K) = (G : H)(H : K). But
(G : K) is prime, so (G : H) = 1 or (H : K) = 1. This implies that either H = G or H = K, i.e. K < H < G
does not hold. Therefore K is maximal.

Definition 30. The center of a group G is

Z(G) = {g ∈ G | ∀x ∈ G, gx = xg} (13.1)

Definition 31. Let x ∈ G, then the centralizer of x in G is Cx(G) = {g ∈ G | gx = xg}.

We claim that Cx(G) ≤ G and Z(G) ≤ G, so Z(G) ≤ Cx(G)∀x ∈ G.

We propose that if G is finite, either G is abelian (i.e. the center and the centralizer of G are both G itself)
or Z(G) is not maximal.

Proof. If G is abelian, this is trivial. If not, then ∃x 6∈ Z(G) such that Z(G) < Cx(G) < G, i.e. Z(G) is not
maximal.
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14.1 Direct products

Let G1, . . . , Gn be groups. Define the product of groups as follows:

n∏
i=1

Gi = G1 ×G2 × · · · ×Gn = {(a1, a2, . . . , an) | ai ∈ Gi, i = 1, . . . , n} (14.1)

For example, Z2 × Z3 has six elements: (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2) with bars over all of them to
denote congruence classes.

A valid operation on products of groups is component-wise multiplication, defined straightforwardly as

(a1, a2, . . . , an) · (b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn) (14.2)

Theorem 14.1. Let G1, . . . , Gn be groups with operation ·; then, the direct product of G1, G2, . . . , Gn, which
is
∏n
i=1Gi, is a group.

Proof. We check the group axioms.

1. Closure: if ai, bi ∈ Gi, then aibi ∈ Gi because Gi is a group. Therefore
∏n
i=1Gi is closed under the

operation.

2. Associativity: let (a1, . . . , an), (b1, . . . , bn), (c1, . . . , cn) ∈
∏n
i=1Gi. Then their products are ai(bici) =

(aibici) = (aibi)ci as each Gi is a group. Therefore the operation is associative.

3. Identity: let ei be the identity of Gi. Then, (e1, e2, . . . , en) will be the identity of
∏
Gi. We can verify

by taking products that this is an identity on the product group.

4. Inverse: ∀(a1, . . . , an) ∈
∏
Gi, (a1, . . . , an)−1 = (a−11 , . . . , a−1n ).

Addition can be considered to be component-wise. For example, in Z2 × Z3, (1, 0) + (1, 2) = (0, 2); the first
sum is done modulo 2 and the second is done modulo 3. This notion can allow us to define the idea of cyclic
product groups; Z2×Z3 is cyclic and generated by (1, 1) as can be verified. This suggests that Z2×Z3 ' Z6.
Similarly, we can see that Z2 × Z2 is not cyclic. It is isomorphic to the Klein 4-group V .

It seems like the product group defined by Z modulo two different integers is isomorphic to Z modulo the
product of those integers if the integers are relatively prime. This turns out to be a theorem.
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Theorem 14.2. Zm × Zn is cyclic, and isomorphic to Zmn, if and only if gcd(m,n) = 1.

Proof. Consider the cyclic subgroup of Zm × Zn generated by a = (1, 1). a+ a+ · · ·+ a = (k, k) for a sum
repeated k times. Then (k, k) = (0, 0) if and only if k is a multiple of m and k is a multiple of n, i.e. k is a
multiple of lcm(m,n). We know that lcm(m,n) = mn

gcd(m,n) , so lcm(m,n) = mn if and only if gcd(m,n) = 1.

If m and n are relatively prime, then 〈a〉 has order mn. Therefore 〈a〉 = Zm × Zn, and Zm × Zn is cyclic.

We can prove this in the other direction: if Zm × Zn is cyclic and isomorphic to Zmn, then m and n are
relatively prime. We proceed by contraposition. Suppose gcd(m,n) = d > 1. We need to prove that
Zm × Zn is not cyclic. To do this, we show that the subgroup generated by any element of Zm × Zn is a
proper subgroup of the group. That is, for any (u, v) ∈ Zm × Zn, 〈(u, v)〉 < Zm × Zn. The subgroup is
defined by (ru, rv) where r is the number of additions of the same element carried out. If (ru, rv) = (0, 0)
then r =lcm(m,n) (as r is a multiple of m and a multiple of n), which implies r = mn

d . So the order of any
element of the group is less than or equal to r, which is less than mn as long as d > 1. Therefore the order of
〈(u, v)〉 is strictly less than mn. This implies that there is no element in Zm × Zn that generates the entire
group, and Zm × Zn is not cyclic.

Corollary 14.3.

n∏
i=1

Zmi
| mi ∈ Z+

is cyclic and isomorphic to Zm1m2...mn
if and only if the mis are pairwise relatively prime, i.e. gcd(mi,mj) =

1 for all i 6= j.

In particular, let N =
∏
pni
i . Then ZN '

∏
Zpni

i
. For example, Z60 is isomorphic to Z4 × Z3 × Z5.

Theorem 14.4. Let (a1, . . . , an) ∈
∏
Gi, and suppose that ai has order ri in Gi for i = 1, 2, . . . , n. Then

(a1, . . . , an) has order lcm(r1, r2, . . . , rn) in
∏
Gi.

Proof. (a1, . . . , an)k = (ak1 , . . . , a
k
n). This is the identity element iff k is a multiple of each ri, which is

equivalent to k being a multiple of the LCM of the ris.
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Recall that the order of an element in a direct product group is the LCM of the individual orders. For
example, the order of (4, 6, 15) in Z6 × Z12 × Z20 is lcm(3, 2, 4), which is 12. Another example is the order
of (4, (124)(35)) in Z10 × S5. 4 has order 5 and (124)(35) has order 6, therefore the overall order is 30.

Remark 15.1. Changing the order of factors in a direct product group yields a group isomorphic to the
previous one. For example,

G1 ×G2 ×G3 ' G3 ×G1 ×G2

with an isomorphism φ : G1 ×G2 ×G3 → G3 ×G1 ×G2, (g1, g2, g3)→ (g3, g1, g2).

15.1 The structure of finitely generated abelian groups

Definition 32. A group G is finitely generated if there exist a1, . . . , ak ∈ G such that

〈a1, . . . , ak〉 = G.

That is, there exists a finite subset of the elements of G that generates G.

Theorem 15.2. Every finitely generated abelian group G is isomorphic to a direct product of cyclic groups.

G ' Zpr11 × · · · × Zprnn × Zm

where p1, . . . , pn are prime and not necessarily distinct, and r1, . . . , rn are positive. This decomposition is
unique up to the reordering of the factors.

For example, abelian groups of order 24 are (up to isomorphism) one of Z8×Z3, Z4×Z3×Z4, or Z3×Z2×
Z2 × Z2.

Definition 33. An integer is square free if it is not divisible by the square of any prime.

An example of the structure theorem is the statement that if m is square free than any abelian group of
order m is cyclic. From m being square free, we know that m =

∏
pi where the pis are distinct. Let G be

an abelian group of order m. Then we know that G '
∏

Zpi Since gcd(pi, pj) = 1 for all i 6= j, G is the
product of relatively prime cyclic groups and so it is cyclic.

Using this theorem, we can show that (Q,+) is not finitely generated. Any subset of Q, consisting of pi
qi

,

pi ∈ Z, qi ∈ Z∗, 1 ≤ i ≤ k, generates a subgroup of Q contained in 1
lcm(qi)

Z < Q.
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15.2 Decomposable Groups

Definition 34. A group is decomposable if it is isomorphic to a direct product of two proper nontrivial
subgroups.

For example, Zmn is decomposable into Zm × Zn if m and n are relatively prime.

Theorem 15.3. The finite indecomposable abelian groups are exactly the cyclic groups of order equal to a
power of a prime.

Proof. By classification, if G is finite and abelian, then G '
∏

Zprii . G is indecomposable if and only if
n = 1, i.e. G ' Zpr11 .

Theorem 15.4. If m divides the order of a finite abelian group G, then G has a subgroup of order m.

Proof. By classification, G '
∏
Zprii

. If m divides |G|, then ∃0 ≤ si ≤ ri for i = 1, . . . , n such that

m =

n∏
i=1

psii

For each i = 1, 2, . . . , n, Zprii has a subgroup of order psii , i.e.
〈
pri−sii

〉
. Then the direct product of the

subgroups thus generated has order m.
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16.1 Homomorphisms

Let G and G′ be groups, both having the operation ·; then a map φ : G → G′ is a homomorphism if
∀x, y ∈ G,φ(xy) = φ(x)φ(y). For example, a trivial homomorphism would be G → G′, g → e′ where e′ is
the identity of G′. We get

φ(xy) = e′ = e′ · e′ = φ(x)φ(y)

Another example is left matrix multiplication, φ : Rm → Rn, v → Av, where A ∈ Mm×n(R). φ is a
homomorphism from (Rm,+) to (Rn,+), which we see as follows:

φ(v1 + v2) = A(v1 + v2) = Av1 +Av2 = φ(v1) + φ(v2)

A third example is the determinant, φ : GLn(R) → R∗, φ(A) = det(A). This is a homomorphism because
∀A,B ∈ GLn(R), φ(AB) = det(AB) = det(A)det(B) = φ(A)φ(B).

Homomorphisms can represent most operations on groups; for example, a valid homomorphism is Sn →

Z2, σ →

{
0 σ is even

1 σ is odd
. Projection, and the modulo operator, can both also define homomorphisms.

16.2 Properties of homomorphisms

Definition 35. Let φ be a map from X to Y where X,Y are sets. Then, the direct image of a subset A ⊆ X
under φ is

φ[A] = {φ(x) | x ∈ A} ⊆ Y

and φ[X] is called the range of X.

For example, let X = {1, 2, 3, 4, 5, 6} and let Y = {0, 1, 2, 3}. Consider φ : X → Y, x → x mod 3. A =
{2, 3, 5}, which has the image φ[A] = {0, 2}. The range of X is φ(X) = {0, 1, 2}.

Definition 36. The inverse image of a subset B ⊆ Y under φ is

φ−1[B] = {x ∈ X | φ(x) ∈ B} ⊆ X (16.1)



Lecture 16: 4 March 43

Remark 16.1. φ−1 does not exist as a map Y → X unless φ is bijective, but the inverse image is well
defined for any map.

Theorem 16.2. Let φ : G→ G′ be a homomorphism between groups G and G′. Then:

1. Let e ∈ G, e′ ∈ G′ be the identity elements in both groups. Then φ(e) = e′.

2. ∀a ∈ G,φ(a−1) = φ(a)−1.

3. ∀H ≤ G,φ[H] ≤ G′.

4. ∀H ′ ≤ G′, φ−1[H ′] ≤ G.

Proof. 1. φ(e) · φ(e) = φ(e · e) = φ(e) = φ(e) · e′. Then apply the left cancellation law to get φ(e) = e′.

2. Let a ∈ G. Then φ(a) · φ(a−1) = φ(a · a−1) = φ(e) = e′. Left multiply by φ(a)−1, and we get
φ(a−1) = φ(a)−1.

3. H ≤ G. Let a, b ∈ H, ab ∈ H. We know that φ(a)φ(b) = phi(ab) ∈ φ[H], so φ[H] is closed under ·
which is the first subgroup axiom. We know that φ(e) ∈ φ[H] as e ∈ H, and ∀a ∈ H, φ(a) ∈ φ[H].
Therefore a−1 ∈ H as H ≤ G, so φ(a−1) = φ(a)−1 ∈ φ[H]. Therefore φ[H] is a subgroup of G.

4. H ′ ≤ G′ implies that ∀a, b ∈ φ−1[H ′], φ(ab) = φ(a)φ(b) ∈ H ′, so ab ∈ φ−1[H ′]. φ(e) = e′ ∈ H ′ =⇒
e ∈ φ−1[H ′]. Finally, if a ∈ φ−1[H ′] then φ(a−1) = φ(a)−1 ∈ H ′, so a−1 ∈ φ−1[H ′]. Therefore
φ−1[H ′] ≤ G.
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Definition 37. The kernel of φ is Ker φ = {x ∈ G | φ(x) = e′} = φ−1[{e′}], where e′ is the identity of G′.

For example, let φn : Sn → Z2, σ →

{
0 σ even

1 σ odd
. Then, Kerφn is the set of permutations that map to zero,

i.e. An.Another example is φn : Z→ Zn, x→ x mod n. Then Kerφn = nZ.

Corollary 17.1. The kernel of φ is a subgroup of G.

Proof. We proved that if H ≤ G then φ−1[H−1] ≤ G. As {e′} ≤ G′,Kerφ ≤ G.

Theorem 17.2. Let φ : G→ G′ be a group homomorphism. Let H = Kerφ and a ∈ G. Then φ−1[{φ(a)}] =
aH = Ha.

Recall that aH = {ah | h ∈ H} and Ha = {ha | h ∈ H}. Therefore the above statement is equivalent to
φ−1 [{φ(a)}] = {x ∈ G | φ(x) = φ(a)} (interpret this later). To prove this, we show that the sets are subsets
of one another.

Proof. Fix a ∈ G and let S = {x ∈ G | φ(x) = φ(a)}. We first try and show that S ⊆ aH. Let x ∈ S. Then
φ(x) = φ(a) =⇒ φ(a)−1φ(x) = e′. As φ is a homomorphism, we know that

φ(a−1)φ(x) = φ(a−1x) =⇒ a−1x ∈ H =⇒ a(a−1x) ∈ aH =⇒ x ∈ aH.

Therefore S ⊆ aH. Now we try the other direction. Let y ∈ aH. Then ∃h ∈ H such that y = ah. Using the
homomorphism property,

φ(y) = φ(ah) = φ(a)φ(h) = φ(a)e′ = φ(a),

because H is the kernel of φ. Since φ(y) = φ(a), we know that y ∈ S by definition. Therefore aH ⊆ S. This
implies that S = aH. The argument proceeds similarly for the right cosets.

An example of this is the kernel of φn as defined above. φ collapses the elements of Kerφ = An to e′ = 0,
and any of the left cosets of φ collapses the elements of Kerφ to the corresponding element of G′.

Corollary 17.3. A group homomorphism φ is one-to-one or injective if and only if Kerφ = {e}.

Proof. Suppose φ is one-to-one. Let x ∈ Kerφ. Then φ(x) = e′ = φ(e). Therefore x = e, so Kerφ = {e}.
In the other direction, suppose Kerφ = {e}. Then ∀a ∈ G, let x ∈ G such that φ(x) = φ(a). Then x ∈ aH
where H = Kerφ = {e}. Therefore aH = {a}, implying that x = a. Therefore φ is one-to-one.

Corollary 17.4. φ : G→ G′ is a group isomorphism if and only if φ is a group homomorphism, Kerφ = {e},
and φ is onto.
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Definition 38. H ≤ G is normal if and only if gH = Hg for all g ∈ G.

Corollary 17.5. If φ : G→ G′ is a group homomorphism then Kerφ is a normal subgroup.

Theorem 17.6. Given a subgroup H ≤ G, the following are equivalent ways of expressing that H is a
normal subgroup.

1. ghg−1 ∈ H∀h ∈ H, g ∈ G

2. gHg−1 = H∀g ∈ G

3. gH = Hg∀g ∈ G.

(Proof TBD.)
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Recall that the cosets of a subgroup H ≤ G are the set aH = {ah | h ∈ H}. Let a, b ∈ G; then aH = bH if
and only if b ∈ aH, or equivalently a ∈ bH. Recall also that a group homomorphism φ : G → G′ allows us
to define its kernel, H = Kerφ = {x ∈ G | φ(x) = e′}. For a ∈ G, φ−1 ({φ(a)}) = aH = Ha.

There exists a map

µ : {cosets of Kerφ} → φ[G], aH → φ(a). (18.1)

Theorem 18.1. Let φ : G → G′ be a group homomorphism with kernel H. Then the cosets of H form a
quotient group where

(aH) · (bH) = abH (18.2)

Moreover, µ is an isomorphism.

Denote the set of cosets of H by G/H, where H ≤ G and H is normal.

Proof. Let us first prove that µ is an isomorphism. µ is trivially well-defined, because φ(a) ∈ φ[G]∀a ∈ G.
Then, consider a, a′ ∈ G. aH = a′H if and only if φ(a) = φ(a′), so µ is a bijection. Finally,

µ ((aH)(bH)) = µ(abH) = φ(ab) = φ(a) · φ(b) = µ(aH) · µ(bH), (18.3)

so the homomorphism property holds.

Now, we want to show that coset multiplication satisfies the group axioms.

1. Associativity: ∀a, b, c ∈ G, ((aH)(bH)) (cH) = (abH)(cH) = ((ab) · c)H = (aH)(bcH) = (aH) ((bH)(cH)).

2. Identity: eH = H. ∀a ∈ G, aH · eH = aH and eH · aH = aH. So eH is the identity element.

3. Inverse: ∀aH ∈ G/H, aH · a−1H = aa−1H = eH = H and a−1H · aH = (a−1a)H = eH. So
(aH)−1 = a−1H ∈ G/H.

Recall that H ≤ G is a normal subgroup if and only if ∀a ∈ G, aH = Ha. We propose that if H ≤ G is a
normal subgroup, then coset multiplication is a well defined operation on G/H.
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Proof. What we need to prove is that for a, a′, b, b′ ∈ G, if aH = a′H and bH = b′H then abH = a′b′H. By
definition, ∃h1, h2 ∈ H such that a′ = ah1 and b′ = bh2. As H is normal, bH = Hb. So ∃h3 ∈ H such that
bh3 = h1b. Therefore,

a′b′ = ah1bh2

= a(h1b)h2

= abh3h2

(18.4)

As H ≤ G, h3h2 ∈ H. Therefore a′b′ ∈ abH. So a′b′H = abH.

As an example, consider φ : Z → Zn, a → a mod n. Then Kerφ = nZ, and the set of cosets G/Kerφ =
{a + nZ | a = 0, 1, . . . , n − 1}. Then µ : Z/nZ → Zn, a + nZ → a mod n associates to each coset of nZ its
smallest non-negative element.

In Z/nZ, a+ nZ + b+ nZ = a+ b+ nZ, and in Zn, ā+ b̄ = a+ b.

Theorem 18.2. Let H ≤ G. Then left coset multiplication is well defined if and only if H is normal.

Proof. We just proved that if H is normal then coset multiplication is well defined. We try and prove
this in the other direction. Suppose that left coset multiplication is well defined, that is, ∀a, b, a′, b′ ∈ G,
if aH = a′H and bH = b′H then abH = a′b′H. ∀a ∈ G,∀x ∈ aH, we get xHa−1H = aHa−1H = H.
Therefore x ∈ Ha, so aH ⊆ Ha. In the other direction, ∀x ∈ Ha, ∃h ∈ H such that x = ha, so x−1 ∈ a−1H.
Therefore ∃h2 ∈ H such that x−1 = h2a

−1, so x ∈ aH. Therefore Ha ⊆ aH, and the proof is complete.

Theorem 18.3. Let H ≤ G be a normal subgroup. Then G/H equipped with coset multiplication is a group
called the quotient group.

The proof is identical to the case H = Kerφ.
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Theorem 19.1. Let H ≤ G be normal. Then γ : G → G/H, x → xH is a surjective homomorphism with
kernel H.

Proof. We first show that it is a homomorphism.

∀x, y ∈ G, γ(x · y) = xyH = xH · yH = γ(x) · γ(y)

Then, we show it is surjective. Given any coset aH ∈ G/H, a ∈ G and γ(a) = aH. So γ is surjective.

Finally, we compute the kernel and show that it is H.

Ker γ = {x ∈ G | γ(x) = γ(e)}
= {x ∈ G | γ(x) = H}
= {x ∈ G | xH = H}

= {x ∈ G | x ∈ H} = H

(19.1)

If H is a normal subgroup, then both a homomorphism φ : G → φ[G] with kernel H, and a surjective
homomorphism γ : G→ G/H, can be defined. There also exists an isomorphism µ : G/H → φ[G].
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Theorem 19.2. Let φ : G → G′ be a group homomorphism with kernel H. Then φ[G] is a group, and
φ : G/H → φ[G], xH → φ(x) is an isomorphism. Moreover, if γ : G→ G/H, x→ xH is a homomorphism,
then φ = µ ◦ γ.

This is referred to as the fundamental homomorphism theorem.

For example, G/G is isomorphic to the trivial group. It has one coset, which is G itself. As another example,
G/{e} ' G, where the cosets are single elements of G. Consider the homomorphism pr : G1 × G2 →
G1, (x1, x2)→ x1. The kernel of pr is {e1} ×G2, and the cosets are

{(x1, e2) ·Ker(pr) | x1 ∈ G1}
G1 ×G2/{e1} ×G2 ' G1

Theorem 19.3. The quotient of a cyclic group is cyclic.

Proof. Let G = 〈a〉 = {an | n ∈ Z}. If N is a normal subgroup of G, then by definition

G/N = {anN | n ∈ Z}

Then, we use coset multiplication to find the generating element of the quotient group,

anN = (aN)n; a−nN = (a−1N)n = (aN)−n

So G/N is cyclic and generated by aN .
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Example 19.4. What is Z× Z/ 〈(1, 1)〉? The subset is H = {(x, x) | x ∈ Z}, so the cosets are

{(x, y) +H | (x, y) ∈ Z× Z} = {(x, 0) +H | x ∈ Z}

So Z × Z/H ' Z. This defines a group homomorphism φ : Z × Z → Z, (x, y) → x − y. This is a group
homomorphism with kernel equal to H.

Example 19.5. What is Z4×Z6/ 〈(2, 3)〉? The subgroup is {(0, 0), (2, 3)}, of order 2. So the quotient group
is of order 12, which means it is isomorphic to Z4 × Z3 or Z2 × Z2 × Z3. To find which, we claim that
(1, 0) + H has order 4, which we can verify by noting that (1, 0) + H through (3, 0) + H are not H, but
(4, 0) +H = H. Therefore Z4 × Z6/ 〈(2, 3)〉 ' Z4 × Z3. We know this because we can verify that there is no
element of order 4 in Z2 × Z2 × Z3; any element (a1, a2, a3) ∈ Z2 × Z2 × Z3 has order lcm(r1, r2, r3) where
ri is the order of ai. As r1 divides 2, r2 divides 2, and r3 divides 3, the lcm of r1, r2, r3 cannot be 4.

Example 19.6. Consider the dihedral group D4 of the symmetries of the square. Its generators are rotation
of π

2 and reflection about the y axis. We know that r4 = e, s2 = e, (sr)2 = e. We can therefore write the
cosets.
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Definition 39. A group is simple if it is nontrivial and has no nontrivial, proper normal subgroups.

Example 20.1. A3 ≤ S3 is simple since A3 = {id, (123), 132} has non nontrivial proper subgroups.

In general, Zp for a prime p are all simple, since they have no nontrivial proper subgroups.

Example 20.2. A4 is not simple, but An, n ≥ 5 is simple. This was done by checking cases with a computer.

Classifying simple groups took around 30 years but now it’s done. There are 18 infinite families, and 26
sporadic groups (called that because there is no good intuition for them). The largest of these is the Munster
Group, with order 8.08× 1053.

Definition 40. Let G be a group. For any a, b ∈ G, the commutator is defined as [a, b] = aba−1b−1.

Remark 20.3. [e, e] = e and [a, a] = e. If G is abelian then [a, b] = e and [b, a] = [a, b]−1.

Proposition 20.4. Consider C = {[ai, bi]ni=0 | n > 0; ai, bi ∈ G}. Then C ≤ G.

Proof. e = [e, e] ∈ C, so the group has an identity element. C is closed under products by definition, since
it expresses all products of a particular form. For inverses, let [a1, b1] . . . [an, bn] ∈ C, then its inverse is just
[an, bn]−1 . . . [a1, b1]−1 = [bn, an] . . . [b1a1] ∈ C.

Theorem 20.5. C is a normal subgroup of G.

Proof. First consider [a, b] ∈ C. Then g[a, b]g−1 = gaba−1b−1g−1 = ga(g−1g)b(g−1g)b−1g−1 = (gag−1)(gbg−1)(ga−1g−1)(gb−1g−1) =
[gag−1, gbg−1]. Each piece is a commutator in C from earlier, so the product is in C, and we conclude C is
normal.

Theorem 20.6. For N ≤ G normal, G/N is abelian if and only if C ⊆ N .

Proof. Suppose G/N is abelian, and let aN, bN ∈ G/N . Then (aN)(bN) = (bN)(aN), so abN = baN which
requires ab(ba)−1 ∈ N . So aba−1b−1 ∈ N and [a, b] ∈ N . Since this holds ∀a, b, and N is closed under
products, C ⊆ N .

Now suppose C ⊆ N , and we want to show G/N is abelian. Since C ⊆ N, b−1a−1ba ∈ N , so b−1a−1baN = N ,
and we have abN = abN = (ab)(b−1a−1ba)N = baN = bNaN , and so G/N is abelian.

Definition 41. An action of a group G on a set X is a map ∗ : G × X → X such that e ∗ x = x and
(g1g2) ∗ x = g1 ∗ (g2 ∗ x) for all g1, g2 ∈ G. X with the operation ∗ is a G-set.
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Definition 42. An action of a group G on a set X is a map φ : G × X → X, (g, x) → g ∗ x such that
e ∗ x = x∀x ∈ X and (g1g2) ∗ x = g1 ∗ (g2 ∗ x)∀g1, g2 ∈ G, x ∈ X.

We call X with this action a G−set. For example, if X ⊆ Sx is a subgroup of the permutations of X, then
H acts on X by σ ∗ x = σ(x). Another example is D4 acting on a square, so it acts on the set {1, 2, 3, 4} of
the vertices of the square.

In general, G acts on itself by permutations, g ∈ G sends x ∈ X = G to g ∗ x.

Theorem 21.1. Given a G−set X, and g ∈ G, the map σG : X → X,x→ g ∗x is a permutation of X, and
the map φ : G→ SX is a group homomorphism g → σg.

It seems weird to say that σg is a permutation, but we can prove this using the group action axioms.

Proof.

σg(σg−1(x)) = g ∗ (g−1 ∗ x) = (g ∗ g−1) ∗ x = e ∗ x = x = idx(x) (21.1)

Similarly σg−1(σg(x)) = x, so σg is a permutation.

We can verify that φ is a homomorphism, by the following:

φ(g1g2)x = sigmag1g2(x) = (g1g2) ∗ x = g1 ∗ (g2 ∗ x) = σg1(σg2(x)) = φ(g1)φ(g2) (21.2)

Definition 43. An action is faithful if the map φ is injective. This is equivalent to the statement that
Kerφ = {e}; the only element of G that acts as the identity permutation is the actual identity.

For example, Sx acts faithfully on X, and any subgroup H ⊆ Sx acts faithfully. Again returning to D4, a
180-degree rotation in D4 that leaves all the lines of symmetry in place is not a faithful action. If N = Kerφ,
then G/N acts faithfully on X.

Definition 44. Given a G−set X and x ∈ X, define Gx = {g ∈ G | g ∗ x = x}.

Theorem 21.2. Gx ⊆ G is a subgroup. This is called the isotropy or stabilizer subgroup of X.

Proof. Clearly e ∈ Gx. If g ∈ Gx then σg−1(σg(x)) = x = σg−1(x). So g−1 ∗x = x, so g−1 ∈ Gx. For closure,
if g1, g2 ∈ Gx then (g1g2) ∗ x = g1 ∗ (g2 ∗ x) = g1 ∗ x = x so g1g2 ∈ Gx.



Lecture 21: 15 March 53

21.1 Orbits

Theorem 21.3. For x1, x2 ∈ X, set x1 ∼ x2 if and only if ∃g ∈ G such that g ∗ x1 = x2. Then ∼ is an
equivalence relation.

Proof. For the reflexive property, set g = e. For the symmetric property, if x1 ∼ x2 then g ∗ x1 = x2 for
some g ∈ G. Then x1 = g−1 ∗ x2, so x2 ∼ x1. For the transitive property, if x1 ∼ x2, x2 ∼ x3, then say
x2 = g1 ∗ x1, x3 = g2 ∗ x2. Therefore x3 = g2 ∗ g1 ∗ x1 = (g2g1) ∗ x1, so x3 ∼ x1.

The orbits are the equivalence classes under this equivalence relation.

Definition 45. An orbit of the G−set X is an equivalence class for this relation.

We denote this by G ∗ x = Orb(x) = {g ∗ x | g ∈ G}.

If the isotropy subgroup (the subgroup that fixes an element under a permutation) is large, then the orbits
are correspondingly small.

Theorem 21.4. |G ∗ x| = (G : Gx).

Corollary 21.5. If |G| <∞, then |G ∗ x| = |G|
|Gx| .

Proof. Claim that g1 ∗x = g2 ∗x if and only if g1Gx = g2Gx. Start from the left statement and left multiply
by g−11 . We get x = g−11 (g2 ∗ x) = (g−11 g2) ∗ x. This is true if and only if g−11 g2 ∈ Gx, which in turn implies
g2 = g1h for some h ∈ Gx. Therefore g1Gx = g2Gx.
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Definition 46. A ring (R,+, ·) is a set R with two binary operations +, ·, such that (R,+) is an abelian
group, · is associative, and such that the ring is distributive, i.e. a · (b + c) = a · b + a · c ∀a, b, c ∈ R, and
(a+ b) · c = (a · c) + (b · c) = a · c+ b · c.

22.1 Direct Product of Rings

Let R1, . . . , Rn be rings. Then R1 × · · · ×Rn is a ring. ∀(a1, . . . , an), (b1, . . . , bn) ∈ R1 × · · · ×Rn, addition
and multiplication are defined component-wise:

(a1, . . . , an) · (b1, . . . , bn) = (a1 · b1, . . . , an · bn) (22.1)

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn) (22.2)

We write 0 as the identity for +, and −a for the additive inverse of a, ∀a ∈ R. For n ∈ Z,

na =


a+ · · ·+ (n times) + · · ·+ a n > 0

0 n = 0

(−a) + · · ·+ (n times) + · · ·+ (−a) n < 0

(22.3)

22.2 Ring Properties

Theorem 22.1. ∀a, b ∈ R the following hold:

1. a · 0 = 0 · a = 0

2. a · (−b) = (−a) · b = −(a · b)

3. (−a) · (−b) = a · b.

Note that we cannot use cancellation for products as inverses do not exist in general for ·. For example,
0 · a = 0 · b does not imply a = b.

Proof. 1. a · 0 + a · 0 = a · (0 + 0) = a · 0 = a · 0 + 0. Therefore we apply left cancellation on (R,+) to get
a · 0 = 0. By the same arguments, 0 · a = 0.

2. a · (−b) + a · b = a · (b + (−b)) = a · 0 = 0. Therefore a · (−b) is the additive inverse of a · b, i.e.
a · (−b) = −(a · b). We use the same logic to show (−a) · b = −(a · b).

3. Apply the above statement: (−a) · (−b) = −((−a) · b) = −(−(a · b)) = a · b as it is the inverse of an
inverse.
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22.3 Ring Homomorphisms

Let R and R′ be rings. A ring homomorphism φ is a map φ : R → R′ such that ∀a, b ∈ R, the following
properties hold:

1. φ(a+ b) = φ(a) + φ(b)

2. φ(a · b) = φ(a) · φ(b).

Remark 22.2. φ in particular is a group homomorphism. The usual results hold. For example, φ is injective
if and only if Kerφ = {0}.

For example, let F be the set of functions f : R→ R. Then (F,+, ·) is a ring. For all a ∈ R, φa : F → R, f →
f(a) is a homomorphism, called the evaluation homomorphism. A second example is φ : Z → Zn, a → a
mod n. This is a ring homomorphism between (Z,+, ·) and (Zn,+, ·).

22.4 Ring Isomorphisms

Definition 47. A ring isomorphism is a bijective ring homomorphism.

If φ : R → R′ is an isomorphism, then the operations of R and R′ are the same up to relabelling via
the bijection φ. For example, if gcd(r, s) = 1, then Zrs ' Zr × Zs. This gives the ring isomomorphism
Zrs → Zr × Zs, n→ (n mod r, n mod s).

To show that this is a homomorphism, we proceed as follows:

φ(n+m) = (n+m mod r, n+m mod s)

= (n mod r, n mod s) + (m mod r,m mod s)

= φ(n) + φ(m)

(22.4)

and similarly for multiplication,

φ(n ·m) = (n ·m mod r, n ·m mod s) = φ(n) · φ(m) (22.5)

Multiplication is always associative in rings, but it is not always commutative. If it is commutative, R is
called a commutative ring. Multiplication does not always have an identity element. For example, (2Z,+, ·)
is a ring where · does not have an identity element.

Definition 48. If multiplication has an identity element, call it unity and say R is a ring with unity.

Usually we denote unity by 1. It has the property that 1 · a = a · 1 = a. If 1 exists, it is unique.
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Definition 49. The zero ring is R = {0} with 0 + 0 = 0 and 0 · 0 = 0. Here, 0 is the additive and
multiplicative identity, so 1 = 0.

We claim that this is the only time when 1 = 0. More concretely, if R is a ring with unity and R is not the
zero ring, then 1 6= 0.

Definition 50. A multiplicative inverse of an element a in a ring R with unity and 1 6= 0 is a−1 ∈ R such
that a · a−1 = a−1 · a = 1. If the multiplicative inverse exists, it is unique.

Multiplicative inverses do not exist for every element in a ring, because 0 ∈ R for any ring R, and ∀a ∈
R, 0 · a = 0. (R, ·) is never a group.

Definition 51. If R is a ring with unity and 1 6= 0, then a ∈ R is a unit if it has a multiplicative inverse
in R.

Definition 52. If every nonzero element of a ring with unity is a unit, then we say that R is a division
ring.

Definition 53. A field is a commutative division ring.

(Z,+, ·) is not a field, as the only units are ±1. (Q,+, ·) is a field, because for any p
q ∈ Q∗, q

p ∈ Q∗ and
p
q
q
p = 1. (R,+, ·) and (C,+, ·) are also fields. Also, Zp is a field if p is prime.

Definition 54. A subring S is a subset of a ring closed under + and · and is a ring for those operations.

We denote this by S ≤ R. To prove that S is a subring of R, we show that (S,+) is a subgroup of (R,+)
and we also show that S is closed under multiplication. Associativity and distributivity follow.

For example, (Z,+, ·) is a subring of (R,+, ·).

Definition 55. A subfield is a subset of a field closed under the two operations of the field, and is a field
for those operations.

For example, (Z,+, ·) is not a subfield of (R,+, ·) as Z is not a field.

23.1 Divisors of zero

Our goal is to solve equations with one indeterminate x ∈ R. In Z, this can be something like x2−5x+6 = 0.
This is equivalent to (x − 2)(x − 3) = 0, which in turn admits the solutions x = 2 or x = 3. We get this
because in Z,Q,R, a product is equal to zero if one of the factors is equal to zero. This is not necessarily the
case in other rings. For example, suppose we tried to solve the same equation in Z12. We get the solutions
x = 2, x = 3, x = 6, x = 11.

Definition 56. If a, b ∈ R such that a 6= 0, b 6= 0 but a · b = 0, we say that a and b are divisors of zero.
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For example, in Z12 the divisors of zero are 2, 3, 4, 6, 8, 9, 10, by non-exhaustive pairs (2, 6), (3, 4), (8, 9), (6, 10).
In general, we can say the following:

Theorem 23.1. In Zn the divisors of zero are the integers that are not relatively prime to n.

Proof. Let us suppose that n and r are relatively prime. We will prove that r is not a divisor of zero. We
proceed by contradiction. Suppose that s 6= 0, s ∈ Zn and s · r ≡ 0 mod n. This means that n divides s · r.
As n and r are relatively prime, this means n divides s. So s = 0 in Zn which is a contradiction. Therefore
r is not a divisor of zero.

Now, suppose that gcd(n, r) = d > 1. Then s = n
d with 1 ≤ s < n so s 6= 0. Therefore s · r = n

d · r = n · rd ≡ 0
mod n. Therefore s · r = 0 in Zn nd r is a divisor of zero.

Corollary 23.2. If p is prime then Zp has no divisor of zero.

Theorem 23.3. Multiplicative cancellation holds in R (i.e. a · b = a · c =⇒ b = c) if and only if R has no
divisor of zero.
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24.1 Cancellation

Let a, b, c ∈ R with a 6= 0. If a · b = a · c then in general b = c is not true. For example, in Z12, 6 · 3 = 6 · 1,
but 3 6= 1. This is a consequence of the previous theorem, that multiplicative cancellation holds if and only
if R has no divisor of zero. We can prove this.

Proof. Case 1: If R has some divisors of zero, then there exist a, b ∈ R such that a 6= 0, b 6= 0, and a · b = 0.
We prove that ∀a ∈ R, a · 0 = 0. So we have a · 0 = a · b and b 6= 0, so cancellation does not hold.

Case 2: If R does not have divisors of zero, and a · b = a · c given a 6= 0 and a, b, c ∈ R. If a is a unit, the
we multiply a−1 on both sides. We get a−1ab = a−1ac, so b = c. Otherwise, a · b + (−a · c) = 0. Then by
distributivity, a · (b− c) = 0, so b− c = 0 =⇒ b = c as a is not a divisor of zero.

As a consequence, if R is a ring with no divisors of zero, then the equation ax = b for a, b ∈ R and a 6= 0
has at most one solution in R. (Because cancellation holds, if ax = b and ax′ = b then x = x′.)

24.2 Integral domains

Definition 57. An integral domain is a commutative ring with unity 1 6= 0 and containing no divisors of
zero.

Remark 24.1. 1. Cancellation holds in an integral domain.

2. A polynomial equation with an unknown in the integral domain can be factored and solved in the usual
manner, i.e. one of the factors must be zero.

For example, (Z,+, ·) is an integral domain. (Zn,+, ·) is an integral domain if n is prime, but not otherwise.
If R and S are integral domains, then R× S is not an integral domain, because (r, 0)× (0, s) = (0, 0) so the

product ring has divisors of zero. M2(Z) is not an integral domain, because

[
a 0
0 0

]
·
[
0 0
0 b

]
=

[
0 0
0 0

]
and

also it is non-commutative.

Theorem 24.2. Every field is an integral domain.

Proof. We need to check that there are no divisors of zero in a field. We suppose that a 6= 0 and a · b = 0.
We multiply by a−1 and see that b = 0. Therefore there are no divisors of zero.

Not every integral domain is a field. (Z,+, ·) is an integral domain but not a field. However, if an integral
domain is finite, it is a field.
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Theorem 24.3. Every finite integral domain is a field.

Corollary 24.4. If p is prime, Zp is a field.

Proof. Suppose R is a finite integral domain with n elements, a1 through an. This includes 0 or 1. We need
to show that every nonzero element is a unit. Let a ∈ R, a 6= 0. Then a · a1, a · a2, . . . , a · an are all distinct.
As cancellation holds, if a · ai = a · aj then ai = aj . So there exists some i such that a · ai = 1. Hence
a−1 = ai and R is a field.

Remark 24.5. For any φ : R → R, φ being injective implies that φ is bijective. (Not sure why this is the
case.)

Proposition 24.6. The zero elements of a field F form an abelian group F ∗ under multiplication.

Proof. 1. F ∗ is closed under multiplication, as there are no divisors of zero.

2. · is associative by definition of a ring.

3. 1 ∈ F ∗ is the identity element.

4. ∀a ∈ F ∗,∃a−1 ∈ F ∗ such that a · a−1 = a−1 · a = 1.

The group is abelian because a field is necessarily a commutative ring.

For example, (Z∗p, ·) is a group of order p− 1 if p is prime.

Theorem 24.7. Fermat’s Little Theorem: ap−1 ≡ 1 mod p.

Proof. As Z∗p is a group of order p− 1, for any a ∈ Z∗p, ap−1 = 1 in Z∗p, because the order of any element of a
finite group divides the order of a group. If a = i+ kp, for 1 ≤ i ≤ p− 1 and k ∈ Z∗, then i does not divide
p and i ∈ Z∗p. Therefore ap−1 ≡ ip−1 ≡ 1 mod p.

This is a powerful number theory result. For example, 5273403 mod 101 ≡ 5273400 · 53 mod 101 ≡ 53

mod 101 ≡ 24 mod 101. It can be used to prove more general results too. For example, ∀a ∈ Z, a25 − a is
divisible by 91. We can get this by proving using Fermat’s little theorem that a25 − a is divisible by 13 and
by 7.
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Proposition 25.1. In Zn, the following are equivalent: a 6= 0 is not a divisor of 0, a is a unit, and
gcd(a, n) = 1.

Proof. (3 =⇒ 2) if gcd(a, n) = 1, then ∃u, v ∈ Z such that au + nv = 1. Therefore au ≡ 1 mod n and
a−1 = u mod n, so a is a unit.

(1 =⇒ 3) if gcd(a, n) > 1 then b = n
gcd(n,a) . a · b = 0 in Zn and a is a divisor of zero, and a is not a unit.

The contrapositive of this also shows that 2 =⇒ 3.

Theorem 25.2. The units of a ring with unity form a group under multiplication.

Proof. We check the group axioms.

1. Closure: if a, b ∈ R are units, then a · b · b−1 · a−1 = 1. So a · b is a unit and (ab)−1 = b−1 · a−1

2. Associativity: this is true by definition of a ring.

3. 1 is a unit, so an identity element exists.

4. If a ∈ R is a unit then so is a−1 because
(
a−1

)−1
= a.

Corollary 25.3. Z∗p is a group of order p− 1 if p is prime.

Fermat’s Little Theorem was stated in the previous lecture. Euler’s generalization of Fermat’s Little Theorem
is as follows:

Corollary 25.4. Z∗n is a group of order ϕ(n) where ϕ(n) = {a ∈ Zn | gcd(a, n) = 1}.

For example, Z∗12 has order 4, consisting of the elements {1, 5, 7, 11}.

Theorem 25.5. For any positive integer n and for any integer a that is coprime with n,

aϕ(n) ≡ 1 mod n

Proof. Let b ∈ Z∗n such that a ≡ b mod n. Because gcd(a, n) = 1, we know that a mod n ∈ Z∗n. As b ∈ Z∗n,
bϕ(n) = 1 in Z∗n. As a ≡ b mod n, we get aϕ(n) ≡ bϕ(n) mod n. So aϕ(n) ≡ 1 mod n.

To solve equations of the form ax ≡ b mod n in Zn, we can employ Fermat’s little theorem.

Theorem 25.6. If gcd(a, n) = 1 then the equation ax ≡ b mod n has a unique solution.
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Proof. If gcd(a, n) = 1 then a is a unit. ax ≡ b mod n implies a−1ax ≡ a−1b mod n, so x ≡ a−1b mod n.
Since we are looking for solutions in Zn this is valid.

Theorem 25.7. If gcd(a, n) = d > 1 then the equation ax ≡ b mod n has solutions iff d divides b. In this
case it has d solutions in Zn.

Proof. If gcd(a, n) = d then ∃u, v ∈ Z such that ua + vn = d. If ax ≡ b mod n, then ∃y ∈ Z such that
ax+ ny = b, which implies ax+ ny ∈ dZ. So if d does not divide b, then the equation has no solution.

If d divides b then define a′ = a
d , b
′ = b

d , and n′ = n
d . Then the equation becomes

a′x′ ≡ b′ mod n

with gcd(a′, n′) = 1. So there is a unique solution x′ = (a′)−1 · b in Zn′ . The d solutions in Zn are
x′, x′ + n′, . . . , x′ + (d− 1)n′.

Example 25.8. Consider the equation 12x ≡ 27 mod 18. gcd(12, 18) = 6 and 6 does not divide 27 so there
are no solutions.

Example 25.9. Consider the equation 15x ≡ 27 mod 18. gcd(15, 18) = 3 and 3 divides 27, so the equation
can be reduced to 5x′ = 9 mod 6. In Z6 the unique solution is 3, so in Z18 the solutions are 3, 9, 15.
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Consider an integral domain D, and the set S = {(a, b) ∈ D × D} | b 6= 0. We can define an equivalence
relation (a, b) ∼ cd iff a · d = b · c.

Lemma 26.1. ∼ is an equivalence relation.

Proof. We show it is reflexive, symmetric, and transitive.

1. Reflexive: (a, b) ∼ (a, b) as a · b = a · b ∀(a, b) ∈ S

2. Symmetric: ∀(a, b), (c, d) ∈ S, if (a, b) ∼ (c, d) then a · d = b · c. Then c · b = d · a because the ring is
commutative, so (c, d) ∼ (a, b).

3. Transitive: ∀(a, b), (c, d), (e, f) ∈ S, if (a, b) ∼ (c, d) and (c, d) ∼ (e, f) then a · d = b · c and c · f = d · e.
Multiplying the first equation on both sides by f and the second on both sides by b, we get f · a · d =
b · c · f = d · e · b. So d · a · f = d · e · b, so a · f = e · b and (a, b) ∼ (e, f).

Let F be the set of equivalence classes [(a, b)], where [(a, b)] = [(c, d)] if and only if a · d = b · c. For example,
[(0, b)] = [(0, 1)]. We claim that this set is a field. Recall that a field is a commutative ring R with unity,
such that every nonzero element is a unit, (R,+) is an abelian group, (R∗, ·) is an abelian group, and the
distributive laws hold. So claiming that F is a field requires that we define addition and multiplication,
which are defined as follows:

[(a, b)] + [(c, d)] = [(a · d+ b · c, b · d)] (26.1)

[(a, b)] · [(c, d)] = [(a · c, b · d)] (26.2)

To show that F is a field, we consider each of the requirements separately.

Lemma 26.2. Addition is well defined.

Proof. We want to show that if (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′), then

[(a, b)] + [(c, d)] ∼ [(a′, b′)] + [(c′, d′)] (26.3)

From the congruences, we know that ab′ = ba′ and cd′ = dc′. Multiply the first by dd′ and the second by bb′ on
both sides, to get ab′dd′ = ba′dd′ and cd′bb′ = dc′bb′. Adding these two, we get adb′d′+cbd′b′ = a′d′bd+b′c′bd,
or (ad+ bc)b′d′ = (a′d′ + b′c′)bd, as was to be shown.

Lemma 26.3. Multiplication is well defined.
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Proof. If (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) then (a · c, b · d) ∼ (a′c′, b′d′). We know that ab′ = ba′ and
cd′ = c′d. So acb′d′ = bda′c′ and (ac, bd) ∼ (a′c′, b′d′).

Lemma 26.4. (F,+) is an abelian group.

Proof. We need to show that addition is commutative and that (F,+) satisfies all the group axioms.

1. We show that addition is commutative, by [(a, b)] + [(c, d)] = [(a · d+ b · c, bd)] and [(c, d)] + [(a, b)] =
[(cb+ da, db)] = [(ad+ bc, bd)].

2. We also show that it is associative, ([(a, b)] + [(c, d)]) + [(e, f)] = [(adf + bcf + bde, bdf)] = [(a, b)] +
([(c, d)] + [(e, f)]).

3. We show that the identity exists and it is [(0, 1)], as [(a, b)] + [(0, 1)] = [(a · 1 + b · 0, b · 1)] = [(a, b)].

4. We show that an additive inverse exists for any element, [(−a, b)]. [(a, b)] + [(−a, b)] = [(a · b+ (−a) ·
b, b2)] = [(0, b2)] = [0, 1].

Lemma 26.5. (F ∗, ·) is an abelian group.

Proof. We need to show that multiplication is commutative and that (F ∗, ·) satisfies all the group axioms.

1. We show that multiplication is commutative, by [(a, b)] · [(c, d)] = [(ac, bd)] = [(ca, db)] = [(c, d)] · [(a, b)].

2. We show that multiplication is associative, by ([(a, b)] · [(c, d)]) · [(e, f)] = [(ace, bdf)] = [(a, b)] ·
([(c, d)] · [(e, f)]).

3. We show that the identity exists and it is [(1, 1)], as [(a, b)] · [(1, 1)] = [(a · 1, b · 1)] = [(a, b)].

4. We show that a multiplicative inverse exists for any element, [(b, a)]. [(a, b)] · [(b, a)] = [(a · b, a · b)] =
[(1, 1)].

Lemma 26.6. (F,+, ·) obeys the distributive law.

Proof.

([(a, b)] + [(c, d)]) · [(e, f)] = [((ad+ bc) · e, b · d · f)]

= [(a, b)] · [(e, f)] + [(c, d)] · [(e, f)]

= [(ae, bf)] + [(ce, df)]

= [(aedf + bfce, bfdf)] = [(aed+ bec, bdf)]

= [(ad+ bc)e, bdf ]

(26.4)

We say F is an enlargement of D, and D is isomorphic to a subdomain of F . For example, Q is the quotient
field of Z.
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Let R be a ring. Then R[x] is the ring of polynomials with one indeterminate x, with polynomial coefficients
in R. For example, Z2[x], and we can write something like x2 + x ∈ Z2[x]. (We write 1 · x = x.)

Definition 58. A polynomial f(x) with coefficients in R is a formal sum

f(x) =

∞∑
i=0

aix
i

with ai ∈ R for all i and only finitely many ais are nonzero.

Remark 27.1. A polynomial is not a function of x.

Definition 59. If at least one of the ais is not zero, the degree of f(x) is the largest i such that ai 6= 0. We
denote this by deg(f(x)).

If deg(f(x)) = n, we can write f(x) = a0 + a1x+ · · ·+ anx
n. Usually we do not write the coefficients equal

to 0. For example, for Z[x], we write 0 + 2x+ 1x2 as 2x+ x2.

We want to show that R[x] is a ring. For this, we need to define the two binary operations on polynomials,
addition and multiplication. Let f(x) =

∑∞
i=0 aix

i, and let g(x) =
∑∞
i=0 bix

i. Then, addition is

f(x) + g(x) =

∞∑
i=0

(ai + bi)x
i

and multiplication is

f(x) · g(x) =

∞∑
i=0

(
i∑

k=0

ak · bi−k

)
xi (27.1)

For example, in Z2[x], (x+ 1) · (x+ 1) = x2 + (1 + 1) · x+ 1 = x2 + 1.

Theorem 27.2. (R[x],+, ·) is a ring. If R is a commutative ring, then R[x] is a commutative ring. If R
has unity 1 then R[x] has unity 1.

Proof. We can show that (R[x],+) is an abelian group, that multiplication is associative, and that the
distributivity laws hold. To check that R being commutative implies R[x] is commutative, we write down a
generic polynomial product,

f(x) · g(x) =

∞∑
i=0

(
i∑

k=0

akbi−k

)
xi
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Then, because R is commutative, we switch the order of the coefficients,

f(x) · g(x) =

∞∑
i=0

(
i∑

k=0

bi−k · ak

)
xi = g(x) · f(x) (27.2)

Finally, if R has unity 1, then 1 ∈ R[x] is the unity element. We see that 1 · f(x) = f(x).

Proposition 27.3. If R is an integral domain, then so is R[x].

Proof. We know that R[x] is a ring, so we just need to check that it has no divisors of zero. Suppose
f(x), g(x) ∈ R[x] are both nonzero. Suppose that they are of degree n and m respectively. Then, the
highest-order term will have degree m+ n. The coefficient on xm+n is guaranteed to be nonzero because R
is an integral domain meaning it has no divisors of zero, and an, bm 6= 0. Therefore f(x) · g(x) is not zero,
so R[x] is an integral domain.

Corollary 27.4. If F is a field then F [x] is an integral domain (as any field is any integral domain).

Remark 27.5. F [x] is not a field as x has no multiplicative inverse.

We can build the field of quotients of F [x], the field of rational functions in one indeterminate.

We can define the evaluation homomorphism on polynomials.

Definition 60. Let R be a commutative ring and let α ∈ R. Then the evaluation homomorphism φα :
R[x]→ R defined by φα(a0 + a1x+ · · ·+ anx

n) = a0 + a1α+ · · ·+ anα
n.

Theorem 27.6. φα is a ring homomorphism.

Proof. Let f(x), g(x) ∈ R[x]. Then

φα(f(x) + g(x)) + φα(

∞∑
i=0

(ai + bi)x
i) =

∞∑
i=0

(ai + bi)α
i

φα(f(x) + g(x)) =
∞∑
i=0

aiα
i +

∞∑
i=0

biα
i = φα(f(x)) + φα(g(x))

We also need to show the homomorphism property holds for multiplication,

φα(f(x) · g(x)) = φα

( ∞∑
i=0

(
i∑

k=0

akbi−k

)
xi

)
=

∞∑
i=0

(

i∑
k=0

akbi−k)αi

Because R is commutative, we can split αi = αk · αi−k, and write this as

φα(f(x) · g(x)) =

( ∞∑
i=0

aiα
i

)
·

( ∞∑
i=0

biα
i

)
= φα(f(x)) · φα(g(x)) (27.3)
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Definition 61.

f(α) = φα(f(x))

Remark 27.7. φα maks R to itself, as ∀αinR, φα(a0) = a0.

Example 27.8.

φ0(f(x)) = a0

Example 27.9.

f(x) = x2 + x

φ0(f(x)) = 0

φ1(f(x)) = 12 + 1 = 0

Evaluation of f at all elements of Z2 is zero, but f(x) 6= 0.
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Let F be a field, and let F [x] be a set of polynomials in x whose coefficients are in F . F [x] is an integral
domain, and f(x) ∈ F [x] for any f(x) =

∑∞
i=0 aix

i, ai ∈ F if only finitely many ais are nonzero.

We are interested in finding the zeroes of polynomials in F [x], i.e. finding all α such that the evaluation
homomorphism φα(f(x)) = 0. To do this, we factorize them. Since F is an integral domain, if we can write
f(x) = h(x)g(x) then φα(f(x)) = φα(h(x)) ·φα(g(x)) = h(α)g(α). So if f(α) = 0 then h(α) = 0 or g(α) = 0.

In order to find this factorization, we use the division algorithm. Let f(x) =
∑
i aix

i have order n and let
g(x) =

∑
i bix

i have order m. Both f(x) and g(x) are elements of F [x].

Theorem 28.1. There exist unique polynomials q(x), r(x) ∈ F [x] such that

1. f(x) = q(x) · g(x) + r(x)

2. r(x) = 0 or deg(r(x)) < deg(g(x))

Proof. We first prove existence, then present an algorithm to find these polynomials.

If deg(f(x)) < deg(g(x)) then f(x) = 0 · g(x) + f(x), so q(x) = 0 and r(x) = f(x). Fix g(x) and we use
induction on the degree of f(x). Our base case is deg(f(x)) < m as was just shown. The inductive step is
to assume this is true if deg(f(x)) < n, and consider deg(f(x)) = n, that is, f(x) = a0 + a1x + · · · + anx

n

with an 6= 0 and n ≥ m. Let f̃(x) = f(x)− an
bm
xn−mg(x). Then f̃(x) has degree less than n. By induction

f̃(x) = q̃(x) · g(x) + r̃(x) where deg(r̃(x)) < m. Then f(x) =
(
q̃(x) + an

bm
xn−m

)
g(x) + r̃(x), which is the

required decomposition.

For example, let f(x) = x3 + 2x2 + 3x− 1 and let g(x) = x− 1 in Z5.

X2 + 3X + 6

X − 1
)

X3 + 2X2 + 3X − 1
−X3 +X2

3X2 + 3X
− 3X2 + 3X

6X − 1
− 6X + 6

5

Because this is a Z-based in-built LATEXthing we get a remainder of 5x, which in Z5 is just zero. (I’ll figure
out how to display long division not in Z or R later.) Therefore f(x) = (x2 + 3x+ 1)(x− 1).

Next, we prove uniqueness of the polynomials q(x) and r(x).

Proof. We proceed by contradiction, supposing that two possible distinct pairs of polynomials exist and
showing eventually that this cannot be the case. Suppose that f(x) = q1(x)g(x)+ r1(x) = q2(x)g(x)+ r2(x),
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with deg(r1(x)) < m and deg(r2(x)) < m. Then (q1(x)− q2(x)) g(x) = r2(x) − r1(x). If q1(x) − q2(x) 6= 0,
then the left hand side has degree ≥ m and the right hand side has degree < m, which is a contradiction.
Therefore q1(x)− q2(x) = 0 and r2(x)− r1(x) = 0, and uniqueness holds.

Corollary 28.2. a ∈ F is a zero of f(x) ∈ F [x] if and only if (x− a) divides f(x) in F [x].

Proof. Consider the evaluation homomorphism φa.

φa(f(x)) = φa(x− a)φa(g(x)) + φa(r(x)) = φa(r(x)) (28.1)

Because the degree of x − a is 1, the degree of r(x) must be less than 1 because deg(r(x)) < deg(g(x)).
Therefore it must be a constant, i.e. φa(f(x)) = r. So φa(f(x)) = 0 iff r = 0.

Corollary 28.3. A nonzero polynomial f(x) ∈ F [x] of degree n can have at most n distinct zeroes in a field
F .

Proof. If a1 ∈ F is a zero of f(x), then f(x) = (x− a1)q1(x). If a2 6= a1 ∈ F is a zero of f(x), then f(a2) =
(a2−a1)q1(a2). The first term is not zero as the zeroes are distinct, so a2 is a zero of q1(x). Therefore we write
q1(x) = (x− a2)q2(x). Therefore there are at least r distinct zeroes f(x) = (x− a1)(x− a2) . . . (x− ar)qr(x)
with qr(x) 6= 0. There cannot be n+ 1 zeroes as deg(f(x)) = n.

Corollary 28.4. If F is a field and G is a finite subgroup of (F ∗, ·) then G is cyclic.

Proof. As G ≤ F ∗, G is abelian. So G is a finite abelian group. If G is of order m, then it can be decomposed
by the structure theorem of finitely generated abelian groups, G ' Zd1 × · · · × Zdn where m = d1d2 . . . dn,
and the dis all have prime power order. r = lcm(d1, . . . , dn) ≤ m, so ∀g ∈ G, gr = 1, so xr −m has at least
m zeroes in F [x]. Therefore r ≥ m. This tells us r = m, therefore the group G is cyclic and has order m.



Lecture 29: 15 April 69

Math 113: Abstract Algebra Spring 2019

Lecture 29: Rings of polynomials, irreducible polynomials
Lecturer: Sylvie Corteel 15 April Aditya Sengupta

Corollary 29.1. (to the division algorithm) a ∈ F is a zero of f(x) ∈ F [x] if x− a divides f(x).

Definition 62. A nonconstant polynomial f(x) ∈ F [x] is irreducible if it cannot be expressed as g(x)h(x)
of polynomials in F [x] of strictly lower degree.

For example, x2 − 3 = (x+
√

3)(x−
√

3) is irreducible over Q but not over R.

Lemma 29.2. If f(x) has degree 2 or 3, then f(x) is reducible if and only if it has a zero in F .

Proof. If f(x) has a zero α in F , then f(x) = (x − α)g(x) where g(x) has degree 1 or 2, so it is reducible.
If f(x) is reducible then f(x) = g(x)h(x) of which at least one has degree 1. Suppose g(x) = ax + b with
a 6= 0. Then − b

a is a zero of f(x).

29.1 Irreducibility over Q

If a polynomial in Z[x] factors in Q[x], then it factors in Z[x].

Theorem 29.3. If f(x) ∈ Z[x] factors as g(x) · h(x) with g(x), h(x) ∈ Q[x], then ∃c ∈ Q∗ such that
g1(x) = c · g(x) ∈ Z[x] and h1(x) = 1

ch(x) ∈ Z[x].

For example, f(x) = x3 − 5x2 + 8x− 4 =
(
4
3x

2 − 4x+ 8
3

) (
3
4x−

3
2

)
= (x2 − 3x+ 2)(x− 2).

Corollary 29.4.

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 (29.1)

If f has a zero m ∈ Q, then m ∈ Z and m divides a0 6= 0.

Proof. If m is a zero of f , then f(x) = (x −m)g(x) and g(x) = xn−1 + bn−2x
n−2 + · · · + b0. We suppose

that m ∈ Q. By the theorem, ∃c ∈ Q∗ such that c(x−m) ∈ Z[x]. Then 1
cg(x) ∈ Z[x]. If c = 1 then m ∈ Z.

The coefficient of x0 in f(x) is a0 and in (x−m)g(x) is m · b0. Therefore m divides a0.

Theorem 29.5. Eisenstein criterion: let p ∈ Z be a prime. Then f(x) =
∑n
i=0 aix

i ∈ Z[x]. If an 6≡
0(mod p) and ai ≡ 0(mod p), 0 ≤ i < n with a0 6≡ 0(mod p2), then f(x) is irreducible.

For example, by the Eisenstein criterion, 29x4 − 9x2 + 36x+ 12 is irreducible over Q with p = 3.

Proof. Assume f(x) =
(∑r

i=0 bix
i
) (∑s

j=0 cix
i
)

, where r+s = n. Then an = br ·cs where br, cs 6≡ 0( mod p).

Then a0 = b0 · c0; p divides b0 or c0 but not both. Suppose it divides b0. Then a1 = b0c1 + c0b1, which is a
multiple of p plus something that is not. Therefore for a1 ≡ 0(mod p), we get b1 ≡ (0 mod p). By the same
argument on each ai, we get that each bi is 0(mod p). Therefore br ≡ 0(mod p). We have a contradiction
because of our starting assumption, so f(x) is irreducible.
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Corollary 30.1. (of Eisenstein Criterion): if p is prime, xp−1
x−1 = 1 + x+ · · ·+ xp−1 is irreducible over Q.

To prove this, we invoke the following lemma:

Lemma 30.2. f(x) is irreducible over Q if and only if f(x+ 1) is irreducible.

Proof. We prove the contrapositive, which due to being an if-and-only-if condition proves the lemma. We
define a map ϕ : F [x]→ F [x], f(x)→ f(x+ 1) where ϕ is a ring homomorphism. So if f is not irreducible
then f(x) = h(x)g(x) and ϕ(f(x)) = ϕ(h(x))ϕ(g(x)), i.e. f(x+ 1) is not irreducible.

Proof. (of the corollary): let f(x) = xp−1
x−1 . Then f(x+ 1) = (1+x)p−1

x and by the binomial theorem we get

f(x+ 1) =

p∑
k=1

(
p

k

)
xk−1 (30.1)

The coefficient of the leading term is 1, and p does not divide 1, and all the other coefficients are multiples

of p, since they are p!
k!(p−k)! = p

(
(p−1)!
k!(p−k)!

)
. The constant term is p, which is clearly divisible by p but not

p2. So the Eisenstein criterion applies and f(x) is irreducible.

Theorem 30.3. If p(x) ∈ F [x] is irreducible and divides r1(x) · r2(x), then p(x) divides ri(x) for at least
one i.

Theorem 30.4. If F is a field, then every nonconstant polynomial f(x) ∈ F [x] can be factored into a product
of irreducible polynomials in F [x]. The factors are unique up to reordering and multiplication by units.

Proof. We first show existence: if f(x) = h(x)g(x) with deg(g(x)), deg(h(x)) < deg(f(x)), then if h(x)g(x)
are irreducible the theorem is shown, and if not, we repeat this process. We then have to answer whether
the process will terminate, which it will, because the degree of polynomials is finite and decreases at each
step.

Second, we show uniqueness. Suppose f(x) =
∏r
i=1 pi(x) =

∏s
i=1 qi(x), and without loss of generality take

r ≤ s. Then by the above theorem that if p(x) divides r1(x) · r2(x) it divides at least one of them, we know
that p1(x) divides qj(x) for some 1 ≤ j ≤ s. Since each qj(x) is irreducible, we must have p1(x) = qj(x).
Dividing p1(x) . . . pr(x) and q1(x) . . . qs(x) by p1(x) = qj(x) and repeating this process, we rearrange factors
and find that pi(x) = aiqi(x), where ai ∈ F [x] is a unit. Therefore we have s = r and

∏
i ai = 1. So

uniqueness holds.

Definition 63. Let R,R′ be rings. A ring homomorphism is a map ϕ : R→ R′ such that ϕ is well defined
and ∀x, y ∈ R, ϕ(x+ y) = ϕ(x) +′ ϕ(y), and ϕ(xy) = ϕ(x) ·′ ϕ(y).
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31.1 Properties of Ring Homomorphisms

Theorem 31.1. If φ : R→ R′ is a ring homomorphism, then

1. φ(0) = 0′

2. φ(−x) = −φ(x)

3. If S′ ≤ R′ then φ−1[S′] ≤ R.

4. If S ≤ R then φ[S] ≤ R′.

5. If R has unity 1 then φ[1] is unity for φ[R].

Remark 31.2. φ(1) might not be unity for R′. For example, consider φ : Z2 → Z8, 0 → 0, 1 → 4. Then
φ[Z2] = {0, 4} ≤ Z8. Then 4 is unity for {0, 4} but not for Z8

Proof. As φ is a group homomorphism from (R,+) to (R′,+), the first two follow from group theory.
To show the third statement, we know that

(
φ−1[S′],+

)
is a subgroup of (R,+). We just need to check

that the inverse image of S′ is closed under multiplication. For any a, b ∈ φ−1[S′], φ(a), φ(b) ∈ S′ and
φ(ab) = φ(a) · φ(b), as S′ is a subring of R′. Therefore φ(ab) ∈ S′, which implies ab ∈ φ−1[S′].
To show the fourth statement, we need to check that φ[S] is closed under multiplication. Take s′1, s

′
2 ∈ φ[S];

then there exist s1, s2 ∈ S such that φ(s1) = s′1 and φ(s2) = s′2. Then φ(s1) · φ(s2) = φ(s1s2) ∈ φ[S]. As
S ≤ R, s1s2 ∈ S.
To show the fifth statement, we state that for any r′ ∈ φ[R], there exists r ∈ R such that φ(r) = r′. Then
φ(r)φ(1) = φ(r) = r′, and φ(1)φ(r) = φ(r) = r′, so φ(1) is unity in φ[R].

Definition 64. Let φ : R → R′ be a ring homomorphism. The kernel of φ is Kerφ = φ−1[0′] = {r ∈ R |
φ(r) = 0′}.

From this, we can show some facts:

1. The kernel Ker(φ) is a subring of R. This can be shown directly with the theorem that S′ = 0′ is a
subring of R′.

2. Additive cosets: ∀a ∈ R, φ−1(φ(a)) = {x ∈ R | φ(x) = φ(a)} = a+ Ker(φ).

3. φ is injective if and only if Ker(φ) = {0}.

4. Let H = Ker(φ). Then ∀a ∈ R, h ∈ H, ah ∈ H and ha ∈ H, as φ(ah) = φ(a)φ(h) = 0′ so ah ∈ H and
the same the other way.
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31.2 Quotient Rings

Theorem 31.3. Let φ : R → R′ be a ring homomorphism with Ker(φ) = H Then the additive cosets
of H form a ring R/H for coset addition, (a + H) + (b + H) = (a + b) + H and coset multiplication,
(a+H)(b+H) = a · b+H. Additionally, there exists a ring isomorphism µ : R/H → φ[R], a+H → φ(a).

Proof. From group theory, we know that (R/H,+) is an abelian group, so it remains to be shown that
multiplication is well defined. For any a′ ∈ a + H, b′ ∈ b + H we need to show that a′b′ ∈ ab + H. If
a′ ∈ a + H then there exists h1 ∈ H so that a′ = a + h1. If b′ ∈ b + H then there exists h2 ∈ H so that
b′ = b+ h2. Then we multiply them: a′b′ = (a+ h1)(b+ h2) = ab+ h1b+ ah2 + h1h2. By definition of the
kernel the last three terms are in H, therefore a′b′ ∈ ab + H. We also need to show that multiplication is
associative:

((a+H)(b+H))(c+H) = (ab) · c+H = a(bc+H) = (a+H)((b+H)(c+H)) (31.1)

Then, we check the distributive laws. For all a, b, c ∈ R,

(a+H)((b+H) + (c+H)) = a · (b+ c) +H

= (a · b+ a · c) +H

= (a+H)(b+H) + (a+H)(c+H)

(31.2)

The same argument follows for the right distributive law. Therefore R/H is a ring.

To show that µ is a ring isomorphism, we just need to show that it is a homomorphism under multiplication,
because we know it is a group isomorphism. This can be shown by µ((a+H)(b+H)) = µ(ab+H) = φ(ab) =
φ(a)φ(b) = µ(a+H)µ(b+H).
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Consider a ring homomorphism φ : R→ R′ and let H = Kerφ. Then let R/H = {a+H | a ∈ R}.

Theorem 32.1. R/H is a ring with coset addition (a+H) + (b+H) = (a+ b) +H and coset multiplication
(a+H) · (b+H) = a · b+H.

Example 32.2. Consider φ : Z→ Zn, a→ a mod n. Then φ is a ring homomorphism where Kerφ = nZ.
The additive cosets are a+nZ where a = 0, 1, . . . , n−1. The quotient ring Z/nZ is isomorphic to Zn, which
allows us to define the ring isomorphism µ : Z/nZ→ Zn, a+ nZ→ a.

Theorem 32.3. Let H be an additive subgroup of (R,+). Then multiplication of additive cosets is well
defined if and only if ∀x ∈ R,∀h ∈ H, xh ∈ H and hx ∈ H.

Proof. Let us prove that multiplication is well defined if ∀x ∈ R,∀h ∈ H, hx ∈ H,xh ∈ H. If a′ ∈ a+H, b′ ∈
b+H, then ∃h1, h2 ∈ H such that a′ = a+h1, b′ = b+h2. So a′b′ = (a+h1)(b+h2) = ab+h1b+ah2 +h1h2,
so a′b′ ∈ ab+H. This means multiplication is well defined.

If multiplication is well defined, then ∀x ∈ R,∀h ∈ H, (x+H)(h+H) = xh+H. Because h ∈ H,h+H = 0+H
and therefore (x+H)(0 +H) = x0 +H = H. Therefore xh ∈ H. Similarly we see that hx ∈ H.

Definition 65. An ideal in a ring R is an additive subgroup H of R such that ∀x ∈ R, xH ⊆ H and
Hx ⊆ H.

Example 32.4. nZ is ideal in Z; ∀x ∈ Z,∀h ∈ nZ, hx ∈ nZ.

Corollary 32.5. For any φ : R→ R′, Kerφ is an ideal in R.

Theorem 32.6. Let H ≤ R be an ideal. Then the additive cosets of H form a ring R/H with coset addition
and coset multiplication. This ring is called the quotient ring. Moreover γ : R → R/H, x → x + H is a
surjective ring homomorphism with Ker γ = H.

Theorem 32.7. The Fundamental Homomorphism Theorem: Let φ : R → R′ be a ring homo-
morphism with Kerφ = H. Then H is an ideal in R and the subring φ[R] is isomorphic to R/H by
µ : R/H → φ[R], x+H → φ(x). Moreover, φ factors as R→ γ[R] = R/H → µ[R/H] = φ[x].

Example 32.8. Z is an integral domain and nZ is its ideal. Then Z/nZ ≡ Zn is a field if n is prime and
has divisors of zero if n is not prime (it is just a commutative ring with unity.)

Example 32.9. Z × Z is a commutative ring with unity (it has divisors of zero), and it has an ideal
N = {0} × Z = {(0, a) | a ∈ Z}.

Theorem 32.10. If R is a ring with unity and H is an ideal in R, then if H contains a unit, then H = R.

Proof. Let a ∈ H be a unit. Then ∃a−1 ∈ R so that aa−1 = a−1a = 1, so 1 ∈ H because ∀b ∈ R and
∀h ∈ H, bh ∈ H. ∀x ∈ R, x · 1 ∈ H, i.e. ∀x ∈ R, x ∈ H. Therefore H = R.

Corollary 32.11. If F is a field, the only ideals of F are {0} and F .

Remark 32.12. Every ring R has at least two ideals, {0} and itself.

Remark 32.13. R/R is isomorphic to the zero ring.

Remark 32.14. R/{0} is isomorphic to R.
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Recall that an ideal of a ring is the generalization of a normal subgroup. We extend this definition to include
the notion of no ideal superset of an ideal existing, which we call maximal :

Definition 66. A maximal ideal of a ring R is an ideal M 6= R (i.e. M ⊂ R) such that there is no ideal N
with M ⊂ N ⊂ R.

Example 33.1. pZ is a maximal ideal of Z if p is prime.

All the ideals of Z are nZ with n ∈ Z, but only the prime ones are maximal. We can show this; if pZ is not
maximal, then there exists m ∈ Z such that pZ ⊂ mZ. This holds iff m divides p. As p is prime, we get
m = 1 or m = p. Therefore there exists no m such that pZ is a proper subset of mZ, and mZ is a proper
subset of Z. Therefore pZ is maximal.

Theorem 33.2. If R is a commutative ring with unity, and if M is an ideal of R, then R/M is a field if
and only if M is a maximal ideal.

Remark 33.3. If R has unity and N is an ideal of R, then R/N has unity 1 +N .

Remark 33.4. If R is a commutative ring and N an ideal of R then R/N is commutative. (This can be
shown explicitly with the definition of coset multiplication.)

Proof. Let M be a maximal ideal, M ⊂ R. So ∃a ∈ R such that a /∈ M ; a 6= 0 as 0inM . By contradiction,
we suppose that a+M has no multiplicative inverse in R/M , that is, R/M is not a field. Then there does
not exist r ∈ R such that (r + M)(a + M) = (1 + M). This is equivalent to saying @r ∈ R,@m ∈ M so
that ra + m = 1. Let H = {ra + m | r ∈ R,m ∈ M}. We show first that H is an ideal of R. This
requires that we show H is an additive subgroup of R, which just requires that we check the subgroup
axioms (exercise to the reader!). It also requires that H is an ideal under multiplication; more formally,
that ∀x ∈ R and ∀ra+m ∈ H, x · (ra+m) ∈ H. We easily show this using associativity of multiplication:
x · (ra + m) = (xr)a + (xm) ∈ H as it is of the form ra + m. Therefore H is an ideal of R. Now, we show
that M ⊂ H; ∀m ∈M, 0 · a+m ∈ H so m ∈ H, i.e. M ⊆ H. But a ∈ H as a = 1 · a+ 0 and a 6∈M . Hence
M ⊂ H. Therefore M is not maximal, which is a contradiction. Thereore, if M is maximal then R/M is a
field.

We prove this in the other direction. Let us suppose that R/M is a field, and there exists an ideal N such that
M ⊂ N ⊂ R. Let γ : R→ R/M,x→ x+M be a surjective ring homomorphism, γ[N ] = {n+M | n ∈ N}.
We claim that γ[N ] = R/M . First we show that γ[N ] is an ideal ofR/M . By the theorem on homomorphisms,
γ[N ] is an additive subgroup of R/M . Also, under multiplication, we can show that γ[N ] is an ideal:
∀x ∈ R,∀n ∈ N , (x+M)(n+M) = xn+M ∈ γ[N ] because xn ∈ N . As R/M is a field, it has two ideals,
{0+M} and R/M itself. We suppose that M ⊂ N . So ∃n ∈ N,n 6∈M so n+M ∈ γ[N ] but n+M 6= 0+M ,
so γ[N ] = R/M . Therefore, ∀a ∈ R,∃n ∈ N such that a + M = n + M . Therefore a ∈ n + M ⊆ N . So
R ⊆ N but N is an additive subgroup, so N ⊆ R. Therefore R = N and M is maximal.

Example 33.5. The maximal ideals of Z are exactly pZ.
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34.1 Prime Ideals

Definition 67. An ideal N ⊂ R in a commutative ring is a prime ideal if a, b ∈ R and ab ∈ N then a ∈ N
or b ∈ N .

Recall that an integral domain is a commutative ring with no divisors of zero. For a quotient ring, this
means if a+N, b+N ∈ R/N such that (a+N)(b+N) = 0 +N then a+N = 0 +N or b+N = 0 +N .

Theorem 34.1. If R is a commutative ring with unity and N is an ideal of R, then R/N is an integral
domain if and only if N is a prime ideal.

Proof. R/N is an integral domain if it has no divisors of zero, i.e. if (a+N)(b+N) = 0 +N ⇐⇒ ab+N =
0 + N , i.e. if ab ∈ N , then a + N = 0 + N (if and only if a ∈ N) or b + N = 0 + N (if and only if b ∈ N).
Hence if ab ∈ N then a ∈ N or b ∈ N , thus N is prime.

If M is a maximal ideal, we know that R/M is a field, which means R/M is an integral domain, i.e. by the
above theorem M is a prime ideal.

Corollary 34.2. Every maximal ideal is a prime ideal.

34.2 Principal Ideals

Let a ∈ R and 〈a〉 = {ra | r ∈ R}. Then 〈a〉 is the principal ideal generated by a.

Remark 34.3. 〈a〉 is the smallest ideal containing a.

Example 34.4. The ideals of Z are {nZ | n ∈ Z}. Every ideal of Z is principal.

34.3 Ideals in rings of polynomials

Theorem 34.5. Every ideal of F [x], a ring of polynomials in one indeterminate x and coefficients in a field
F , is principal.

Proof. Let N be an ideal of F [x]. If N = {0} then N = 〈0〉. Otherwise N contains at least one nonzero
polynomial. Let g(x) be a nonzero polynomial in N of minimal degree. If deg(g(x)) = 0 then g(x) = c ∈ F .
Then N = F [x] = 〈1〉. Otherwise we will show that N = 〈g(x)〉. Given f(x) ∈ N , by the division algorithm
f(x) = q(x)g(x)+r(x) with deg(r(x)) < deg(g(x)). We rearrange this to get r(x) = f(x)−q(x)g(x). Because
N is ideal, q(x)g(x) ∈ N , and because N is an additive subgroup, f(x)− q(x)g(x) ∈ N . Then N ⊆ 〈g(x)〉.
But as g(x) ∈ N , 〈g(x)〉 ⊆ N . Hence N = 〈g(x)〉.
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Theorem 34.6. A nontrivial ideal 〈p(x)〉 of F [x] is maximal if and only if p(x) is irreducible over F .

Proof. Suppose 〈p(x)〉 is maximal. Then 〈p(x)〉 ⊂ F [x], so p(x) is not a constant polynomial. Let us assume
that p(x) is reducible. Then ∃g(x), h(x) with deg(g(x)) < deg(h(x)) < deg(f(x)) such that p(x) = g(x)h(x).
So g(x)h(x) ∈ 〈p(x)〉 as R has unity. As 〈p(x)〉 is maximal, 〈p(x)〉 is prime. So g(x) ∈ 〈p(x)〉 or h(x) ∈ 〈p(x)〉.
But as 〈p(x)〉 = {q(x)p(x) | q(x) ∈ F [x]} all the polynomials in 〈p(x)〉 must have degree at least deg(p(x)),
so g(x) or h(x) cannot be elements of 〈p(x)〉. Therefore p(x) is irreducible.

Conversely, suppose that p(x) is irreducible over F and assume that there exists N such that 〈p(x)〉 ⊂ N ⊂
F [x], i.e. 〈p(x)〉 is not maximal. Let N = 〈g(x)〉 for g(x) ∈ F [x]. As 〈p(x)〉 ⊂ N , then p(x) ∈ 〈g(x)〉. Hence
∃q(x) such that p(x) = q(x)g(x). But p(x) is irreducible, so either deg(q(x)) = 0, i.e. 〈p(x)〉 = 〈g(x)〉 and
N = 〈p(x)〉, or deg g(x) = 0 and N = 〈c〉 = 〈F [x]〉. Hence 〈p(x)〉 is maximal.
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35.1 Extension fields

We previously proved that every ideal of F [x] is principal. Also, we know that 〈p(x)〉 is maximal if and only
if p(x) is irreducible. Therefore

Corollary 35.1. F [x]/ 〈p(x)〉 is a field iff p(x) is irreducible.

This can be applied to provide unique factorizations over F ,

Theorem 35.2. If p(x) ∈ F [x] is irreducible over F , then if p(x) divides r(x)s(x) for r(x), s(x) ∈ F [x] then
p(x) divides r(x) or p(x) divides s(x).

Proof. If p(x) divides r(x)s(x), then r(x)s(x) ∈ 〈p(x)〉, as 〈p(x)〉 = {h(x)p(x) | h(x) ∈ F [x]}. As p(x) is
irreducible, 〈p(x)〉 is maximal and therefore prime. As r(x)s(x) ∈ 〈p(x)〉, r(x) ∈ 〈p(x)〉 or s(x) ∈ 〈p(x)〉.
Hence p(x) divides r(x) or p(x) divides s(x).

35.2 Extension fields

Definition 68. A field E is an extension of a field F if F is a subfield of E.

Theorem 35.3. (Kronecker’s Theorem) Let F be a field and let f(x) ∈ F [x] be a nonconstant polynomial.
Then there exists an extension field E of F and α ∈ E such that f(α) = 0.

To set up the proof, we list the following facts:

1. Over F , f(x) factors into irreducible polynomials. Let p(x) be one of them. Then it is sufficient to
find E such that α ∈ E and p(α) = 0. Then f(α) = 0.

2. The principal ideal 〈p(x)〉 = {h(x)p(x) | h(x) ∈ F [x]} is maximal iff p(x) is irreducible.

3. F [x]/ 〈p(x)〉 is a field iff p(x) is irreducible, where F [x]/ 〈p(x)〉 = {g(x) + 〈p(x)〉 | g(x) ∈ F [x]}

Proof. Define ψ : F → F [x]/ 〈p(x)〉 , a → a + 〈p(x)〉. ψ is a ring homomorphism by the definitions of coset
addition and multiplication. ψ is injective, because Kerψ = {0}. If a ∈ Kerψ, then a+〈p(x)〉 = 0+〈p(x)〉 =
〈p(x)〉. This is true if and only if a ∈ 〈p(x)〉 and a ∈ F , which in turn is if and only if a is divisible by p(x)
and a ∈ F , so a = 0. Therefore ψ is injective.

As ψ is injective, F is isomorphic to a subfield of F [x]/ 〈p(x)〉. Let E = F [x]/ 〈p(x)〉. E is an extension
of F . Now, let α = x + 〈p(x)〉 ∈ E. Let p(x) =

∑n
i=0 aix

i, and consider the evaluation homomorphism
φα : F [x] → E, f(x) → f(α). Then φα(p(x)) = a0 + a1(x + 〈p(x)〉) + · · · + an(x + 〈p(x)〉)n. By coset
multiplication, (x + 〈p(x)〉)k = xk + 〈p(x)〉. For any c ∈ F , c 〈p(x)〉 = 〈p(x)〉. Therefore, the evaluation
homomorphism comes out to φα(p(x)) + p(x) + 〈p(x)〉 = 〈p(x)〉. So φα(p(x)) = 0 + 〈p(x)〉 = 0E .



Lecture 35: 28 April 78

Example 35.4. Let F = R and let f(x) = x2 + 1. Then E = R[x]/
〈
x2 + 1

〉
is a field extension of R, and

α = x+
〈
x2 + 1

〉
satisfies α2 + 1 = 0 (we will prove that E ≡ C.)

Definition 69. Given a field extension E of a field F and α ∈ E, α is algebraic over F if there exists
f(x) ∈ F [x] such that f(α) = 0. Then α is algebraic over F if there exists f(x) ∈ F [x] such that f(α) = 0.
Otherwise α is transcendental over F .

Example 35.5. Let F = Q and E = C. Then i is algebraic over Q, because there exists x2 + 1 ∈ Q[x] such
that f(i) = 0.

√
2 is algebraic over Q for f(x) = x2 − 2. π is transcendental over Q, but showing this is

hard. π is algebraic over R, however, with f(x) = x− π.
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Recall that E is an extension of a field F if F is a subfield of E. Let p(x) be an irreducible polynomial in
F [x]. Then an extension field of F is E = F [x]/ 〈p(x)〉. Let α = x+ 〈p(x)〉; then φα(p(x)) = 0 + 〈p(x)〉.

Recall also that α ∈ E is algebraic over F if ∃f(x) ∈ F [x] such that f(x) 6= 0 and f(α) = 0. Otherwise α is
transcendental.

Theorem 36.1. Let E ≥ F and α ∈ E, and define φα : F [x]→ E, f(x)→ f(α). Then α is transcendental
if and only if φα is injective.

Proof. α is transcendental over F if and only if @f(x) ∈ F [x] such that f(x) 6= 0 and f(α) = 0, i.e.
∀f(x) ∈ F [x] such that f(x) 6= 0, φα(f(x)) 6= 0, i.e. Kerφα = {0}. Therefore φα is injective.

Theorem 36.2. Let E be a field extension of F and let α be an algebraic number over F , α ∈ E. Then there
exists an irreducible polynomial p(x) ∈ F [x] such that p(α) = 0. Moreover p(x) is unique up to multiplication
by a nonzero constant.

Proof. As α is algebraic, Kerφα = {f(x) ∈ F [x] | f(α) = 0} is a nontrivial ideal of F [x]. As every ideal
of F [x] is principal, there exists a polynomial p(x) ∈ F [x] such that Kerφα = 〈p(x)〉. Recall that p(x) is
defined as 〈p(x)〉 = {h(x)p(x) | h(x) ∈ F [x]}. 〈p(x)〉 consists of all the elements of F [x] having α as a zero.
Therefore if f(x) ∈ F [x] such that f(x) 6= 0 and α is a zero of f(x), then f(x) ∈ 〈p(x)〉 so p(x) divides f(x).
p(x) is a polynomial of minimal degree ≥ 1, such that α is a zero of p(x).

Let us suppose that p(x) is reducible. Then p(x) = r(x)s(x) with deg r < deg p and deg s < deg p. As
p(α) = 0, r(α)s(α) = 0. As E is a field, r(α) ∈ E and s(α) ∈ E. Then r(α) = 0 or s(α) = 0. This
contradicts our assumption that p(x) is of minimal degree. Therefore p(x) is irreducible. As p(x) divides
every f(x) in 〈p(x)〉, every polynomial of the same degree is equal to cp(x) with c ∈ F ∗, as required.

Definition 70. Let f(x) ∈ F [x] such that f(x) = anx
n + an−1x

n−1 + · · ·+ a0. f(x) is monic iff an = 1.

Definition 71. Given α algebraic over F , we denote by irr(α, F ) the unique monic irreducible polynomial
such that α is a zero of this polynomial. Then deg(α, F ) = deg(irr(α, F )).

Example 36.3. Let F = Q and α =
√

2. Then irr(
√

2,Q) = x2 − 2.

Definition 72. Given α algebraic over F , F (α) is the smallest subfield containing F and α. φα : F [x] →
F (α), f(x) → f(α) is a ring homomorphism with Kerφα = 〈p(x)〉 where p(x) = irr(α, F ). So φα[F [x]] ≡
F [x]/ 〈p(x)〉, and so F (α) ≡ F [x]/ 〈p(x)〉.

Definition 73. Let E be an extension field of F . E is a simple extension if there exists α ∈ E such that
E = F (α).

Theorem 36.4. If E = F (α) is a simple extension of F with α algebraic over F and n = deg(α, F ) ≥ 1,
then every element β ∈ E can be expressed uniquely as β = b0 + b1α+ · · ·+ bn−1α

n−1 for bi ∈ F .

Proof. We know that φα[F [x]] = F (α) so every element of E is the evaluation of a polynomial in F [x], so
every element of E is the evaluation of a polynomial in F [x]. φα(c0+c1x+· · ·+cmxm) = c0+c1α+· · ·+cmαm.
Let p(x) = irr(α, F ) = xn + an−1x

n−1 + · · ·+ a0. As p(α) = 0, we get
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αn = −an−1αn−1 − an−2αn−2 − · · · − a0 (36.1)

so all powers αk can be written as a linaer combination of 1, α, . . . , αn−1. So ∃b0, . . . , bn−1 such that
β = b0 + b1α+ · · ·+ bn−1α

n−1.

Now to prove uniqueness we suppose that β =
∑n−1
i=0 biα

i =
∑n−1
i=0 b

′
iα
i. So

∑n−1
i=0 (bi − b′i)αi = 0. If bi 6= b′i

for some i, this polynomial is of degree < n and α is a zero of this polynomial. This is impossible as p(x) is
the polynomial of minimal degree such that p(α) = 0. Therefore bi = b′i and we have uniqueness.
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Remark 37.1. If F is finite and deg(α, F ) = n then 1, α, . . . , αn−1 are linearly independent. If F is finite
then E has |F |n elements, as we have |F | choices for each bi.

Example 37.2. Let F = Z2 and p(x) = x2 + x + 1 ∈ Z2[x]. This has no zeroes in Z2 so it is irreducible.
Set α = x+

〈
x2 + x+ 1

〉
; then Z2(α) = {b0 + b1α | b0, b1 ∈ Z2} = {0, α, 1, 1 + α}. So Z2(α) is a field with 4

elements.

Example 37.3. Let F = R and p(x) = x2 + 1. p(x) is irreducible over R. Then α = x + 〈p(x)〉; R(α) =
{b0 + b1α | b0, b1 ∈ R}. ϕ : R(α)→ C, b0 + b1α→ b0 + b1i is a field isomorphism.

Example 37.4. Let F = Z3 and p(x) = x3 − x + 2 ∈ Z3[x]. p(x) iteratively has no zero in Z3 and is
irreducible. Now let α = x+ 〈p(x)〉 such that α3−α+ 2 = 0; then Z3(α) = {b0 + b1α+ b2α

2 | b0, b1, b2 ∈ Z3}
is a field extension with 33 = 27 elements.

Now let’s do math 110 in a few minutes.

Definition 74. A vector space V over a field F is an abelian group for addition together with scalar multi-
plication F × V → V such that ∀a, b ∈ F,∀u, v ∈ F ,

1. a(bu) = (ab)u

2. (a+ b) · u = au+ bu

3. a(u+ v) = au+ av

4. 1 · u = u

Some facts about vector spaces:

1. α1, . . . , αn ∈ V span V if every element v ∈ V is a linear combination v =
∑
i aiαi with ai ∈ F . {αi}

is a generating set.

2. V is finite dimensional if there exists a finite generating set

3. α1, . . . , αn ∈ V are linearly independent if
∑
i aiαi = 0 implies all αi = 0.

4. α1, . . . , αn is a basis if they span V and are linearly independent.

5. In a finite-dimensional vector space, every basis has the same number of elements, called the dimension
of V .

Back to field extensions: let α be algebraic over F and deg(α, F ) = n. Then

F (α) = {b0 + b1α+ · · ·+ bn−1α
n−1 | a0, . . . , an ∈ F} (37.1)

1, α, . . . , αn−1 are linearly independent.
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Theorem 37.5. Let E ≥ F be an extension field and let α ∈ E be algebraic over F , with deg(α, F ) = n.
Then F (α) is a vector space of dimension n over F with basis {1, α, . . . , αn−1}. Moreover, every element
β ∈ F (α) is algebraic over F with deg(β, F ) ≤ n.

Proof. As deg(α, F ) = n we know that 1, α, . . . , αn−1 are linearly independent. So β ∈ F (α) can be written
as a linear combination of 1, α, . . . , αn−1. So 1, α, . . . , αn−1 span F (α), i.e. they are a basis for F (α). So F (α)
is a vector space of dimension n. Therefore if β ∈ F (α), then 1, β, β2, . . . , βn cannot be linearly independent.
So ∃c0, . . . , cn ∈ F such that c0 + c1β + · · ·+ cnβ

n = 0. Hence deg(β, F ) ≤ n.


