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Lecture 1: Logistics and Motivation 4

Math 185: Complex Analysis Spring 2021

Lecture 1: Logistics and Motivation
Lecturer: Di Fang 19 January Aditya Sengupta

Note: LATEX format adapted from template for lecture notes from CS 267, Applications of Parallel Comput-
ing, UC Berkeley EECS department.

Why take complex analysis? Because you need it to get a math degree. That’s boring.

Let’s try again: why is complex analysis useful?

1. It makes things complete: C is algebraically complete and R isn’t.

2. Even if you’re fine only dealing with real numbers, complex analysis can still help you! Suppose you’re
integrating

∫∞
−∞

dx
1+x2 . This is a real integral, and we know its antiderivative is arctanx. However, if

you change it to
∫∞
−∞

dx
1+x4 , we don’t know the antiderivative and the old method breaks down. We

can further ruin our lives by changing the integrand to x2

1+x4 . There’s no closed-form antiderivative for
these. Complex analysis lets us do these integrals easily!

3. You might think “okay, but why are we just studying better integration techniques? I can do that
numerically”. In fact, there are other applications: machine learning/AI and quantum computing
depend heavily on complex analysis. Machine learning has often been helped by Fourier analysis,
which is based on complex analysis; quantum mechanics works entirely in the complex world.

4. It’s unique and beautiful by itself!

This semester, we’re going to relearn calculus (as we’ve done a few times already): functions, limits, continuity
(chapters 1-2), derivatives (chapter 3), integrals (chapter 4), and series (chapter 5). However, we’ll also cover
residues (chapter 6-7), which are unique to complex analysis.

Consider two cases: a function f : R → R (over real numbers), and a function f : C → C (over complex
numbers).

True-false questions:

• If f is differentiable everywhere, f is infinitely differentiable everywhere. False: f(x) = x|x| at x = 0
(and in fact it’s possible to make a function that is differentiable everywhere but second-differentiable
nowhere.) But True for complex numbers.

• If f is smooth (infinitely differentiable) everywhere, then its Taylor series is equal to itself. False:

consider f(x) =

{
e−1/x2

x 6= 0

0 x = 0
. f is infinitely differentiable at x = 0 (the derivative is 0), and so the

Taylor series at x = 0 is just the constant function 0. But True for complex numbers.

• If f is differentiable everywhere and bounded, then f must be a constant. False: this is bullshit (direct
quote from Di) due to cosx, sinx, but it’s True for complex numbers (Liouville’s theorem).

We’ll start math by reviewing complex numbers. My fridge is getting delivered so this bit might be sparse,
but we know what complex numbers are. C is isomorphic to R2 under the isomorphism (x, y) ↔ x+ iy. If
z = x+ iy, we’ll denote Re z = x and Im z = y.



For the sake of rigor, we’ll review some basic properties and definitions:

1. For z1, z2 ∈ C, z1 = z2 ⇐⇒ Re z1 = Re z2 and Im z1 = Im z2.

2. Summation works like you would expect: z1 + z2 = (x1 + x2) + i(y1 + y2).

3. The product: z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1).

We continue (over me dealing with the fridge) to show C is a field.
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Lecture 2: Complex Numbers, Definitions 6

Math 185: Complex Analysis Spring 2021

Lecture 2: Complex Numbers, Definitions
Lecturer: Di Fang 21 January Aditya Sengupta

2.1 Complex number properties

Remark 2.1. Many formulas and results on the reals still hold true on the complex numbers. For example,
0 is still the additive identity and 1 is still the multiplicative identity. However, this does not always hold:
we need to check everything. For example, there is no natural comparison operator on C.

Example 2.1. [An incorrect comparison on C] Suppose we said x1 + iy1 < x2 + iy2 if x1 < x2 or
(x1 = x2 and y1 < y2). But this does not have the property that z1 > 0, z2 > 0 =⇒
z1z2 > 0. For example, i > 0 but i · i = −1 < 0.

�

Never compare two complex numbers.

Definition 2.1. The modulus or magnitude of a complex number z = x + iy is |z| =
√
x2 + y2 =√

(Re z)2 + (Im z)2.

Properties are below.

1. Re z ≤ |Re z| ≤ |z| and Im z ≤ | Im z| ≤ |z|, just geometrically. Note that while z1 < z2 is meaningless,
we can say |z1| < |z2|.

2. The distance between two complex numbers is |z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2.

3. A circle in complex space is the set of z such that for some constant zo ∈ C, R ∈ R, |z − zo| = R.

4. (Triangle Inequality) |z1 + z2| ≤ |z1|+ |z2|. Further, ||z1| − |z2|| ≤ |z1 + z2| This is easily proven:

Proof. |z1| = |(z1 + z2)− z2| ≤ |z1 + z2|+ |z2|, which implies |z1| − |z2| ≤ |z1 + z2|.

2.2 The complex conjugate

Definition 2.2. Let z = x+ iy ∈ C, the complex conjugate of z is z̄ = x− iy.
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Properties The properties are below

1. ¯̄z = z

2. |z̄| = |z|

3. z = z̄ ⇐⇒ z ∈ R

4. ¯z1 ± z2 = z̄1 ± z̄2

5. ¯z1z2 = z̄1z̄2

6. Re z = 1
2 (z + z̄), Im z = 1

2i (z − z̄)

7. |z|2 = zz̄ = z̄z

8. |z1z2| = |z1||z2|. This is nontrivial to show:

Proof. |z1z2|2 = z1z2z̄1z̄2 = z1z̄1z2z̄2 = |z1|2|z2|2

Let’s try to re-prove the Triangle Inequality using property 7 above.

WTS: |z1 + z2|2 ≤ (|z1|+ |z2|)2

Proof. |z1 + z2|2 = (z1 + z2)(z̄1 + z̄2) = |z1|2 + |z2|2 + z1z̄2 + z2z̄1.

The cross terms look similar: we claim (and can easily show by property 5 and the definition of the complex
conjugate above) that they are each other’s complex conjugate. Therefore there is no imaginary part, and
we get

|z1 + z2|2 = |z1|2 + |z2|2 + 2 Re(z1z̄2). (2.1)

Further, we can say that 2 Re(z1z̄2) ≤ 2|z1z̄2|. Finally, using properties 8 and 2, we get

|z1 + z2|2 ≤ |z1|2 + |z2|2 + 2|z1||z2|, (2.2)

which is precisely the right hand side.

2.3 Exponential forms

We know that complex numbers are isomorphic to R2. We’ve been representing these vectors in R2 in
Cartesian coordinates: is there a polar representation? Yes!

We know that polar coordinates are related to Cartesian coordinates by x = r cos θ, y = r sin θ, and so we
get z = r(cos θ + i sin θ) = reiθ by Euler’s formula. This is the exponential form of complex numbers.

Remark 2.2. For z = 0, θ is undefined.

Remark 2.3. We call θ the argument of z. θ is not unique, as cos and sin are periodic functions: for any
valid θ we could shift it by 2πn for any n ∈ Z and still have a valid θ. We denote by arg z the set of all
arguments. Further, we denote by Argz the principal argument, i.e. the unique argument lying in (−π, π].
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Example 2.2. Arg 1 = 0,Arg(−1) = π,Arg i = π
2 ,Arg(−i) = −π2

�

Properties

1. eiθ1eiθ2 = ei(θ1+θ2). This is nontrivial: remember we need to prove everything again for C!

Proof.

eiθ1eiθ2 = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2) (2.3)

= (cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2) (2.4)

= cos(θ1 + θ2) + i sin(θ1 + θ2) (2.5)

= ei(θ1+θ2) (2.6)

2. z1z2 = r1r2e
i(θ1+θ2)

3. z1
z2

= r1
r2
ei(θ1−θ2)

4. 1
z = 1

r e
−iθ

5. arg(z1z2) = arg z1 + arg z2, arg z1
z2

= arg z1 − arg z2. Note that this does not hold if we consider Arg

instead of arg. For example, if z1 = −1, z2 = i, then Arg z1 = π
2 ,Arg z2 = π,Arg(z1z2) = −π2 6=

3π
2 .

2.4 de Moivre’s formula

Lemma 2.4 (de Moivre’s formula).

(cos θ + i sin θ)n = cosnθ + i sinnθ, n ∈ Z (2.7)

Proof.

(cos θ + i sin θ)n = (eiθ)n = einθ = cosnθ + i sinnθ. (2.8)

Example 2.3. With n = 2, we get the double-angle formulas,

(cos θ + i sin θ) = (cos2 θ − sin2 θ) + i(2 sin θ cos θ) = cos(2θ) + i sin(2θ) (2.9)

�
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2.5 Roots of complex numbers

Suppose zn = 1. Which z satisfy this? Consider zk = ei
2kπ
n where k = 0, 1, . . . , n− 1. By raising to the nth

power, we get ei(2kπ) = ei·0 = 1. Therefore we were able to find n roots of 1 (in the complex sense).

Define ωn = z1 = ei
2π
n . We see that zk = ωkn, and therefore wn generates all the n roots: they are

1, ωn, ω
2
n, . . . , ω

n−1
n . ωn is in some sense the most fundamental root.

The modulus of all of these roots is 1. We could place all of them on the unit circle.

Another way to solve the earlier equation is to factorize:

zn − 1 = 0 (2.10)

(z − 1)(zn−1 + zn−2 + · · ·+ z2 + z + 1) = 0 (2.11)

That is, for any root that is not 1, we must have that zn−1 + zn−2 + · · ·+ z2 + z + 1 = 0. In particular, if
we choose z = ωn, we get

1 + ωn + ω2
n + · · ·+ ωn−1

n = 0. (2.12)

That is, the sum of all the roots of 1 is 0. We can see this geometrically too: if we vector-add all the points
on the unit circle, they’ll all cancel out.

What about zn = zo for any arbitrary (nonzero) complex number?

Let zo = roe
iθo . This implies z = r

1/n
o ei(θ+(2kπ))/n for k ∈ Z. Splitting the exponential term, we get

z = r1/n
o eiθ/ne2kπ/n (2.13)

We already know how to deal with the last term, as we just found the roots of 1. The remaining two terms

are just constants: they are referred to as the principal root (r
1/n
o ) and the principal argument (eiθo/n)

respectively.

Example 2.4. We can find 11/3: the three roots are 1, ei2π/3, ei4π/3.
�

Example 2.5. Consider (−16)1/4



−16 = 16eiπ (2.14)

(−16)1/4 = (16)1/4eiπ/4ei2πk/n, k = 0, 1, 2, 3. (2.15)

For concreteness, plug in for k: we get
√

2(1+ i),
√

2(−1+ i),
√

2(−1− i),
√

2(1− i).
�
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Math 185: Complex Analysis Spring 2021

Lecture 3: “Topology dictionary”, functions and mappings
Lecturer: Di Fang 26 January Aditya Sengupta

Warm-up question: if z1 = z2 where z1 = r1e
iθ1 , z2 = r2e

iθ2 is it necessarily the case that r1 = r2 and
θ1 = θ2? Not necessarily: θs are only unique up to 2π rotations.

Today we’ll start describing the geometric structure of C using theory from topology. If we have a number
line over the reals, intervals and comparisons are a useful tool for making some sense of it: this is bigger
than that, or this number and that one define an interval and you can reason about everything in between
them. But in complex numbers, we don’t have these tools. How do we build them?

3.1 Neighborhoods, interiors, exteriors, boundaries

Our first basic tool will be an ε−neighborhood (nbhd).

Definition 3.1. For some point zo, an ε−nbhd of zo is the set of all z ∈ C such that |z − zo| < ε; the set of
all points within a circle of radius ε centered at zo.

We denote this by Bε(zo) (the B is for ball, to allow for higher dimensions.)

Definition 3.2. A deleted or punctured neighborhood is a neighborhood with the center removed.

B′ε(zo) = {z ∈ C | 0 < |z − zo| < ε} (3.1)

Now we define the interior and exterior of a set. It’s tempting to let this just be z ∈ S, z 6∈ S, but this
doesn’t consider points on the boundary: do you put them in S or not? What does it mean to be on the
boundary anyway? The following definitions will leverage ε-neighborhoods to explain this.

Definition 3.3. z is an interior point of a set S if there exists some ε such that Bε(z) ⊂ S.

Definition 3.4. z is an exterior point of a set S if there exists some ε such that Bε(z) ∩ S = ∅.

Definition 3.5. z is a boundary point of a set S if it is neither an interior nor an exterior point. More
rigorously, for any ε > 0, the neighborhood Bε(z)∩S 6= ∅ (there is some point in S) and also Bε(z)∩Sc 6= ∅
(there is some point not in S).

We denote these by intS, extS, ∂S. The interior of S is also denoted So.

Example 3.1. Let S be the unit circle: S = B1(0) = {z ∈ C | |z| < 1}.

The interior, exterior, and boundary can be defined based on this:

intS = {z | |z| < 1} extS = {z | |z| > 1}∂S = {z | |z| = 1}. (3.2)
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�

We can use this as a starting example to examine the properties of interior/exterior/boundaries. To start
with, notice that in this case ∂S 6⊂ S. Is the boundary always outside of S, i.e. is ∂S ∩ S = ∅? The answer
is no. Consider the following example:

Example 3.2. From the unit circle, include only the top half of the boundary, i.e. S = B1(0)∪{z |
r = 1, 0 < θ < π}.

�

This does not satisfy ∂S ∩ S = ∅. There is no general rule as to whether the boundary is inside or outside
S.

It may seem like the formalism is useless and we can just eyeball the interior/exterior/boundary of any set.
To challenge this, consider the following.

Example 3.3. Let S = {x+ iy | x, y ∈ Q}. You can’t sketch this and eyeball it, but the formalism
is useful!

For any point in S, a neighborhood of that point will always contain an irrational
number (density of the irrationals in the reals.) Thus intS = ∅. But similarly,
for any point not in S, a neighborhood of that point will always contain a rational
number (density of the rationals in the reals), so extS = ∅ too! In fact, every
point in C satisfies the constraint for the boundary: every possible neighborhood
has some points in S and some not in S. Therefore ∂S = C.

�

3.2 Open and closed sets

Definition 3.6. A set S is open if it contains no boundary points (So = S), and is closed if it contains all
its boundary points.

Definition 3.7. The closure of a set S is defined as S̄ = S ∪ ∂S.

Clearly So ⊆︸︷︷︸
if equal, open

S ⊆︸︷︷︸
if equal, closed

S̄.

Not all sets are closed or open. Example2 is neither.

Remark 3.1. 1. Some sets can be neither closed nor open.

2. Some sets are both closed and open: these are ∅ and C.

Definition 3.8. An open set S ⊆ C is called connected if for all z1, z2 ∈ S, they can be joined by a polygonal
line (a line consisting of a finite number of line segments.)

Now, let’s start thinking about functions.



Lecture 3: “Topology dictionary”, functions and mappings 13

Definition 3.9. A set S ⊆ C is a domain if S is open and connected.

Remark 3.2. This doesn’t necessarily mean it’s the domain of a particular function yet.

Definition 3.10. S is a region if S \ ∂S is a domain. (check this)

Definition 3.11. S is bounded if ∃R > 0 such that S ⊂ BR(0).

Example 3.4. Consider the set {z | Im(1/z) > 1}. Using the Cartesian form, we see that

1

x+ iy
=

x− iy
x2 + y2

, (3.3)

so

Im
1

z
> 1 ⇐⇒ − y

x2 + y2
> 1. (3.4)

Completing the square shows us that this is equivalent to

x2 +

(
y +

1

2

)2

<
1

4
(3.5)

This defines a circle. This set is a domain and a neighborhood of the point − 1
2 i.
�

Definition 3.12. zo is called an accumulation point or a limit point of a set S ⊆ C if all B′(zo) (all
punctured neighborhoods of zo) satisfy B′(zo) ∩ S 6= ∅.

Less formally, there is always an element of the set arbitrarily close to an accumulation point. The set of
accumulation points is often denoted S′.

Example 3.5. Let S = { 1−i
n | n = 1, 2, . . . }. The accumulation point of S is 0: however close you

get to the origin, any neighborhood around the origin will have a point in the set
(this follows almost exactly from the limit definition of convergence of 1/n→ 0.)

�

Example 3.6. S = {(−1)n | n = 1, 2, . . . } has no accumulation points as it only consists of −1, 1.
�

Remark 3.3. S̄ = S ∪ ∂S = S ∪ S′, but ∂S 6= S′ in general. This is proved, e.g. in Rudin, but we’ll just
take it as a fact.
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3.3 Functions

Consider S ⊆ C and a function f : S → C. We can describe this as a rule z → f(z) or x+ iy → u+ iv.

Example 3.7.

f(z) = z2 (3.6)

f(x, y) = (x2 − y2) + 2ixy (3.7)

u = x2 − y2, v = 2xy (3.8)

�

Example 3.8.

f(z) = |z|2 (3.9)

f(x, y) = x2 + y2 (3.10)

u = x2 + y2, v = 0. (3.11)

This is a “real-valued” function because v is identically zero.
�

Example 3.9. We still have polynomials, i.e. functions of the form p(z) =
∑n
k=0 akz

k, and we can
still take ratios of polynomials to get rational functions.

�

Remark 3.4. An interesting type of function is the linear fractional transformation, of the form az+b
cz+d .

We consider a generalization of functions that may not just return a single number: multi-valued functions.

Example 3.10. arg z is multi-valued, as it is only unique up to 2π and so we can add factors of 2kπ
to get as many values as we like for this.

�
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Figure 3.1: Mapping a complex function

Figure 3.2: Mapping the inpiuts that lead to a certain output

Example 3.11. z1/2 is multi-valued.
�

If we have the (x, y) → (u, v) relationship of a function, it’s easy to graph it. It may help to plot in polar
coordinates though. For example, f(z) = z2 takes (r, θ)→ (r2, 2θ).

Let’s also consider the reverse question of how to identify the preimage of a function. We know in the case
of f(z) = z2 that u = x2−y2, so if we see that u = c1 then we know that x2−y2 = c1 describes a hyperbola.

Which inputs correspond to which outputs, exactly? For example, which direction along the right part of
the hyperbola leads to an increase along the constant-u straight line?

From algebra, we get

x =

{√
y2 + c1 right

−
√
y2 + c1 left

(3.12)

This gives us



v =

{
2y
√
y2 + c1 right

−2y
√
y2 + c1 left

(3.13)

On the right, y ↑ =⇒ v ↑ and on the left, y ↑ =⇒ v ↓.

If we had a horizontal line, we could do the same:

v = 2xy = c1 =⇒ y =
c2
2x

(3.14)

and u = x2 − c2
4x2 . Thus for x > 0, x ↑ =⇒ u ↑ and x < 0, x ↑ =⇒ u ↓.

16
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4.1 Warmup

True/False.

1. A subset of C is either open or closed. (False: C or ∅ are both, and it’s possible to be neither.)

2. Since S̄ = S ∪ ∂S = S ∪ S′, we have ∂S = S′. (False: look at {(−1)n | n ∈ Z}. There are no
accumulation points, but the boundary is the set itself.)

3. S is closed if and only if it contains all of its accumulation points. (True: if S is closed, S = S̄ = S∪S′).

4.2 Limits

Definition 4.1. lim
z→zo

= ωo if ∀ε > 0,∃δ > 0 such that 0 < |z − zo| < δ =⇒ |f(z)− ωo| < ε.

It is important that 0 < |z− zo| (why?) This statement is similar to real analysis, except instead of absolute
value of the difference, we have the modulus. This is a similar statement but should be treated as a 2D
thing. Therefore a complex limit is a significantly stronger condition than a real one.

We can equivalently say ∀ε > 0,∃δ > 0 s. t. z ∈ B′δ(zo) =⇒ f(z) ∈ Bε(ωo). This can be interpreted as
“there exists a punctured δ-ball centered at zo such that its image under f is a subset of a punctured ε-ball
centered at f(zo)”.

Theorem 4.1. If lim
z→zo

f(z) exists, it is unique.

The proof of this is exactly the same as in real analysis.

Example 4.1. Let f(z) = iz
2 in |z| < 1. We want to show that lim

z→1
f(z) = i

2 .

Proof. ∀ε > 0∃δ > 0 such that 0 < |z − 1| < δ implies

∣∣∣∣f(z)− i

2

∣∣∣∣ =
|z − 1|

2
<
δ

2
= ε, (4.1)

so we take δ = 2ε.
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�

Example 4.2. Let f(z) = z
z̄ for z 6= 0. We want to show that lim

z→0
f(z) doesn’t exist.

Proof. From the real axis, z = x and the function approaches 1 because f(z) = x
x =

1 → 1. From the imaginary axis, z = iy and the function approaches -1 because
f(z) = iy

−iy = −1→ −1. Therefore 1 6= −1 and the limit does not exist.

�

4.3 Properties of limits

1. Suppose lim
z→zo

= ωo. Then lim
z→zo

Re f(z) = Reωo and lim
z→zo

Im f(z) = Imωo. This is an if-and-only-if.

Proof. (sketch) In the forward direction,

0 < |z − zo| < δ =⇒ |Re f(z)− Reωo| = |Re(f(z)− ωo)| < |f(z)− ωo| < ε, (4.2)

and similarly for the imaginary part: basically, the magnitude of the real/imaginary part is less than
that of z so a delta that works for z will work for its constituent parts.

In the backward direction, let’s say

∀ ε
2
> 0,∃δ1 > 0 s. t. 0 < |z − zo| < δ1 =⇒ |Re f(z)− Reωo| <

ε

2
(4.3)

∀ ε
2
> 0,∃δ2 > 0 s. t. 0 < |z − zo| < δ2 =⇒ | Im f(z)− Imωo| <

ε

2
(4.4)

(4.5)

Now we want to find some δ that combines these and meets the limit statement, i.e. that |z − zo| <
δ =⇒ |f(z)− ωo| < ε.

|f(z)− ωo| = |Re f(z)− Reωo + i(Im f(z)− Imωo)| (4.6)

≤ |Ref(z)− Reωo|+ | Im f(z)− Imωo| (4.7)

≤ ε

2
+
ε

2
= ε. (4.8)

2. If lim
z→zo

f(z) = ω1, lim
z→zo

g(z) = ω2 then

(a) limits and sums commute and linear combination are valid: lim
z→zo

af(z) + bg(z) = aω1 + bω2
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(b) products work: lim
z→zo

f(z)g(z) = ω1ω2

(c) quotients work: if ω2 6= 0, then lim
z→zo

f(z)
g(z) = ω1

ω2

We can combine the first two properties to show that polynomials have well-defined limits that we can
find just by plugging in the point. lim

z→zo
P (z) = P (zo)

4.4 Limits involving infinity

In real analysis, we had ±∞: two infinities for the two directions. In our case, however, we can go in infinite
directions, so do we have infinite infinities? (something something John Green).

We’ll introduce a notion of infinity that is direction-independent. We refer to the complex plane with infinity
as the “extended complex plane”, C ∪ {∞}. Imagine this as the surface of a sphere.

Consider a sphere whose projection on the complex plane is the unit circle. For any point in the complex
plane z, consider the line between the north pole of the sphere at (0, 0, 1) and the point z = x+ iy = (x, y, 0).
This will intersect with the sphere at some point. This defines a mapping from the complex plane to the
Riemann sphere(conventionally, we also say the origin maps to the south pole). Under this mapping, we say
infinity maps to the north pole (in all directions.)

Definition 4.2. A neighborhood of ∞, BR(∞), is the set |z| > R.

This would be a circle around the North Pole on the Riemann sphere.

Definition 4.3. The three types of limits involving infinity are defined as follows:

1. lim
z→zo

f(z) =∞ if ∀R > 0,∃δ > 0 s. t. z ∈ B′δ(zo) =⇒ f(z) 3 BR(∞).

2. lim
z→∞

f(z) = ωo if ∀ε > 0,∃R > 0 s. t. z ∈ BR(∞) =⇒ f(z) ∈ Bε(ωo).

3. lim
z→∞

f(z) =∞ if ∀R > 0,∃r > 0 s. t. z ∈ Br(∞) =⇒ f(z) ∈ BR(∞).

Theorem 4.2. 1. lim
z→zo

f(z) =∞ if lim
z→zo

1
f(z) = 0.

2. lim
z→∞

f(z) = ωo if lim
z→0

f(
(

1
z

)
= ωo.

3. lim
z→∞

f(z) =∞ if lim
z→0

1

f( 1
z )

= 0.

Example 4.3. Suppose we want to show that lim
z→∞

1
z+1 = 0. It suffices to show that lim

z→0

1
1
z+1

= 0

which is equivalent to lim
z→0

z
1+z = 0.

�



4.5 Continuity

Definition 4.4. f is continuous at zo if f(zo) is defined, lim
z→zo

f(z) is defined, and lim
z→zo

f(z) = f(zo). Note

that the third condition contains the first two.

More precisely, f : S → C is continuous at zo if for all ε > 0 there exists δ > 0 such that ∀z ∈ S,
|z − zo| < δ =⇒ |f(z)− f(zo)| < ε. More compactly, f(Bδ(zo)) ⊂ Bε(f(zo)).

Definition 4.5. f is continuous in a region R if it is continuous at each point in R.

Recall that if f, g are continuous at zo, then so are f + g, fg, and f
g provided that g 6= 0. We also find that

every polynomial is continuous in the entire plane.

Theorem 4.3. Let f : A → B, g : B → C for A,B,C ∈ C. If f is continuous at zo and g i continuous at
f(zo), then g ◦ f : A→ C, z → g(f(z)) is continuous at zo.

We can prove this roughly using the definition twice. For any ε there exists some α such that continuity
holds for g, and for that α there exists some δ such that it holds for f .

Theorem 4.4. If f is continuous at zo and f(zo) 6= 0, then f 6= 0 in some neighborhood of zo.

Proof. Let ε = |f(zo)|
2 > 0, since f(zo) 6= 0. Then by continuity, ∃δ > 0 s. t. |z− zo| < δ =⇒ |f(z)− f(zo)| <

|f(zo)|
2 .

We show this by contradiction. Suppose there exists a point such that f(z) = 0. Then we would have it

cancel out, and we would have |f(zo)| < |f(zo)|
2 , a contradiction.

20
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We begin with a wrong thing. Convert the following statement to ε− δ.

lim
z→1

z2 =∞ (5.1)

This can be written as

∀R > 0∃δ > 0 s. t. 0 < |z − 1| < δ =⇒ z2 > R. (5.2)

We could also use neighborhoods:

∀R > 0∃δ > 0 s. t. z ∈ B′δ(1) =⇒ z2 ∈ BR(∞). (5.3)

Theorem 5.1. Consider a function f(z) = u(x, y) + iv(x, y). Then f is continuous at z0 = x0 + iy0 iff u, v
are continuous at (x0, y0).

Theorem 5.2. If f : R → C is continuous in R, for R compact (closed and bounded), then there exists a
real number M > 0 such that |f(z)| ≤M ∀z ∈ R, with equality for at least one z0 ∈ R.

Proof. (sketch) Since f is continuous, then
√
u2(x, y) + v2(x, y) is continuous over R because each component

is continuous over R so this combination must also be continuous. Therefore, since R is compact, f attains
a maximum value M somewhere in R.

5.1 Derivatives

Let f be a function defined on S.

Definition 5.1. The derivative of f at z0 is the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
. (5.4)

Equivalently, let ∆z = z − z0. Then

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
. (5.5)

A function is said to be differentiable at z0 if f ′(z0) exists.
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We can check limit existence either by the definition or by composition properties.

If we let ω = f(z) and analogously define ∆ω = f(z + ∆z)− f(z), then we have

dω

dz
= lim

∆z→0

∆ω

∆z
. (5.6)

Example 5.1. Let f(z) = 1
z for z 6= 0. Then

∆ω

∆z
=

1
z+∆z −

1
z

∆z
= − 1

z(z + ∆z)
(5.7)

=⇒ f ′(z) =
dω

dz
= lim

∆z→0

∆ω

∆z
= − 1

z2
(5.8)

This is the same as what we would do for real numbers, with the exception that
this is now a limit in C.

�

Example 5.2. Let f(z) = z̄ (this one is specific to complex numbers).

∆ω

∆z
=

¯z + ∆z − z̄
∆z

=
∆̄z

∆z
. (5.9)

We claim this limit does not exist. To see why, we split it up into real and imaginary
parts:

∆ω

∆z
=

∆x+ i∆y

∆x− i∆y
, (5.10)

and if we approach this along Im z = 0 we’ll get 1 but if we approach it along
Re z = 0 we’ll get -1. Therefore the limit does not exist. In other words, f(z) is not
differentiable for any z ∈ C.

�

Example 5.3. Let f(z) = |z|2 = zz̄. This is nowhere differentiable except z = 0.
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∆ω

∆z
=

(z + ∆z)( ¯z + ∆z)− zz̄
∆z

=
∆zz̄ + z∆̄z + ∆z∆̄z

∆z
(5.11)

= z̄ + z
∆̄z

∆z
+ ∆̄z. (5.12)

Due to the z̄ component, the limit does not exist unless z = 0. In the case z = 0,
this does simplify to lim

∆z→0
(z̄ + ∆̄z)

∣∣
z=0

= 0, so f(0) = 0.

�

Example 5.4. Consider the piecewise function

f(z) =

{
e−1/z2

z 6= 0

0 z = 0
. (5.13)

This is interesting because of the following property that is false in R but true in C:
if f is smooth, then its Taylor series is equal to the function itself. In R, the above
function is the counterexample, as all of its derivatives at 0 are themselves zero. In
C, this function is not smooth, and in fact is not even first-order differentiable.

First, we do this in R:

f ′(0) = lim
x→0

e−1/x2 − 0

x− 0
= lim
x→0

e−
1
x2 x. (5.14)

Let y = 1
x :

f ′(0) = lim
y→∞

y

ey2 = 0. (5.15)

Repeating this, we see that f (n)(0).

In C, however, we have

∆ω

∆z
=
e
− 1

(∆z)2

z
(5.16)

Consider this limit along ∆z = i∆y, as ∆y → 0. This goes to infinity.
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∆ω

∆z
= lim

∆y→0

e
1

(i∆y)2

i∆y
=∞ (5.17)

However, along ∆z = ∆x, this is the same as the real case, and

∆ω

∆x
= lim

∆x→0
e
− 1

(∆x)2 ∆x = 0. (5.18)

Therefore the limit does not exist.
�

Remark 5.3. Even if the real and imaginary components u, v of a function f(x, y) = u(x, y) + iv(x, y) are
individually differentiable, f itself may not be (see the example f(z) = z̄).

Remark 5.4. There exists some function that is differentiable at some z0, but not differentiable in its
neighborhood. This is satisfied by f(z) = |z|2. This shows us that differentiability is local.

5.2 Rules of Differentiation

These are basically the same as in real analysis.

d

dz
c = 0,

d

dz
z = 1 (5.19)

The derivative is linear:

d

dz
cf(z) = c

d

dz
f(z) (5.20)

d

dz
(f + g) =

d

dz
f +

d

dz
g (5.21)

And we have the power rule, the product rule, the quotient rule, and the chain rule.

However, we do have a unique property in complex differentiation, which is expressed in the Cauchy-Riemann
equations.

5.3 Cauchy-Riemann Equations

We want to find a necessary condition for the complex derivative to exist.

Suppose f(z) = u(x, y)+iv(x, y) is differentiable at z0. Then the partial derivatives of u, v exist. Additionally,
the partials satisfy certain equations (the Cauchy-Riemann equations): ux = vy, uy = −vx at (x0, y0). Also,
the derivative can be written in terms of these partials, in the form



f ′(z0) = ux + ivx = vy − iuy, (5.22)

all evaluated at (x0, y0).

Proof. Let f be differentiable at z0. Then, the following limit exists:

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
(5.23)

Since this limit exists, we get the same result if we go along ∆z = ∆x and if we go along ∆z = i∆y.

f ′(z0) = lim
∆x→0

u(x0 + ∆x, y0) + iv(x0 + ∆x, y0)− u(x0, y0)− iv(x0, y0)

∆x
(5.24)

= lim
∆x→0

u(x0 + ∆x, y0)− u(x0, y0)

∆x
+ i

v(x0 + ∆x, y0)− v(x0, y0)

∆x
(5.25)

= ux(x0, y0) + ivx(x0, y0). (5.26)

And in the y direction, we similarly get

f ′(z0) =
u(x0, y0 + ∆y) + iv(x0, y0 + ∆y)− u(x0, y0)− iv(x0, y0)

i∆y
(5.27)

= lim
∆y→0

u(x0, y0 + ∆y)− u(x0, y0)

i∆y
+
v(x0, y0 + ∆y)− v(x0, y0)

∆y
(5.28)

= −iuy(x0, y0) + vy(x0, y0). (5.29)

Matching up the real and imaginary parts, we get the desired result.

25
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6.1 A sufficient condition for differentiability

Recall that last time we looked at f(z) = |z|2, which we said is not differentiable at z 6= 0. In addition to
showing this by the definition, we can also show it does not satisfy the C-R condition. To do this, we could
show that ux 6= vy or uy 6= vx.

f(z) = |z|2 = x2 + y2 = (x2 + y2) + i(0). (6.1)

Taking derivatives, we have that ux = 2x, uy = 2y, vx = vy = 0. Therefore we see that the only way for the
required derivatives to match up is if x = y = 0. Therefore when z 6= 0, f is not differentiable.

Note that if z = 0, we don’t know that f is differentiable, just that it definitely cannot be differentiable
at z 6= 0. In other words, the C-R condition is necessary but not sufficient. Now, we’ll develop a sufficient
condition for complex differentiability.

Example 6.1. Consider the function

f(z) =

{
z̄2

z z 6= 0

0 z = 0
(6.2)

We can show that at z = 0, the C-R condition is satisfied. After lots of simplification,
we get

f(z) =
(x3 − 3xy2) + i(y3 − 3x2y)

x2 + y2
(6.3)

Therefore we get

u =

{
x3−3xy2

x2+y2 x 6= 0 or y 6= 0

0 x = y = 0
(6.4)

We can’t take a derivative of this via composition rules, so let’s use the definition.
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ux = lim
∆x→0

u(∆x, 0)− u(0, 0)

∆x
= lim

∆x→0

∆x− 0

∆x
= 1 (6.5)

vy = lim
∆y→0

v(0,∆y)− v(0, 0)

∆y
= lim

∆y→0

∆y − 0

∆y
= 1 (6.6)

(6.7)

Therefore ux = vy, and if we did the same again we could confirm that uy = −vx.
So the C-R condition is satisfied.

Despite this (from the homework) we know that this function is not differentiable
at z = 0.

�

So let’s develop a sufficient condition on top of this.

Theorem 6.1. Let a function f(z) = u(x, y) + iv(x, y) be defined throughout some ε−neighborhood of
z0 = x0 + iy0 and suppose that

1. ux, uy, vx, vy exist everywhere in the neighborhood.

2. these partials are continuous at (x0, y0) and satisfy C-R.

Then f ′(z0) exists and its value is f ′(z0) = ux(x0, y0) + ivx(x0, y0).

Proof. First, we want to show that the limit lim
∆z→0

∆ω
∆z exists.

∆ω = ∆u+ i∆v = u(x0 + ∆x, y0 + ∆y)− u(x0, y0) + i(v(x0 + ∆x, y0 + ∆y)− v(x0, y0)) (6.8)

Since the partials are continuous, we can Taylor expand.

u(x0 + ∆x, y0 + ∆y) = u(x0, y0) + ux(x0, y0)∆x+ uy(x0, y0)∆y + ε1∆x+ ε2∆y, (6.9)

where ε1 → 0 as ∆x→ 0 and ε2 → 0 as ∆y → 0. Proceed similarly for v.

Therefore

∆ω = ux(x0, y0)∆x+ uy(x0, y0)∆x+ ε1∆x+ ε2∆y + i(vx(x0, y0)∆x∆y + ε3∆x+ ε4∆y) (6.10)

This implies

∆ω

∆z
=

1

∆z
(ux(x0, y0)(∆x+ i∆y) + vx(x0, y0)(i∆x−∆y) + (ε1 + iε3)∆x+ (ε2 + iε4)∆y) (6.11)
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Under the limit ∆z = ∆x+ i∆y → 0, we get

lim
∆z→0

∆ω

∆z
= ux(x0, y0) + ivx(x0, y0) + lim

∆z→0
(ε1 + iε3)

∆x

∆z
+ (ε2 + iε4)

∆y

∆z
(6.12)

Note that
∣∣∆x

∆z

∣∣ ≤ 1 and
∣∣∣∆y∆z

∣∣∣ ≤ 1, so the εis going to zero dominates. Therefore the last terms die, and we

get

lim
∆z→0

∆ω

∆z
= ux(x0, y0) + ivx(x0, y0). (6.13)

Example 6.2. Let f(z) = ez = exeiy = ex(cos y + i sin y). The partials exist in R, they are
continuous, and they satisfy C-R:

ux = ex cos y, vx = ex sin y (6.14)

uy = −ex sin y, vy = ex cos y (6.15)

Therefore f ′(z) exists everywhere.
�

Example 6.3. Let f(z) = |z|2. Use C-R to show that f ′(0) exists.

We have u = x2 + y2, v = 0. The partials are

ux = 2x, vx = 0 (6.16)

uy = 2y, vy = 0. (6.17)

The partials exist in R and are continuous, and therefore wherever C-R is satisfied,
the derivative exists. This is true only at 0. Therefore f ′(0) exists.

�
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6.2 C-R in polar form

Let z = reiθ, x = r cos θ, y = r sin θ. We convert the partials to polar using the chain rule:

∂u

∂r
=
∂u

∂x

∂x

∂r
+
∂u

∂y

∂y

∂r
= ux cos θ + uy sin θ (6.18)

∂u

∂θ
=
∂u

∂x

∂x

∂θ
+
∂u

∂y

∂y

∂θ
= −uxr sin θ + uyr cos θ, (6.19)

and the same for vx, vy (just replace u with v throughout). If we compare ur and vθ, we note that they differ
only by an r if we know that uy = −vx and ux = vy. Similarly, uθ and vr differ only by a −r. Therefore we
have C-R in polar form:

rur = vθ (6.20)

uθ = −rvr. (6.21)

Then, let f(z) = u(r, θ) + iv(r, θ) be defined in some ε−neighborhood of a nonzero points z0 = r0e
iθ0 and

suppose that

1. ur, uθ, vr, vθ exist everywhere in the neighborhood

2. the partials are continuous at (r0, θ0) and satisfy the C-R equations (above) at (r0, θ0).

Then f ′(z0) exists and is equal to f ′(z0) = e−iθ(ur + ivr).

Proof. The proof that the derivative exists proceeds basically the same, but we want to prove that f ′(z0) is
the aforementioned value.

ur + ivr = ux cos θ + uy sin θ + i(ux sin θ − uy cos θ) (6.22)

= ux(cos θ + i sin θ) + iuy(− cos θ − i sin θ) (6.23)

= uxe
iθ + ivxe

iθ, (6.24)

and therefore f ′(z0) = ux + ivx = e−iθ(ur + ivr).

A lot of functions are easier to deal with in polar!

Example 6.4. Let f(z) = 1
z2 . This is a nightmare in Cartesian, but in polar we have f(z) =

1
r2 e
−2iθ = 1

r2 cos 2θ − i 1
r2 sin 2θ. Therefore



rur =
−2

r2
cos 2θ, uθ =

−2

r2
sin 2θ (6.25)

rvr =
2

r2
sin 2θ, vθ =

−2

r2
cos 2θ (6.26)

�
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For a warmup, let f(x+ iy) = x3 + i(1− y)3. We want to find out whether this is differentiable.

We check the C-R conditions:

ux = 3x2, uy = 0 (7.1)

vx = −3(1− y)2, vy = 0 (7.2)

For ux = vy and uy = −vx, we need x = 0 and y = 1. Further, since the partials exist and are continuous
everywhere, the function is differentiable at z = i.

At this point, the derivative is

f ′(0 + 1i) = ux(x, y) + vx(x, y) = 0. (7.3)

7.1 Analytic functions

Definition 7.1. 1. f : S → C is analytic (where S is an open set) if ∀z ∈ S, f ′(z) exists.

2. f is analytic at a point z0 if it is analytic in some neighborhood of z0.

3. f is entire if f : C→ C is analytic in C.

Analytic functions are also referred to as holomorphic. This is sort of accidental, as it wasn’t realized that
being holomorphic (as above) was equivalent to being analytic (existence of the Taylor series) until after
both properties were defined. More on that later.

Example 7.1. f(z) = 1
z is differentiable at C \ {0}, and therefore it is analytic at C \ {0}.

�

Example 7.2. f(z) = |z|2 is differentiable only at z = 0. Since this is only a single point, there’s
no neighborhood over which f is differentiable, and so f is analytic nowhere.

�
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Example 7.3. Polynomials are entire.
�

Example 7.4. Rational functions of the form f(z) = P (z)
Q(z) where P,Q are both polynomials are

differentiable as long as Q(z) 6= 0. Q(z) = 0 only at n points (where n = degQ), so
only these points need to be excluded. Therefore f is analytic at C \ {zeros of Q}.

�

7.2 Properties of analytic functions

Let f, g be analytic in S.

1. f + g, f · g, fg (if g 6= 0 in S) are analytic.

2. g ◦ f is analytic and the chain rule holds

3. f analytic in a domain D implies f is continuous in D, and the C-R equations are satisfied.

4. If f ′(z) = 0 everywhere in a domain D, then f(z) must be constant throughout D.

Proof. (of property 4): The derivative is

f ′(z) = ux + ivx = vy − iuy = 0, (7.4)

i.e. ux, uy, vx, vy must all be 0 over D.

Next, we show that u(x, y) is constant over any line segment within D. Let L be a line segment from P to

P ′, with unit vector ~v = P ′−P
|P ′−P | . Let s be the distance along the line.

du

ds
= ∇u · ~v =

[
ux
uy

]
· ~v = 0, (7.5)

so u remains constant along any line segment. Similarly, v is also constant along any line segment.

Now, for our final step, note that since D is a domain, it is connected and any two points can be connected
with a finite number of line segments. u and v remain zero along any line segment and therefore f is constant
along the whole path.

Definition 7.2. z0 is called a singular point if f is not analytic at z0, but is analytic at some point in every
neighborhood of z0.



Lecture 7: Analytic and harmonic functions 33

Example 7.5. f(z) = z2+3
(z+1)(z2+5) is analytic in C \ {−1,±i

√
5}.

�

Corollary 7.1. Suppose f = u+ iv and f = u− iv are both analytic in D. Then f(z) is constant in D.

Proof. If f and f are both analytic, then ux = vy = −vy and uy = −vx = −uy. So all the partials must be
0 and so f is constant.

Corollary 7.2. If f is analytic in D and |f(z)| is constant in D, then f(z) is constant in D.

Proof. First, let |f(z)| = c ∈ R. If c = 0 then f(z) = 0 in D and we are done. If c 6= 0,

|f(z)|2 = f(z)f(z) = c2 6= 0, (7.6)

so we can divide:

f(z) =
c2

f(z)
, (7.7)

and this is analytic in D as it is the quotient of two analytic functions. Therefore as f and f are both
analytic, f must be a constant.

Note that if we want to use any of the properties above on homework, we have to prove them.

7.3 Harmonic functions

Definition 7.3. A function H(x, y) : D ⊆ R2 → R is harmonic if H has partial derivatives up to second
order (i.e. H ∈ C2(D)) and it satisfies Hxx(x, y) +Hyy(x, y) = 0, i.e. ∆H = 0.

This is known as Laplace’s equation, from E&M etc.

Theorem 7.3. If f(x + iy) = u(x, y) + iv(x, y) is analytic in a domain D, then its components u, v are
harmonic.

We can’t prove that u, v are differentiable up to second order until we reach chapter 4, section 57, but we
can prove Laplace’s equation is satisfied.

Proof. Since f is analytic, ux = vy and uy = −vx. Taking second partials, we get

uxx = vyx = vxy (7.8)

uyy = −vxy (7.9)

and therefore uxx + uyy = 0 in D. Similarly we can show vxx + vyy = 0.

Remark 7.4. The reverse direction is not true: u, v harmonic does not imply u + iv is analytic. An easy
way to say this is to interchange them: v + iu may not be analytic, as C-R is not commutative.



7.4 Elementary functions

Exp The exponential function is defined as ez = ex+iy = ex(cos y + i sin y). ez is entire (prove this using
the C-R sufficient condition) and (ez)′ = ez, like in R. The modulus is |ez| = ex and the argument is
arg ez = y + 2nπ, n ∈ Z. In the complex plane, ez is periodic with period 2πi. Other properties hold as we
might expect: ez 6= 0∀z ∈ C, ez1ez2 = ez1+z2 , e

z1

ez2 = ez1−z2 , e0 = 1 and 1
ez = e−z.

Example 7.6. Suppose we want to find z ∈ C such that ez = 1 +
√

3i. Put this in polar form:

1 +
√

3i = 2ei
π
3 = exeiy. (7.10)

Term-matching gives us

z = ln 2 + i
(π

3
+ 2nπ

)
. (7.11)

�

What we’ve basically done is define the logarithm!

log z = ln r + i(θ + 2nπ) (7.12)

Note that it’s multivalued, so we restrict it to its principal argument.

Log The principal value of the logarithm is defined by Log(reiθ) = ln r + i arg z.
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Example 8.1. Let’s calculate the logs of −1, 1− i, i.

log−1 = i(π + 2nπ), n ∈ Z (8.1)

log(1− i) =
1

2
ln 2 + i

(
−π

4
+ 2nπ

)
, n ∈ Z (8.2)

logi = i
(π

2
+ 2nπ

)
, n ∈ Z. (8.3)

�

Do log rules still apply? Let x ∈ R and consider log zx. For z ∈ R this is equal to x log z. Is this still true?

It turns out no: consider z = i, x = 2:

log i2 = log−1 = iπ + i2nπ (8.4)

2 log i = iπ + i4nπ. (8.5)

Now let’s consider Log. Is it differentiable? No, it’s not even continuous. This is because the principal
argument wraps from −π to +π at the negative real axis.

More rigorously, consider the sequence zn = ei(−π+1/n) n→∞−−−−→ ei(−π) = −1. Apply Log to both sides of this:

Log zn = i(−π +
1

n
) (8.6)

This problem persists no matter where we make the cut for Arg.

Fix α ∈ R. Suppose we restrict θ = arg z to α < θ < α + 2π. All rays other than θ = αcan be represented
with some argument.

Suppose we restrict the logarithm to be single-valued and such that the branch is at α.

log z = ln r + iθ(r > 0, α < θ < α+ 2π) (8.7)

The logarithm is continuous on this domain. We can show it is also analytic on this domain.
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Proof. u = ln r, v = θ; take derivatives,

ur =
1

r
, vr = 0 (8.8)

uθ = 0, vθ = 1. (8.9)

The C-R condition is okay, as rur = vθ and rvr = −uθ. By existence and continuity of partials, f(z) exists.
The derivative is therefore

f(z) = e−iθ(ur + ivr) =
1

reiθ
=

1

z
. (8.10)

Definition 8.1. A branch of a multi-valued function f is any single-valued function F that is analytic in
some domain D, and such that F (z) has one of the values of f(z).

Remark 8.1. Log z is called the principal branch of log z.

Definition 8.2. A branch cut is a line or curve that is introduced to define a branch.

Definition 8.3. Points on the branch cut are singular points, and any point that is shared by all branch
cuts is called a branch point.

8.1 Log properties

1. log(z1z2) = log z1 + log z2, because arguments add

2. log
(
z1
z2

)
= log z1 − log z2.

How come you can’t just apply the first property to z1 = z2 = z and get log z2 = 2 log z, which we
showed was wrong? The answer is that we don’t know the two logs have the same n for the choice of
argument.

log z2 = log(z · z) = log z︸︷︷︸
ln r+i(θ+2kπ)

+ log z︸︷︷︸
ln r+i(θ+2nπ)

, (8.11)

and in general k 6= n.

3. The two properties above do not hold for Log; for example, let z1 = z2 = −1, then log 1 = 2nπi and
log(−1) = iπ+i2nπ. Therefore Log 1 = 0 and Log−1 = iπ, and we do not get Log(−1·−1) = 2 Log−1.

4. zn = en log z; this is because the degeneracy in log goes away when you exponentiate it.

5. z1/n = e1/n log z because of what we found when we were finding the nth roots of complex numbers.



8.2 Power functions

If we have zc for some c ∈ C, where z 6= 0, we can say zc = ec log z. This is multivalued, so we need to take a
branch cut: D = {r > 0, α < θ < α + 2π}. This defines a branch of log z and therefore also a branch of zc.
On D, zc is single-valued and analytic.

What’s the derivative of a power function?

d

dz
zc =

d

dz
= ec log z = ec log z c

z
, (8.12)

where we can use the chain rule because the exponential function and log (over the branch cut) are entire.

d

dz
zc =

c

elog z
ec log z = ce(c−1) log z = czc−1. (8.13)

Example 8.2. Consider ii: log i = i
(
π
2 + 2nπ

)
, so

ii = e−(π2 +2nπ), (8.14)

and the principal value is e−
π
2 .

�
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Definition 9.1. cz = ez log c. Once we specify a value of log c, this is single-valued and entire, with d
dz c

z =
cz log c.

9.1 Trigonometric functions

Let |z| = 1. We know that z = eiθ = cos θ + i sin θ. From this, we know that we can express sine/cosine in
terms of exponentials:

cos θ = Re z =
z + z̄

2
=
eiθ + e−iθ

2
(9.1)

sin θ = Im z =
z − z̄

2i
=
eiθ − e−iθ

2i
(9.2)

Based on this, we define the complex sine and cosine:

Definition 9.2. sin z = eiz−e−iz
2i and cos z = eiz+e−iz

2 .

This has the following properties:

1. sin z and cos z are entire, with (sin z)′ = cos z and (cos z)′ = − sin z.

2. sin(−z) = − sin z (odd) and cos(−z) = cos z (even).

3. The double-angle and angle sum formulas still hold.

4. sin2 z + cos2 z = 1 (from HW 5).

5. They split up into real and imaginary parts as follows:

sin(x+ iy) = sinx cos(iy) + cosx sin(iy), (9.3)

and cos(iy) = ey+e−y
2 = cosh y, and similarly sin(iy) = i sinh y. Therefore we get

sin z = sinx cosh y + i cosx sinh y (9.4)

and in the same way

cos z = cosx cosh y − i sinx sinh y (9.5)

6. | sin z|2 = sin2 x+ sinh2 y and | cos z|2 = cos2 x+ sinh2 y

Note that sinh y blows up as y →∞, and so sin z, cos z are not bounded in C.
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9.2 Zeros and singularities of trig functions

Zeros of a function f(z) are values z0 ∈ C such that f(z0) = 0.

Theorem 9.1. The zeros of sin z and cos z in C are the same as sinx and cosx in R.

We could also state this as: z0 = x0 + iy0 ∈ C is a zero of sin z (resp. cos) iff x0 ∈ R is a zero of sinx (resp.
cos). The backward direction is trivial, but for the forward direction we need to show there are no other
zeros. This is easily done by taking sin z = 0 =⇒ | sin z|2 = sin2 x + sinh2 y = 0. Therefore sinx = 0 and

sinh y = 0, i.e. ey−e−y
2 = 0 and so y = 0.

Definition 9.3. tan, sec, cot, csc are defined as ratios of sin, cos, 1 as in the reals. tan, sec are not defined at
z = π

2 + nπ and cot, csc are not defined at z = nπ for n ∈ Z.

9.3 Hyperbolic functions

We can extend these to the complex plane too!

Definition 9.4. sinh z = ez−e−z
2 , cosh z = ez+e−z

2

Properties:

1. (sinh z)′ = cosh z, (cosh z)′ = sinh z

2. cosh2 z = 1 + sinh2 z

3. sinh(iz) = i sin z, cosh(iz) = cos z.

4. By property 3, the zeros of sinh z in C are z = nπi, n ∈ Z and the zeros of cosh z in C are z =(
π
2 + nπ

)
, n ∈ Z.

9.4 Conformal mappings

Definition 9.5. A function or mapping is conformal if it preserves angles locally.

More precisely,

Definition 9.6. An analytic complex-valued function is conformal if whenever r1, r2 are two smooth curves
passing through z0 by nonzero tangents, then the curves f ◦ r1 and f ◦ r2 have nonzero tangents at f(z0) and
the angle from r′1(0) to r′2(0) is the same as the angle from (f ◦ r1)′(0) to (f ◦ r2)′(0).

Definition 9.7. A conformal mapping f : D → V is a bijective analytic function that is conformal at each
point of D.

Remark 9.2. We say D and V are conformally equivalent.

Checking the derivative sounds like a lot, so let’s come up with an algebraic criterion for checking whether
a function is conformal.

Theorem 9.3. f is conformal in D if f is analytic in D and f ′ 6= 0 in D.



Example 9.1. f(z) = ez implies f ′(z) = ez 6= 0 for all z ∈ C
�

Example 9.2. If we have f(z) = az+b
cz+d for z 6= −dc , we can take a derivative:

f ′(z) =
a(cz + d)− c(az + b)

(cz + d)2
=

ad− bc
(cz + d)2

6= 0. (9.6)

Therefore f is conformal in C \ {−d/c} if ad− bc 6= 0.
�

Example 9.3. f(z) = z̄ is not conformal, as only the magnitude of the angle is preserved, not
necessarily the sense. This is an example of an isogonal mapping : the angle is
preserved, but the orientation isn’t always preserved.

�

If we have f(z) conformal, then f(z̄) is an isogonal mapping.

Example 9.4. f(z) = 1 + z2 =⇒ f ′(z) = 2z 6= 0, so this is conformal on C \ {0}.
�

If we look at this mapping at 0, we find that the angle doubles. In general, if z0 is a critical point of w = f(z)
there is an integer m ≥ 2 such that the angle between two smooth curves passing through z0 is multiplied
by m by going through f . This integer m will be the smallest integer such that f (m)(z0) 6= 0.

If f(z) is conformal at z0, there exists a local inverse there. That is, w0 = f(z0) and f conformal at z0

implies there exists a unique transform z = g(w) defined and analytic in a neighborhood, denoted as N ,
such that g(w0) = z0 and f [g(w)] = w for all w ∈ N . Further, g′(w) = 1

f ′(z) .

We can show all this through the multivalued implicit function theorem: if f = u + iv then f ′ = ux + ivx

and the Jacobian is

∣∣∣∣ux uy
vx vy

∣∣∣∣. The Jacobian is nonzero, and so(?) by the IFT there is a continuous and

differentiable inverse.

The derivatives of the local inverse are

xu =
1

J
vy, yu = − 1

J
vx (9.7)

xv = − 1

J
uy, yv =

1

J
ux. (9.8)
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A brand new journey! Today, we’ll discuss definite integrals and contours; in the near future, we’ll start
talking about contour integrals.

10.1 Setup for integration

Consider a parameterized curve ω(t) : [a, b]→ C where ω(t) = u(t) + iv(t).

Definition 10.1.

ω′(t) = u′(t) + iv′(t) (10.1)

This is a derivative in the real sense, not the complex sense.

Many, but not all, rules carry over from R. For example, the chain rule.

Theorem 10.1. Let f : C→ C be analytic and let u, v be differentiable at a point t ∈ R. Then

d

dt
f(ω(t)) = f ′(ω(t))ω′(t) (10.2)

Proof. Let f(x+ iy) , g(x, y) + ih(x, y) where g, h : R2 → R. Then by C-R, g and f are differentiable.

d

dt
f(ω(t)) = g′(u(t), v(t)) + ih′(u(t), v(t)) (10.3)

=︸︷︷︸
multivariate chain rule

gx(u, v)v′ + gy(u, v)v′ + ihx(u, v)u′ + ihy(u, v)v′ (10.4)

=︸︷︷︸
CR

gxv
′ − hxv′ + ihxu

′ + igxv
′ (10.5)

= (u′ + iv′)(gx + ihx) (10.6)

= ω′(t) · f ′(ω(t)). (10.7)

However, the mean value theorem no longer holds. For example, let ω(t) = eit. ω(0) = ω(2π) = 1 so the

MVT should say there exists some t ∈ [0, 2π] such that the slope of the tangent line is ω(2π)−ω(0)
2π−0 = 1, but

in fact ω′(t) = ieit 6= 0 ∀t ∈ R.
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10.2 Definite Integrals

We integrate (in the R-to-C sense) just by integrating components.

Definition 10.2. ∫ b

a

ω(t)dt ,=

∫ b

a

u(t)dt+ i

∫ b

a

v(t)dt (10.8)

Key properties:

1. Real and imaginary parts carry through integrals:

Re

∫ b

a

ω(t)dt =

∫ b

a

Reω(t)dt (10.9)

Im

∫ b

a

ω(t)dt =

∫ b

a

Imω(t)dt (10.10)

2. FTC still holds: let the integral of ω(t) = u(t) + iv(t) be W (t) = U(t) + iV (t). Then∫ b

a

ω(t)dt = U(t)|ba + iV (t)|ba = W (t)|ba . (10.11)

3.
∣∣∣∫ ba ω(t)dt

∣∣∣ ≤ ∫ ba |ω(t)|dt. The proof isn’t hard but has an interesting idea.

Proof. If
∫ b
a
ω(t)dt = 0 this is trivially true because the integral of the modulus must be at least 0.

Otherwise, let
∫ b
a
ω(t)dt = reiθ for r, θ constant. Then

∣∣∣∣∣
∫ b

a

ω(t)dt

∣∣∣∣∣ = r =

∫ b

a

e−iθω(t)dt = Re

∫ b

a

e−iθω(t)dt (10.12)

=

∫ b

a

Re(e−iθω(t))dt (10.13)

≤
∫ b

a

∣∣e−iθω(t)
∣∣dt (10.14)

=

∫ b

a

|ω(t)|dt. (10.15)

Example 10.1. Consider
∫ π/4

0
eitdt. We can compute this either from the definition,

∫ π/4

0

cos t+ i sin tdt = sin t|π/40 − i cos t|π/40 =

√
2

2
− i

(√
2

2
− 1

)
, (10.16)

or from FTC,
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d− ieit

dt
= eit =⇒

∫ π/4

0

eitdt = −ieit
∣∣π/4
0

=

√
2

2
− i

(√
2

2
− 1

)
. (10.17)

�

Example 10.2. The MVT for integrals (
∫ b
a
ω(t)dt = ω(c)(b − a) for some c ∈ [a, b]) fails, as∫ 2π

0
eitdt = 0 but eit(2π − 0) 6= 0 ∀t.

�

10.3 Contour integrals

Contours let us define a C-to-C sense integral; in C, we want to compute integrals along certain curves.

Let x(t) and y(t) be the real and imaginary curve components, i.e. functions [a, b] ⊆ R → R such that the
curve can be defined as

C : z(t) = x(t) + iy(t), t ∈ [a, b]. (10.18)

Definition 10.3. C is an arc if x, y are continuous.

Definition 10.4. An arc C is a simple arc if it does not cross itself.

Definition 10.5. An arc C is a simple closed arc if it is simple except at the endpoints, i.e. z(a) = z(b).

Definition 10.6. Closed curves that are counterclockwise (have the enclosed region to their left) are called
positively oriented, and those that are clockwise are called negatively oriented.

Definition 10.7. If x, y are differentiable on [a, b] and x′, y′ are continuous on [a, b], we call C a differentiable
arc.

Definition 10.8. We call C a smooth arc if it is a differentiable arc and z′(t) 6= 0 on (a, b).

Useful math objects are the unit tangent vector, T = z′(t)
|z′(t)| , and the arclength, L =

∫ b
a
|z′(t)|dt.

Definition 10.9. A contour is a piecewise smooth arc, consisting of a finite number of smooth arcs joined
end to end.

Definition 10.10. A simple closed contour is a contour made of simple closed arcs.

The Jordan curve theorem says something completely obvious, the proof of which is a bit out of our scope:

Theorem 10.2. The points on any Jordan curve (simple closed curve in the plane) C are the boundary
points of two distinct domains. One of these is the interior of C and is bounded, and the other is the exterior
of C and unbounded.



Example 10.3. Let z(t) =

{
t+ it t ∈ [0, 1]

t+ i t ∈ [1, 2]
. This is an arc, but it is not differentiable.

�

Example 10.4. z = eiθ, θ ∈ [0, 2π], z = e−iθ, θ ∈ [0, 2π] and z = ei2θ, θ ∈ [0, π] are all different
parameterizations of the same curve. The second one is negatively oriented, and
the first and third are positively oriented. This shows the parameterization of a
curve is not unique.

�

Example 10.5. Consider the curve z(t) = t3 + i, t ∈ [−1, 1]. This is a differentiable arc, but for
smoothness we require that the derivative is nowhere zero; here, z′(t) = 3t2 and
therefore z′(0) = 0. This is a contour.

�
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This is an exciting new thing that’s specific to complex analysis.

Consider f : C → C, let C be a contour parameterized by z(t) = x(t) + iy(t), t ∈ [a, b]. Let f be piecewise
continuous along C.

Definition 11.1. The contour integral of f along C is

∫
C

f(z)dz ,
∫ b

a

f(z(t))z′(t)dt. (11.1)

Splitting this up into components, we get

∫
C

f(z)dz =

∫ b

a

(u+ iv)(x′ + iy′)dt (11.2)

=

∫
C

(udx− vdy) + i

∫
C

(vdx+ udy) (11.3)

=

∫
C

(u+ iv)(dx+ idy). (11.4)

Note that since C is a contour and z′ is piecewise continuous, the integrand f(z(t))z′(t) is piecewise continuous
on [a, b].

We can define a sort of algebra of contours:

1. if C : z(t), t ∈ [a, b] is a contour, −C : z(−t), t ∈ [−b,−a] is its negative, and
∫
−C f(z)dz = −

∫
C
f(z)dz

2. We can add contours: if C1, C2 are contours, then C1 +C2 is the combined path traced out by both of
them.

∫
C1+C2

f(z)dz = intC1f(z)dz + intC2f(z)dz

3. A contour integral over C is independent of the parameterization of C.

We can make this last property more precise.

Theorem 11.1. Let C be a contour of finite length L. Then for all M ≥ 0 such that |f(z)dz| ≤M ∀z ∈ C,
we can say that

∣∣∫
C
f(z)dz

∣∣ ≤ML.

Example 11.1. Let C be the upper semicircle |z| = 2, 0 ≤ θ < π, and let f(z) = z−2
z4+1 . This is a

complicated integral, but we can upper-bound it:
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∣∣∣∣∫
C

z − 2

z4 + 1
dz

∥∥∥∥ ≤ 2πM (11.5)

where we can find an M that works using the triangle inequality:

∣∣∣∣ z − 2

z4 + 1

∣∣∣∣ ≤ |z|+ 2

||z4| − 1|
=

4

15
, (11.6)

i.e. the integral is upper-bounded by 8π
15 .

�

Proof. Start with the absolute value of the integral,

∣∣∣∣∫
C

f(z)dz

∣∣∣∣ =︸︷︷︸
def

∣∣∣∣∣
∫ b

a

f(z(t))z′(t)dt

∣∣∣∣∣ ≤
∫ b

a

|f(z(t))| |z′(t)|dt (11.7)

≤M
∫ b

a

|z′(t)|dt = M · L. (11.8)

Example 11.2. Consider
∫
C

dz
z over z = eiθ, θ ∈ [0, π]. The definition gives us

∫
C

dz

z
=

∫ π

0

e−iθieiθdθ = iπ. (11.9)

Note that if we go over the [π, 2π] range, we get another iπ making a total of 2iπ.
This is despite these two together forming a closed curve.

�

Remark 11.2. The contour integral depends on the contour, not just the end points.

Example 11.3. Consider the integral

∫
C

z̄dz = −
∫
−C

z̄dz (11.10)

on a contour −C : z = eiθ, θ ∈ [0, 2π]. This is
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∫
C

z̄dz = −
∫ 2π

0

e−iθieiθdθ = −2πi. (11.11)

�

Example 11.4. Let z = x + iy and f = (y − x) − i3x2. Consider the contour going from O (0) to
A (i) to B(1 + i), and directly O to B, in line segments.

Along OA:
∫
OA

fdz =
∫ 1

0
yidy = i

2 .

Along AB:
∫
AB

∫
fdz =

∫ 1

0
(1− x)− i3x2dx = 1

2 − i.

Along OB: Di and I are both not going to show it, but
∫
OB

fdz = −i.

Note that
∫
OA+AB

6=
∫
OB

.
�

11.1 Contour integrals involving branches

Consider f(z) = z1/2. Since this really depends on log, because z1/2 = e
1
2 log z and log is multivalued, we

have to pick a branch cut.

Example 11.5. Let C : z = 3eiθ, θ ∈ (0, π). The integral of z1/2 is most easily done in polar
coordinates, which requires taking a branch cut: |z| > 0, 0 < arg z < 2π.

I =

∫ π

0

√
3e

iθ
2 3reiθdθ (11.12)

= 3
√

3

∫ π

0

e
3iθ
2 dθ = 3

√
3 · 2

3
e3iθ2

∣∣π
0

= 2
√

3(−i− 1). (11.13)

Now, if we change the branch cut to |z| > 0, 3π
2 < Arg z < 7π

2 , the old parameteri-
zation doesn’t work: instead, we need to take θ ∈ (2π, 3π).

�

Example 11.6. Consider f(z) = z−1+i where C is the positively oriented unit circle, on the branch
|z| > 0,−π < Arg z < π.
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∫
C

f(z)dz =

∫ π

−π
eiθ−θieiθdθ (11.14)

=

∫ π

−π
ie−θdθ (11.15)

= −i(e−π − eπ). (11.16)

�

Example 11.7. Let C be the positively-oriented upper half circle with radius 3, i.e. 3eiθ, 0 ≤ θ ≤ π.

We can see that L = 3π. We want to estimate
∫
C

z1/2

z2+1dz. We upper-bound the
integrand,

∣∣∣∣ z1/2

z2 + 1

∣∣∣∣ =

∣∣∣∣∣e
1
2 Log z

z2 + 1

∣∣∣∣∣ (11.17)

=
|e 1

2 (ln r+iθ)|
z2 + 1

(11.18)

≤
√
r

||z|2 − 1|
=

√
3

8
(11.19)

and therefore we can say

∣∣∣∣∫
C

z1/2

z2 + 1
dz

∣∣∣∣ ≤ 3
√

3

8
π (11.20)

�

Example 11.8. Let C be the closed path (1)→ (1 + i)→ (i)→ 1 in line segments.

I =

∫
C

eiz̄ + z̄dz (11.21)

The length of this path is L = 2 +
√

2, so we look for an upper bound on the
integrand:



|eiz̄ + z̄| ≤ |eiz̄ + |z̄| (11.22)

= ey + |z|, (11.23)

and the first term is maximized with y = 1 and the second is maximized with
z = 1 + i, so

|eiz̄ + z̄| ≤ e+
√

2. (11.24)

Therefore |I| ≤ (2 +
√

2)(e+
√

2).
�
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Warmup: let C be the positively oriented unit circle, and let f(z) = z̄.

∫
C

f(z)dz =

∫ 2π

0

ieiθe−iθdθ = 2iπ (12.1)

Now on to anti-derivatives. We covered how in general, contour integrals are path-dependent, and we might
remember from multivariable calculus that some vector fields are conservative or path-independent, meaning
they could be expressed in terms of some scalar potential. Let’s try and define the analogous concept on the
complex plane.

Let f : D → C be continuous.

Definition 12.1. F on D is an antiderivative of f on D if F ′ = f on D.

F is analytic on D (we have to be able to differentiate it), and anti-derivatives differ up to a constant on D.

Proof. Let F ′1 = F ′2 = f . Then (F1 − F2) = 0 on D, so F1 − F2 = C.

Theorem 12.1 (Fundamental theorem of contour integrals). Let f be continuous on D. Then the following
statements are equivalent:

1. f(z) has an antiderivative F (z) throughout D.

2. Integrals of f(z) along contours lying entirely in D, extending between fixed points z1, z2 ∈ D, have
the same value. That is, for all z1, z2 ∈ D and for all contours C1, C2 in D lying between them,∫
C1
f(z)dz =

∫
C2
f(z)dz ,

∫ z2
z1
f(z)dz = F (z2)− F (z1).

3.
∮
C
f(z)dz = 0 for all closed contours C in D.

Example 12.1. Let f(z) = z̄. This does not have an antiderivative as it does not integrate to 0 over
a closed contour (unit circle).

�

Example 12.2. Let f(z) = eπz. We can see that if you take a derivative of 1
π e

πz, you get f back.
Therefore, this is path-independent.

�
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Example 12.3. f(z) = 1
z2 is continuous on C \ {0}, and it has an antiderivative F (z) = − 1

z in
C \ {0}.

Therefore,
∫
C

1
z2 dz = 0 where C is the positively oriented unit circle.

�

Example 12.4. But now, and this is the classic Math 53 example, let’s try the same thing for 1
z .

∫
C

1

z
dz =

∫ 2π

0

e−iθieiθdθ = 2πi 6= 0. (12.2)

Why doesn’t this act the same way as 1
z2 ? This is because 1

z has no antiderivative
on C \ {0}; log z would work but it isn’t differentiable unless we take a branch cut.

�

Example 12.5. Let f(z) = 1
z and let C be some closed curve that excludes the origin. Then we can

pick a branch cut that does not intersect the curve, so the conditions of the FTCI
are satisfied and so the integral is 0.

�

Proof. We show each statement implies the next one.

First, we show 1 implies 2. We start with the statement that F ′ = f on D, and we claim that
∫
C
f(z)dz =

F (z2)−F (z1). We know that C is made up of a finite number of smooth arcs, i.e. C = C1 + · · ·+Cn where
Ci : zi → zi+1, z1 = z1 and zn+1 = z2.

Each Ck is smooth with parameterization z = zk(t), t ∈ [a, b]. We can apply the chain rule:

d

dt
F (zk(t)) = F ′(zk(t))z′(t) = f(zk(t))z′(t), (12.3)

and therefore

∫
Ck

fdz =

∫ b

a

f(zk(t))z′k(t)dt (12.4)

=

∫ b

a

d

dt
F (zk(t))dt (12.5)

= F (zk(b))− F (zk(a)) (12.6)

= F (zk+1)− F (zk). (12.7)
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To show the claim, we add all of these smooth arc components together:

∫
C

fdz =

n∑
k=1

fdz = F (zn+1)− F (z1) = F (z2)− F (z1). (12.8)

Therefore 1 implies 2.

Next, we show that 2 implies 3. Consider an arc C1 going z1 → z2 and another arc C2 going z2 → z1. By
path-independence,

∫
C1

fdz =

∫
−C2

fdz = −
∫
C2

fdz, (12.9)

and so

∫
C

fdz =

∫
C1

fdz +

∫
C2

fdz = −
∫
C2

fdz +

∫
C2

fdz = 0. (12.10)

Finally, we show that 3 implies 1. To do this, we’ll need to show 3 implies 2, but this is easy: for any two
points z1, z2, make a contour going z1 → z2 → z1 and split it at z2. The two components must have equal
and opposite contributions because the closed loop has a contour integral of 0. Therefore, flipping the second
component, the two must be equal.

Now, we show 3 and 2 imply 1.

Let z0 ∈ D and consider any z ∈ D. Let C be a contour z0 → z, and path independence holds by 2. Define

F (z) =

∫ z

z0

f(s)ds, (12.11)

and we want to show that F ′(z) = f(z) ∀z ∈ D. We proceed by the definition:

lim
∆z→0

∆w

∆z
= f(z) ∀z ∈ D. (12.12)

This quantity is

∆w = F (z + ∆z)− F (z) =

∫ z+∆z

z0

f(s)ds−
∫ z

z0

f(s)ds (12.13)

and so

∆w

∆z
=

1

∆z

∫ z+∆z

z

f(s)− f(z)ds
WTS−−−→ 0 (12.14)



Because f is continuous at z, we can use the definition of continuity:

∀ε > 0,∃δ > 0 s. t. |s− z| < δ =⇒ |f(s)− f(z)| < ε. (12.15)

Fix |∆z| < δ. This implies |s − z| < δ, and by continuity |f(s) − f(z)| < ε. To extend this to the integral,
we use the M · L property, choosing the straight line z → z + ∆z.

∣∣∣∣∣ 1

∆z

∫ z+∆z

z

f(s)− f(z)ds

∣∣∣∣∣ < ε

|∆z|

∫ z+∆z

z

|ds| = ε

|∆z|
|∆z| = ε, (12.16)

and so the limit definition is satisfied.

Example 12.6. Consider
∫
C1

1
zdz on an arc from −i to i along the unit circle. Taking a branch

cut that does not intersect (e.g. r > 0,−π < Arg z < π) we can use the fact that
the antiderivative is Log z. Evaluating at ±i and taking the difference, we get that∫
C1

1
zdz = Log i− Log(−i) = πi.

�

Example 12.7. The same example, but now on the left semicircle. The branch is now r > 0, 0 <
θ < 2π. We get the same result by now taking log(−i)− log i = 3π

2 i−
π
2 i = πi.

�

Therefore
∫
C1+C2

1
zdz = 2πi, the same result as with the parameterization definition.

Example 12.8. Consider
∫
C
f(z)dz where f(z) = z

1
2 =

√
reiθ/2 on r > 0, 0 < θ < 2π and where

C = 3eiθ, 0 < θ < π. This branch cut has a point that doesn’t work at θ = 0. We
claim that this is equal to the integral of g(z) = z

1
2 =
√
reiθ/2 on r > 0,−π2 < θ <

3π
2 .

But aren’t these different functions? In fact, f and g share the same values on the
contour, because the contour lies in their intersection. We can then easily integrate
g.

�
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We just learned what the fundamental theorem of contour integrals, that having a complex antiderivative is
equivalent to path-independence, which is also equivalent to all integrals on closed contours being zero.

Let
∮
C
f(z)dz = 0. We know this is true whenever f has an antiderivative in D, where C lies in D. However,

how would we do the reverse - if you’re given a function, how do you know if it has an antiderivative? We
want to find a condition that’s easier to check.

Theorem 13.1 (Cauchy-Goursat Theorem v0). If f is analytic and f ′ is continuous at all points interior
to and on a simple closed contour C, then

∮
C
f(z)dz = 0.

Proof. Let f = u+ iv.

∮
C

f(z)dz =

∫
C

(u+ iv)(dx+ idy) (13.1)

=

∫
C

udx− vdy + i

∫
vdx+ udy. (13.2)

This looks a lot like Green’s theorem:
∫
C
Pdx+Qdy =

∫∫
D
Qx − Pydxdy for P,Q ∈ C1(D) and ∂D = C.

∮
C

f(z)dz =

∫∫
D

−vx − uydxdy + i

∫∫
D

ux − vydxdy, (13.3)

and by the C-R conditions (which hold because f is analytic), both of these are 0. Therefore
∮
C
f(z)dz =

0.

Can we do even better? We can actually drop continuity of the derivative. The true version of the Cauchy-
Goursat theorem does this:

Theorem 13.2 (Cauchy-Goursat Theorem v1). If f is analytic at all points interior to and on a simple
closed contour C, then

∮
C
f(z)dz = 0.

This is proved in the textbook, but we’ll just take it on faith.

Let’s prove instead that the Cauchy-Goursat theorem holds for a triangle, then generalize to other contours.

Proof. Let our triangle be T (0). We want to show that
∫
∂T (0) f(z)dz = 0.

We can subdivide the triangle into four smaller triangles, T
(1)
i for i = 1, 2, 3, 4.

The contour integral can be split into a sum of contour integrals over these four:
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Figure 13.3: Triangle decomposition

∫
∂T (0)

f(z)dz =

4∑
i=1

∫
∂T

(1)
i

f(z)dz (13.4)

Pick the term with the maximal absolute value: there exists some T
(1)
j , T (1) such that

∣∣∣∣∫
∂T (0)

f(z)dz

∣∣∣∣ ≤ 4

∣∣∣∣∫
∂T (1)

f(z)dz

∣∣∣∣ (13.5)

Repeating this procedure, we get that

∣∣∣∣∫
∂T (1)

f(z)dz

∣∣∣∣ ≤ 4

∣∣∣∣∫
∂T (2)

f(z)dz

∣∣∣∣ (13.6)

and if we take it out infinitely many times, we get a sequence of triangles, T (0) ⊃ T (1) ⊃ T (2) ⊃ · · · ⊃ T (n) ⊃
. . . , such that

∣∣∣∣∫
∂T (0)

f(z)dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂T (n)

f(z)dz

∣∣∣∣ (13.7)

For the second part of this, we’ll use what’s called a compactness argument. ∩nT (n) 6= ∅: if you intersect all
the triangles, you’re guaranteed that at least one point is common to all of them. Therefore, let z∗ ∈ ∩nT (n).
Since f(z) is analytic at z∗, we can say that

lim
z→z∗

f(z)− f(z∗)

z − z∗
= f ′(z∗). (13.8)

Expanding this out using the limit definition, we can say



∀ε > 0,∃δ > 0 s. t. 0 < |z − z∗| < δ =⇒
∣∣∣∣f(z)− f(z∗)

z − z∗
− f ′(z∗)

∣∣∣∣ < ε (13.9)

which in turn implies |f(z)− f(z∗)− f ′(z∗)(z − z∗)| < ε|z − z∗|.

Changing this to a condition on the number of triangle splittings n:

∀ε > 0,∃N ∈ R s. t. n ≥ N =⇒
∣∣∣∣f(z)− f(z∗)

z − z∗
− f ′(z∗)

∣∣∣∣ < ε ∀z ∈ T (n) (13.10)

Therefore, we can say

∣∣∣∣∫
∂T (n)

f(z)dz

∣∣∣∣ =

∣∣∣∣∫
∂T (n)

f(z)− f(z∗)− f ′(z∗)(z − z∗)dz
∣∣∣∣ (13.11)

This is the case because
∫
∂T (n) f(z∗)dz = 0 and

∫
∂T (n) f(z∗)(z − z∗)dz = 0, as a result of the fundamental

theorem of contour integrals and as a result of both integrands having antiderivatives.

Therefore, we can use the M-L estimate to bound the right hand side. Say T (0) has diameter d and perimeter
P . Then T (n) will have diameter dn = d

2n and perimeter Pn = P
2n . Therefore our L can be P

2n . For M , we

use the upper bound of εn|z − z∗| ≤ εn d
2n , where we can say

εn , sup
z∈T (n)

|f(z)− f(z∗)− f ′(z∗)(z − z∗)
|z − z∗|

n→∞−−−−→ 0 (13.12)

Therefore, applying the M-L estimate, we can finally say

∣∣∣∣∫
∂T (0)

f(z)dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂T (n)

f(z)dz

∣∣∣∣ ≤ 4nεn
dP

2n2n
= εndP

n→∞−−−−→ 0. (13.13)

Therefore, 0 ≤
∣∣∫
∂T (0) f(z)dz

∣∣ ≤ 0, so
∣∣∫
∂T (0) f(z)dz

∣∣ = 0, so
∫
∂T (0) f(z)dz = 0 as desired.

Corollary 13.3. The Cauchy-Goursat theorem applies for all polygons.

Proof. We can decompose any polygon into many triangles, and apply the Cauchy-Goursat theorem for
triangles on each one.

The most general case of the Cauchy-Goursat theorem considers the case of any simple closed contour C
enclosing a domain D, such that ∂D = C. Tile the domain D with squares: the contour will go over several
partial squares, so if we have an upper-bound estimate for d and P , the behaviour of εn → 0 will still
dominate and the theorem will still hold.
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14.1 Cauchy-Goursat Theorem

Definition 14.1. A simply connected domain is a domain such that every simple closed contour within it
encloses only points of D.

Definition 14.2. A multiply connected domain is a domain that is not simply connected.

Theorem 14.1 (Cauchy-Goursat Theorem v2). Let D be a simply connected domain, and let f be analytic
in D. Then

∮
C
f(z)dz = 0 for every closed contour C lying in D.

Proof. If C is simple, this is the same as the Cauchy-Goursat theorem v1.

If C is not simple, decompose it into a sum of simple contours and apply Cauchy-Goursat v1 to each.

Corollary 14.2. If f is analytic throughout a simply connected domain D, then f must have an antideriva-
tive in D.

Corollary 14.3. Entire functions always possess antiderivatives.

Theorem 14.4 (Cauchy-Goursat Theorem v3). Suppose that C is a positively oriented simple closed contour,
and that Ck(k = 1, . . . , n) are negatively-oriented simple closed contours interior to C that are disjoint and
whose interiors have no common points.

If f is analytic on all the contours, and on the multiply connected domain consisting of points inside C and
exterior to each Ck, then

∫
C

f(z)dz +

n∑
k=1

∫
Ck

f(z)dz = 0. (14.1)

Proof. Draw “bridges” to each of the Cis from and to C, and apply Cauchy-Goursat v1.

Corollary 14.5 (rinciple of path deformation). Let C1, C2 be positively-oriented simple closed contours,
with C1 interior to C2. Let R be a closed region consisting of these contours and the points between them.
If f is analytic on R then

∫
C1

f(z)dz =

∫
C2

f(z)dz. (14.2)

Proof. Consider C2 and −C1 and apply C-G 3.
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Figure 14.4: Cauchy-Goursat for a multiply connected domain

Figure 14.5: A weird squiggle being converted to a nice circle
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This lets us skip parameterizations of difficult curves!

Consider the integral
∫
C

dz
z−z0 where C is shown in 14.5. We get the same value if we integrate over the circle

centered at z0 instead:

∫
C

dz

z − z0
=

∫
C2

dz

z − z0
=

∫ 2π

0

iεeiθ

εeiθ
dθ =

∫ 2π

0

idθ = 2πi. (14.3)

14.2 Cauchy Integral Formula

Theorem 14.6. Let f be analytic everywhere inside and on a positively-oriented simple closed contour C.
If z0 is any point interior to C, then

f(z0) =
1

2πi

∫
C

f(z)

z − z0
dz (14.4)

Remark 14.7. If f is analytic in R (the region enclosed by C), then the values of f interior to C are
completely determined only by the values of f on C.

This is useful because it gives us a third way of calculating contour integrals!

Example 14.1.
∫
C

dz
z−z0 = 2πif(z0) = 2πi, if we take f(z) = 1.

�

Example 14.2.
∫
C

cos z
z(z2+9)dz. Choose z0 = 0, f(z) = cos z

z2+9 , and C : |z| = 1. Then the integral

becomes just 2πif(0) = 2πi
9 .

�

Example 14.3.
∫
|z|=2

z2+z+1
(z2−9)(z+i)dz: choose f(z) = z2+z+1

z2−9 and z0 = −i. The integral is 2πif(−i) =

2πi i
−10 = π

5 .
�

Proof. Let Cρ : |z − z0| = ρ. By the principle of path deformation, consider the following:

∫
Cρ

f(z)

z − z0
dz − 2πif(z0) =

∫
Cρ

f(z)

z − z0
dz − f(z0)

∫
Cρ

1

z − z0
dz (14.5)

=

∫
Cρ

f(z)− f(z0)

z − z0
dz. (14.6)
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Since f is analytic at z0, f is continous at z0.

For all ε > 0 there exists δ > 0 such that |z− z0| < δ implies |f(z)− f(z0)| < ε. Choose ρ < δ and apply the
M-L bound:

∣∣∣∣∣
∫
Cρ

f(z)− f(z0)

z − z0
dz

∣∣∣∣∣ ≤ 2πρ︸︷︷︸
L

ε

ρ︸︷︷︸
M

= 2πε, (14.7)

which goes to zero as we let ε→ 0. Therefore

∫
Cρ

f(z)

z − z0
dz − 2πif(z0) = 0. (14.8)

14.3 Cauchy integral formula extensions

Theorem 14.8. Let f be analytic inside and on a positively-oriented simple closed contour C. If z0 is any
point interior to C, then

f (n)(z0) =
n!

2πi

∫
C

f(z)dz

(z − z0)n+1
, n ∈ N. (14.9)

Intuitively, this is true by differentiation under the integral sign with respect to z0.

Example 14.4. If we want to find
∫
C
e2z

z4 dz, then let C : |z| = 1 pos, let n = 3, let f(z) = e2z and
let z0 = 0. Then

∫
C

e2z

z4
dz =

2πi

3!
f (3)(0) =

2πi

3!
23e0 =

8πi

3
. (14.10)

�

Example 14.5. Consider the integral
∮
|z|=2π

z2 sin z
(z−π)3 dz. This can be solved by z0 = π, n = 2, f(z) =

z2 sin z.



∮
|z|=2π

z2 sin z

(z − π)3
dz =

2πi

2
(z2 sin z)′′

∣∣
z=π

(14.11)

=
2πi

2
4π cosπ = 4π2i. (14.12)

�
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The first theorem we’ll cover today is an extension to the Cauchy integral formula.

Theorem 15.1 (Cauchy formula extension theorem). Let f be analytic inside and on a simple positively-
oriented closed contour C. If z0 is any point interior to C, then

f (n)(z0) =
n!

2πi

∫
C

f(z)dz

(z − z0)n+1
, n ∈ N (15.1)

This is an incredible result: we get infinite differentiability!

Proof. It suffices to show the first derivative exists; we can repeat the proof for any higher-order derivative.

We want to show that at z0,

lim
∆z→0

∆ω

∆z
− 1

2πi

∫
C

f(z)dz

(z − z0)2
(15.2)

The finite difference is

∆ω

∆z
=
f(z0 + ∆z)− f(z0)

∆z
=

1
2πi

∫
C

f(z)dz
z−z0−∆z −

1
2πi

∫
C

f(z)
z−z0 dz

∆z
(15.3)

=
1

2πi

1

∆z

∫
C

f(z)

(
1

z − z0 − z
− 1

z − z0

)
(15.4)

=
1

2πi

∫
C

f(z)

(z − z0 −∆z)(z − z0)
dz. (15.5)

Further, we can write

1

(z − z0 −∆z)(z − z0)
=

1

(z − z0)2
+

∆z

(z − z0 −∆z)(z − z0)2
, (15.6)

and therefore

∣∣∣∣∆ω∆z
− 1

2πi

∫
C

f(z)dz

(z − z0)2

∣∣∣∣ =
1

2πi

∣∣∣∣∫
C

∆z

(z − z0 −∆z)(z − z0)2
f(z)dz

∣∣∣∣ (15.7)

which we bound by the ML estimate,
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∣∣∣∣∆ω∆z
− 1

2πi

∫
C

f(z)dz

(z − z0)2

∣∣∣∣ ≤ 1

2πi
L︸︷︷︸

length of C

M. (15.8)

To fill in M , define a distance d , the smallest distance from z0 to points on C. Then, the minimal value of
z − z0 is d. This lets us write the upper bound

∣∣∣∣ ∆z

(z − z0 −∆z)(z − z0)2

∣∣∣∣ ≤ |∆z|
(d− |∆z|)d2

, (15.9)

which goes to zero as ∆z → 0, as desired. This completes the proof.

This result gives us three consequences, or “miracles”!

Theorem 15.2. If f is analytic at z0, then its derivatives of all orders are analytic at z0.

Proof. If f is analytic at z0, there is some neighborhood of z0 in which f is differentiable. Suppose this
neighborhood is an ε ball. We want differentiability on the boundary as well in order to apply the Cauchy
extension, so take an ε

2 ball, i.e. C : |z − z0| = ε
2 . Then f is analytic inside and on C. Therefore, f (n) exists

at all points inside of C by the Cauchy formula extension, for n ≥ 1.

Corollary 15.3. Let f = u + iv. If f is analytic at z0, then u, v have continuous partial derivatives of all
orders at z0 = x0 + iy0.

This tells us that u, v are harmonic, i.e. they are in C2 and satisfy Laplace’s equation.

Now for the second miracle!

Theorem 15.4 (Morera’s theorem). Let f be continuous on a domain D. If
∫
C
f(z)dz = 0 for any closed

contour C in D, then f is analytic in D.

If D is simply connected, this is the inverse of the Cauchy-Goursat theorem.

Proof. By the fundamental theorem of contour integrals, if
∫
C
f(z)dz = 0 then f has an antiderivative in D,

i.e. there exists a function F such that F ′ = f in D. Applying Miracle 1, we get that f is analytic in D as
it is the first derivative of F .

Theorem 15.5 (Cauchy Inequality/Estimate). Let f be analytic inside and on a positively-oriented circle
CR : |z − z0| = R. If MR denotes the maximum value of |f(z)| on CR, then

∣∣∣f (n)(z0)
∣∣∣ ≤ n!MR

Rn
, n ≥ 1. (15.10)

Proof. From the Cauchy formula extension,

∣∣∣f (n)(z0)
∣∣∣ =

∣∣∣∣ n!

2πi

∫
CR

f(z)

(z − z0)n+1
dz

∣∣∣∣ (15.11)
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The integrand can be upper-bounded by
∣∣∣ f(z)

(z−z0)n+1

∣∣∣ ≤ MR

Rn+1 , as the denominator is always R and the

numerator is upper-bounded by MR by assumption. Therefore the ML estimate gives us

∣∣∣f (n)(z0)
∣∣∣ ≤ n!

2π

MR

Rn+1︸ ︷︷ ︸
M

2πR︸︷︷︸
L

=
n!MR

Rn
. (15.12)

Theorem 15.6 (Liouville’s theorem (Miracle 2)). If f is entire and bounded in C, then f(z) must be constant
in C.

This is a really strong result! How do we get there?

Proof. For a function to be constant, its first derivative should be zero, so we use the Cauchy estimate with
n = 1.

|f ′(z0)| ≤ MR

R
≤ M

R
(15.13)

where M = maxz∈C |f(z)|, which exists as f is bounded.: the bound over all of C is greater than or equal
to that on the circle. Let R → ∞. Then |f ′(z0)| ≤ 0, i.e. f ′(z0) = 0 for any z0 ∈ C. Therefore f(z) is a
constant.

We’re about to use this to do something amazing:

Theorem 15.7 (Fundamental theorem of algebra). Any polynomial of degree n ≥,

P (z) =

n∑
i=0

aiz
i, an 6= 0, (15.14)

has at least one zero.

Corollary 15.8. Every polynomial P of degree n ≥ 1 has precisely n roots in C. If these roots are denoted
by ω1, ω2, . . . , ωn, then

P = an(z − ω1)(z − ω2) . . . (z − ωn). (15.15)

of the theorem. Towards a contradiction, suppose P (z) has no zero. Then 1
P (z) is entire, as P (z) is nonzero

everywhere.

We show that 1
P (z) is bounded. Consider P (z)

zn = an + an−1

z + · · ·+ a1

zn−1 + a0

zn . Take |z| → ∞; all terms other

than an go to zero. More rigorously, if we take ε = |an|
2 , there exists R > 0 such that |B| < ε = |an|

2 for
|z| > R. Then
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∣∣∣∣P (z)

zn

∣∣∣∣ ≥ ||an| − |B|| > ∣∣∣∣an − |an|2

∣∣∣∣ =
|an|

2
, (15.16)

for |z| > R. This implies

|P (z)| ≥ |zn| |an|
2
, |z| > R (15.17)∣∣∣∣ 1

P (z)

∣∣∣∣ ≤ 2

|zn||an|
, |z| > R (15.18)

<
2

Rn|an|
. (15.19)

When |z| ≤ R, we can say 1
P (z) is analytic in C, therefore it is continuous in C, so its modulus is bounded

as the region is bounded.

Therefore, 1
P (z) is bounded by the maximum of the bound within |z| ≤ R and that over |z| > R. Since

1
P (z) is both bounded and entire, it must be a constant. This contradicts the fact that P is a degree ≥ 1

polynomial and not a constant. Therefore, P (z) has at least one zero.

of the corollary. By the theorem, we know P has at least one root; call this ω1. We can rewrite z =
(z − ω1) + ω1, plug into P , and expand.

P (z) = (z − ω1) Q(z)︸ ︷︷ ︸
polynomial of degree n−1

(15.20)

Repeat the theorem on Q. Do this n times (induct on the polynomial degree); we get that P (z) has precisely
n roots and P (z) = C(z − ω1) . . . (z − ωn).

The third miracle is Taylor’s theorem, which we’ll see soon. We’ll also see analytic continuation (arguably
a fourth miracle) soon.

Theorem 15.9 (Maximum modulus principle). If f is analytic and not constant in a domain D, then |f(z)|
has no maximum value in D.

Corollary 15.10. If f is continuous in the closure D̄ of a domain, and f is analytic and not constant in
D, then |f(z)| reaches its maximum somewhere on the boundary ∂D.

A corollary to this corollary is that if f = g on a boundary ∂D, and both functions are analytic, then f ≡ g
in D.

Moreover, if f = u+ iv then the maximum value of u(x, y) is attained on ∂D.

Proof. Let g(z) = ef(z). Then |g(z)| = |ef(z)| = eu. Since g satisfies the corollary condition, its maximum
can only be achieved on the boundary, and therefore u is maximized on the boundary as well.
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We first describe intuitively why a maximum value is not likely to be reached on the interior of a domain,
then we prove the maximum modulus principle.

Consider the case of a disk enclosed by Cρ : |z − z0| = ρ. By the Cauchy integral formula,

f(z0) =
1

2πi

∫
Cρ

f(z)

z − z0
dz. (15.21)

Use the parameterization z = z0 + ρeiθ, θ ∈ [0, 2π]. We get

f(z0) =
1

2π

∫ 2π

0

f(z0 + ρeiθ)

ρeiθ
ρeiθdθ (15.22)

=
1

2π

∫ 2π

0

f(z0 + ρeiθ)dθ. (15.23)

This is the mean of a function over the boundary, so this specific case is called the Gauss mean value theorem.

Lemma 15.11. If f(z) is analytic in Bε(z0) and |f(z)| ≤ |f(z0)| for all z ∈ Bε. Then f(z) ≡ f(z0)
throughout Bε(z0).

Proof. By Gauss MVT, for 0 < ρ < ε,

|f(z0)| =
∣∣∣∣ 1

2π

∫ 2π

0

f(z0 + ρeiθ)dθ

∣∣∣∣ ≤ 1

2π

∫ 2π

0

∣∣f(z0 + ρeiθ)
∣∣dθ (15.24)

≤ 1

2π

∫ 2π

0

|f(z0)|dz = |f(z0)|, (15.25)

since we went through a chain of ≤s and got back the original result, all terms along the way must be equal.
Therefore

∫ 2π

0

|f(z0)| − |f(z0 + ρeiθ)|dθ = 0, (15.26)

which is the case only if the integrand is zero.

|f(z0)| = |f(z0 + ρeiθ)|, θ ∈ [0, 2π] (15.27)

= |f(z)|, z ∈ ∂Bρ(z0) (15.28)

and varying ρ we cover all z ∈ Bε(z0). Since f is analytic and its modulus is constant, we have f(z) =
f(z0).

Now, we prove the maximum modulus principle over general domains D.



Proof. Towards a contradiction, suppose there exists z0 interior to D such that |f(z)| ≤ |f(z0)| ∀z ∈ D.
Take any point in D and denote it by z̃. z0 and z̃ can be linked by a polygonal line L. Let d be the
shortest distance from the points on L to ∂D. Describe L by a sequence of line segments: there exist points
z0, z1, . . . , zn = z̃ such that |zk − zk−1| < d. If the points do not satisfy this, we subdivide line segments
and introduce additional points until they do. Then, we can say that |z0 − z1| < d, i.e. z1 ∈ Bd(z0).
Applying the lemma, we get that f(z1) = f(z0). Iterating this, we get that f(z̃) = f(z0) as desired. Thus,
f(z) ≡ f(z0) ∀z ∈ D.
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Consider an infinite sequence {zn}∞n=1.

Definition 16.1. {zn}∞n=1 has a limit z if ∀ε > 0,∃n0 > 0 s. t. whenever n > n0, we have |zn − z| < ε.

We say {zn}∞n=1 converges to z and lim
n→∞

zn = z, and we say it diverges if it does not converge.

Theorem 16.1. lim
n→∞

zn = z if and only if the real and imaginary parts separately converge (as in the reals).

Proof. In the forward direction, if zn → z, then |Re zn−Re z| ≤ |zn− z| implies that the same n0 will work,
i.e. for all ε > 0,∃n0 > 0 s. t. |zn − z| < ε whenever n > n0 and the same n0 implies |Re zn − Re z| < ε, and
similarly for Im.

In the backward direction, applying the definition: for all ε
2 > 0,∃n1 > 0 such that |Re zn − Re z| < ε

2 , and
∃n2 > 0 such that | Im zn − Im z| < ε

2 . Then, choose n0 = max{n1, n2}. Therefore

|zn − z| ≤ |Re zn − Re z|+ | Im zn − Im z| < ε

2
+
ε

2
= ε. (16.1)

Remark 16.2. If a complex limit exists, lim
n→∞

xn + iyn = lim
n→∞

xn + lim
n→∞

iyn.

Remark 16.3. Note that if lim zn = z, it isn’t necessarily the case that lim Arg zn = Arg z.

Example 16.1. Let zn = −1 + i (−1)n

n2 . We see that lim zn = −1.
�

Example 16.2. Let zn = ei(−π+ 1
n ). Then, lim

n→∞
zn = ei(−π) = −1, but note that Arg zn = −π+ 1

n →
−π but Arg lim

n→∞
zn = π.

�

Next, we consider convergence of series. We say
∑∞
n=1 zn → S if the limit of partial sums SN = z1 + z2 +

· · ·+ zN converges to S, i.e. lim
N→∞

SN = S. The series diverges if it does not converge.

Theorem 16.4.
∑∞
n=1 zn = S if and only if

∑∞
n=1 Re zn = ReS and

∑∞
n=1 Im zn = ImS.
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There’s many ways to check series convergence, which I remember from Math 1B so I won’t rewrite them.
We’ll need the individual term test (individual terms of the sum need to go to zero for the sum to converge),
absolute convergence implying convergence, and the geometric series.

In R, we say that a sequence of functions converges pointwise on E if Sn(x) → S(x) as a sequence of real
numbers for any x ∈ E. We can’t necessarily interchange integrals and limits, i.e. it is not always the case

that lim
∫ b
a
Sn(x)dx =

∫ b
a

limSn(x)dx.

Example 16.3. Consider Sn(x) = 2n2x
(1+n2x2)2 . This integrates to 1− 1

1+n2

n→∞−−−−→ 1, but the integrand

converges pointwise to 0, and
∫ 1

0
0dx = 0 6= 1.

�

To fix this interchangeability issue, we introduce uniform convergence.

Definition 16.2. Sn(x) → S(x) uniformly if for all ε > 0, there exists n0 > 0 independent of x such that
whenever n > n0, |Sn(x)− S(x)| < ε.

Certain

Certain properties from R hold in C as well:

1. Uniform continuity implies continuity.

2. Uniform convergence allows us to interchange derivatives and limits.

3. Uniform convergence allows us to interchange integrals and limits.

Theorem 16.5 (Weierstrass M-test). Suppose |an(x)| ≤ (Mn ≥ 0) for n = 1, 2, . . . and
∑∞
n=1Mn converges.

Then
∑∞
n=1 an(x) converges uniformly in x.

Now, we’re ready for Miracle 3: Taylor’s theorem!

Theorem 16.6 (Taylor’s theorem). Suppose f is analytic in a disk D = {|z − z0| < R0}. Then f(z) has a
Taylor series around z0, i.e. there exists a power series such that

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n ∀z ∈ D (16.2)

Note that this is not true in R; for example, f(x) =

{
e−1/x2

x 6= 0

0 x = 0
has no Taylor series in R as all the

derivatives at zero are 0.

Proof. Without loss of generality, let z0 = 0. If it is not, we may apply the change of variables z̃ = z − z0

such that it is true.

We apply the Cauchy integral formula, setting z0 → z, z → s and integrating over s:
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f(z) =
1

2πi

∫
C

f(s)

s− z
ds (16.3)

Pick as the contour C = {s : |s| = r0}, where r0 < R0 so that the contour lies entirely in the domain.

Next, we rewrite the integrand as follows:

1

s− z
=

1

s
(
1 + z

s

) =
1

s

1

1− z
s

=
1

s

∞∑
n=0

(z
s

)n
, (16.4)

which is a valid geometric series as
∣∣ z
s

∣∣ = r
r0
< 1. This convergence is actually uniform in s by the M test.

Therefore, we can say

f(z) =
1

2πi

∫
C

1

s

∞∑
n=0

(z
s

)n
f(s)ds (16.5)

=︸︷︷︸
unif conv

1

2πi

∞∑
n=0

∫
C

1

s

zn

sn
f(s)ds (16.6)

=

∞∑
n=0

(
1

2πi

∫
C

f(s)

sn+1
ds

)
zn, (16.7)

and by the Cauchy extension formula, we recognize the bracketed term as f(n)(0)
n! , and therefore we get

f(z) =

∞∑
n=0

f (n)(0)

n!
zn. (16.8)

We can also prove Taylor’s theorem in a more quantitative way, using partial geometric sums.

Proof. Expand as follows:

1

s− z
=

1

s

1

1− z
s

, (16.9)

and

1

1− z
= 1 + z + · · ·+ zN−1︸ ︷︷ ︸

n terms

+
zN

1− z︸ ︷︷ ︸
remainder

(16.10)



and therefore

1

s− z
=

1

s

N−1∑
n=0

(z
s

)n
︸ ︷︷ ︸

n terms

+
1

s

(z/s)N

1− z/s︸ ︷︷ ︸
remainder

(16.11)

=

N−1∑
n=0

zn

sn+1
+

zN

(s− z)sN
. (16.12)

Therefore, applying the Cauchy integral formula as in the first proof,

f(z) =
1

2πi

∫
C

f(s)

s− z
ds (16.13)

=
1

2πi

∫
C

N−1∑
n=0

zn

sn+1
f(s)ds+

1

2πi

∫
zN

(s− z)sN
f(s)ds (16.14)

=
1

2πi

N−1∑
n=0

(∫
C

f(s)

sn+1
ds

)
zn + ρN (16.15)

=

N−1∑
n=0

(
f (n)(0)

n!

)
zn + ρN (16.16)

(16.17)

where ρN is an error term. We want to show that the error ρN goes to zero as N →∞, so that the Taylor
series is exactly the function. To do this, we use the ML estimate.

|ρN | =
∣∣∣∣ 1

2πi

∫
C

f(s)zN

(s− z)sN
ds

∣∣∣∣ (16.18)

L = 2πr0, and for M we can upper bound as follows:

∣∣∣∣ f(s)zN

(s− z)sN

∣∣∣∣ ≤ |f(s)|rN

(|s| − |z|)rN0
≤ MrN

(r0 − r)rN0
(16.19)

and therefore

|ρN | =
∣∣∣∣ 1

2πi

∫
C

f(s)zN

(s− z)sN
ds

∣∣∣∣ ≤ 1

2π

MrN

(r − r0)rN0
2πr0 (16.20)

and as N →∞, this goes to 0 because
(
r
r0

)N N→∞−−−−→ 0. Therefore ρN → 0 as desired.
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17.1 Examples of Taylor series

If we have a Taylor series around z = 0, we call it a Maclaurin series.

Based on known derivative results, we can show that the following well-known formulas from R still hold in
C:

1

1− z
=

∞∑
n=0

zn = 1 + z + z2 + . . .|z| < 1 (17.1)

ez =

∞∑
n=0

zn

n!
= 1 +

z

1!
+
z2

2!
+ . . .|z| <∞ (17.2)

sin z =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
= z − z3

3!
+ . . .|z| <∞ (17.3)

cos z =

∞∑
n=0

(−1)n
z2n

(2n)!
= 1− z2

2!
+
z4

4!
+ . . .|z| <∞ (17.4)

sinh z =

∞∑
n=0

z2n+1

(2n+ 1)!
(17.5)

cosh z =

∞∑
n=0

z2n

(2n)!
(17.6)

(17.7)

We can potentially shift these without redoing all the derivatives at the new center!

Example 17.1. Suppose we’re interested in the Taylor series of f(z) = 1
1−z around z = i. Let

D : |z− i| <
√

2, so that 1 is on the boundary. We want to introduce (z− i)n terms
to the Maclaurin expansion of f :

f(z) =
1

1− z
=

1

1− i− (z − i)
=

1

1− i
· 1

1− z−i
1−i

, (17.8)

which we can expand as long as
∣∣∣ z−i1−i

∣∣∣ < 1:
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f(z) =
1

1− i

∞∑
n=0

(
z − i
1− i

)n
=

∞∑
n=0

(z − i)n

(1− i)n+1
. (17.9)

�

Example 17.2. Suppose we’re interested in the Taylor series of f(z) = 1
1−z around z = 5. Let

D : |z − 5| < 4.

f(z) =
1

1− 5− (z − 5)
=

1

−4
· 1

1− z−5
−4

(17.10)

= −1

4

∞∑
n=0

(z − 5)n

(−4)n
(17.11)

=

∞∑
n=0

(z − 5)n

(−4)n+1
, |z − 5| < 4. (17.12)

�

Example 17.3. Consider the Taylor series of f(z) = ez around z = 1 + i.

f(z) = ez = ez−(1+i)e1+i = e1+i
∞∑
n=0

(z − 1− i)n

n!
(17.13)

�

17.2 Power series with negative powers

If we divide by a power of z, or we plug in 1
z as the argument to a function, we get negative powers:

Example 17.4.

ez

z2
=

1

z2

∞∑
n=0

zn

n!
=

1

z2
+

1

z
+

1

2!
+
z

3!
+ . . . (17.14)

�



Lecture 17: Laurent series and Laurent theorem 74

Example 17.5.

z3 cosh
1

z
= z3

∞∑
n=0

1

(2n)!

1

z2n
. (17.15)

�

A specific power series expansion with powers in Z is referred to as a Laurent series. While Taylor’s theorem
tells us we can expand f if it is analytic in a disk |z− z0| < r, Laurent’s theorem tells us this is doable on an
annular domain D = {R1 < |z − z0| < R2}. This relaxes the need for analyticity at z0 or in a neighborhood
of z0.

Theorem 17.1 (Laurent’s theorem). Let f be analytic in an annular domain D = {R1 < |z − z0| < R2}
and let C be any positively oriented simple closed contour around z0 in D. Then we can expand f as follows:
for all z ∈ D,

f(z) =

∞∑
n=0

an(z − z0)n︸ ︷︷ ︸
analytic

+

∞∑
n=1

bn
(z − z0)n

, (17.16)

where

an =
1

2πi

∫
C

f(z)

(z − z0)n+1
dz, n = 0, 1, . . . (17.17)

bn =
1

2πi

∫
C

f(z)

(z − z0)−n+1
dz, n = 1, 2, . . . . (17.18)

Remark 17.2. 1. We can write this as a single power series where f(z) =
∑
n∈Z cn(z − z0)n, where

cn = an for n ≥ 0 and cn = bn otherwise. This can be unified into cn = 1
2πi

∫
C

f(z)
(z−z0)n+1 dz.

2. If f is analytic, the Laurent series is just the Taylor series, for the following reason. We can say
R1 = 0. The negative coefficients are then

bn =
1

2πi

∫
C

f(z)(z − z0)n−1dz, (17.19)

and as the integrand is analytic in a simply connected domain, Cauchy-Goursat v2 tells us that the
contour integral must be 0 and so only the positive powers remain.

of Laurent’s theorem. Recall that to prove Taylor’s theorem, we first took z0 = 0, then we applied the
Cauchy integral formula to f and expanded the denominator using a geometric series. Then, we used
uniform continuity to interchange the limit and sum to get a sum over coefficients and powers of z, and these
powers matched up with the derivatives of f by the Cauchy integral extension.

We proceed similarly for Laurent’s theorem. Let the region be D = {r1 < |z − z0| < r2}. Once again we set
z0 = 0 without loss of generality. Consider a contour γ within D and around any arbitrary z.
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f(z) =
1

2πi

∫
γ

f(s)

s− z
ds (17.20)

Due to the inner part of the annulus, we now have a multiply connected domain, so we apply Cauchy-Goursat
v3. Draw an outer contour C2 bounding the inner part of the annulus and γ, and draw an inner contour C1

bounding just the annulus. Cauchy-Goursat v3 (taking C2 positively oriented and γ,C1 negatively oriented)
then tells us that

∫
C2

f(s)

s− z
ds︸ ︷︷ ︸

I2

−
∫
γ

f(s)

s− z
ds︸ ︷︷ ︸

2πif(z)

−
∫
C1

f(s)

s− z
ds︸ ︷︷ ︸

I1

= 0 (17.21)

Looking at I2, we note that for s ∈ C2,
∣∣ z
s

∣∣ < 1, so we can use the geometric expansion.

1

s− z
=

1

s

1

1− z
s

=
1

s

∞∑
n=0

(z
s

)n
=︸︷︷︸

unif in S by M test

∞∑
n=0

1

sn+1
zn (17.22)

Therefore

1

2πi

∫
C2

f(s)

s− z
ds =

1

2πi

∫
C2

f(s)

∞∑
n=0

1

sn+1
znds (17.23)

unif conv︸ ︷︷ ︸ 1

2πi

∞∑
n=0

(∫
C2

f(s)

sn+1
ds

)
zn (17.24)

=

∞∑
n=0

anz
n, (17.25)

where in the last step we change C2 → C by the principle of path deformation.

For I1, we see that
∣∣ s
z

∣∣ < 1, and so

1

s− z
= −

∞∑
n=0

sn

zn+1
. (17.26)

Therefore
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− 1

2πi

∫
C1

f(s)

s− z
ds =

1

2πi

∞∑
n=1

∫
C1

f(s)sn−1

zn
ds (17.27)

=

∞∑
n=1

(
1

2πi

∫
C1

f(s)

s−n+1
ds

)
1

zn
(17.28)

=

∞∑
n=1

bnz
−n. (17.29)

So finally, we get the desired result,

f(z) =

∞∑
n=0

anz
n +

∞∑
n=1

bnz
−n. (17.30)

17.3 Laurent series examples

Example 17.6. Let f(z) = 1
z(1+z2) , for 0 < |z| < 1. We’re interested in the Laurent series around

z = 0. This is not possible with a Taylor series, as we have issues at 0.

f(z) =
1

z

1

1 + z2
=

1

z

1

1− (−z2)
(17.31)

=
1

z

∞∑
n=0

(−z2)n =

∞∑
n=0

(−1)nz2n−1 (17.32)

=
1

z
+

∞∑
n=1

(−1)nz2n−1 (17.33)

�

Example 17.7. Let f(z) = z+1
z−1 , and consider the power series around z = 0. We split this into the

two regions D1 : |z| < 1 (for a Taylor series) and D2 : 1 < |z| < ∞ (for a Laurent
series).

On D1, we use the geometric series trick, which only holds for |z| < 1, to find that

D1 : f(z) = −1− 2

∞∑
n=1

zn (17.34)



and on D2, we divide by z on the numerator and denominator to get f(z) =
1+ 1

z

1− 1
z

,

and apply the geometric series to both terms to get

D2 : f(z) = 1 + 2

∞∑
n=1

1

zn
. (17.35)

�

Example 17.8. Let f(z) = 1
(z−1)(z−2) on D : {1 < |z| < 2}. f is analytic in D, so by partial fraction

decomposition we can say

f(z) = − 1

z − 1
+

1

z − 2
. (17.36)

But this isn’t a Laurent series, so we expand out each term individually into its own
Laurent series. We apply the geometric trick to get

− 1

z − 1
= −

∞∑
n=1

1

zn
(17.37)

and

1

z − 2
= −

∞∑
n=0

zn

2n+1
, (17.38)

and therefore

f(z) = −
∞∑
n=1

1

zn
−
∞∑
n=0

zn

2n+1
. (17.39)

�
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Today, we’ll explore the notion of convergence in more depth. We have three ideas of convergence of series:
the usual ε−N convergence, absolute convergence (i.e. the convergence of

∑∞
n=0 |an||z − z0|n) and uniform

convergence, i.e. |Sn(z)− S(z)| < ε for all z ∈ E.

Theorem 18.1. If
∑∞
n=0 an(z − z0)n converges at z = z1 6= z0, then it converges absolutely at each point z

in the open disk |z − z0| < R1 , |z1 − z0|.

Proof. At z = z1, we use the following upper bound:

|an(z1 − z0)n| ≤M > 0 (18.1)

|an(z − z0)n| = |an||(z1 − z0)n|
∣∣∣∣ z − z0

z1 − z0

∣∣∣∣n (18.2)

The first two terms can be bound by M , and the second is equal to some ρ < 1.

|an(z − z0)n| ≤Mρn, (18.3)

and
∑∞
n=0Mρn converges as it is a geometric series.

The largest disk centered at z0 such that the series converges is called the disk of convergence. It is defined
by D = {z ∈ C | |z − z0| < R} where R is the convergence radius.

Theorem 18.2. If z1 is a point inside of the disk of convergence D of
∑∞
n=0 an(z − z0)n, then a series

converges uniformly in the closed disk |z − z0| ≤ R1 , |z1 − z0|.

Rather than proving this, we will state some more general results.

The radius of convergence of the power series
∑∞
n=0 an(z − z0)n is R , 1

lim sup n
√
|an|

.

Remark 18.3. Suppose lim
n→∞

n
√
|an| exists. Then we can replace lim sup by the limit.

The intuition for this is the root test from calculus: if lim
n→∞

n
√
|cn| < 1, then the series

∑∞
n=0 cn converges.

Applying this to cn = an(z − z0)n, we get

lim
n→∞

n
√
|an||z − z0|n = lim

n→∞
n
√
|an| · |z − z0| < 1, (18.4)

and therefore
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|z − z0| <
1

lim
n→∞

n
√
|an|

= R. (18.5)

So why have a lim sup? This is the supremum of the limits of all the subsequences. This is necessary for

the following reason. Suppose we have an =

{
0 n even

0 n odd
, i.e. the series

∑
anz

n = z + z3 + z5 + . . . . While

n
√
|an| does not have a limit, we can still talk about lim sup n

√
|an| = 1, and this tells us R = 1.

We could also use the ratio test: if lim
n→∞

∣∣∣ an
an+1

∣∣∣ exists, then it is equal to R as well.

Theorem 18.4 (General results about series convergence). Let 0 ≤ R ≤ ∞ be the convergence radius of∑∞
n=0 an(z − z0)n.

1. If |z − z0| < R, the series converges absolutely.

2. If |z − z0| > R, the series diverges.

3. For any fixed r < R, the series converges uniformly for |z − z0| < r.

(sketch). Without loss of generality let z0 = 0. Then, if |an|rn is bounded for some r = r0, then it must be
bounded for any 0 ≤ r < r0. So, define R to be the supremum of r such that |an|rn is bounded. (This does
not necessarily imply that |an|Rn is bounded.) Then, for r > R, we know that |an|rn is unbounded, which
specifically means there exists some sequence akj such that |akj |rkj →∞.

Consider the following cases:

1. |z| > R: this tells us that akz
k does not converge to 0, bu the divergence test.

2. |z| ≤ r < R: choose some s such that r < s < R. Then

|anzn| = |an|sn︸ ︷︷ ︸
≤M

∣∣∣z
s

∣∣∣n︸︷︷︸
≤ rs

, (18.6)

so we can upper-bound the sum by the geometric series
∑∞
n=0M

(
r
s

)n
, and therefore it converges.

3. |z| < R: choose r such that |z| ≤ r < R. Use the above point: we can show that
∑
|anzn|.

Remark 18.5. To check the convergence of Laurent series, let ω = 1
z−z0 . Then the additional term in a

Laurent series has the form
∑∞
n=1 bnω

n. Analogous to what we derived above, we can say that for R− ,
1

lim sup n
√
|bn|

, the Laurent series converges absolutely if |ω| < R− and diverges if |ω| > R−. Changing this

back into a condition on zand applying this in conjunction with the usual condition, we can say that a Laurent
series

∑∞
n=0 an(z−z0)n+

∑∞
n=1

bn
(z−z0)n converges if 1

R−
< |z−z0| < R (where R is the radius of convergence

of the an term).



Example 18.1. Consider the Laurent series
∑∞
n=0

zn

2n+1 −
∑∞
n=1

1
zn . For the anz

n component, we
have R = 1

lim sup n
√

1
2n

= 1
1
2

= 2 and R− = 1
lim sup n√1

= 1. Therefore the convergence

domain is 1 < |z| < 2.
�

18.1 Continuity of power series

Theorem 18.6.
∑∞
n=0 an(z − z0)n represents a continuous function S(z) at each point inside its disk of

convergence |z − z0| < R.

Proof. Fix any z1 ∈ {z | |z − z0| < R} and let r , |z1 − z0|. We know the series converges uniformly on the
closed disk |z− z0| ≤ r. Therefore, from the definition, for all ε

3 > 0 there exists some Nε such that N > Nε
implies |SN (z)− S(z)| < ε

3 for all z such that |z − z0| ≤ r.

Fix one such ε and choose N accordingly.

|S(z)− S(z1)| ≤ |S(z)− SN (z)|+ |SN (z)− SN (z1)|+ |SN (z1)− S(z1)| (18.7)

The first and third terms converge because of the uniform convergence of Sn → S; the second term converges
because the SN (z) are polynomials and are therefore continuous. Therefore, each term individually is
bounded by ε

3 , so

|S(z)− S(z1)| ≤ ε

3
+
ε

3
+
ε

3
= ε. (18.8)
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Today, we end chapter 5.

19.1 Integration by terms

Theorem 19.1 (Integration by terms). Let S(z) =
∑∞
n=0 an(z − z0)n on a disk of convergence D = {z ∈

C | |z − z0| < R}. Let C be any closed contour in D and let g : C → C be continuous. Then

∫
C

g(z)S(z)dz =

∞∑
n=0

an

∫
C

g(z)(z − z0)ndz. (19.1)

This says we can interchange a sum and integral under these conditions.

Proof. Rewrite S in terms of a partial sum and a remainder:

S(z) =

N−1∑
n=0

an(z − z0)n + ρN (z) (19.2)

Then,

∫
C

g(z)S(z)dz =

N−1∑
n=0

an

∫
C

g(z)(z − z0)ndz +

∫
C

g(z)ρN (z)dz︸ ︷︷ ︸
IN

, (19.3)

and it suffices to show that the remainder integral goes to 0. We use the ML estimate. Since g is continuous
in C, it has a maximum M0 , maxz∈C |g(z)|, and the contour has a known length.

Write |ρN (z)| = |S(z)− SN (z)|. SN (z) converges uniformly to S(z), and so for all ε > 0 there exists Nε > 0
such that whenever N > Nε, we have |SN (z) − S(z)| < ε, and so by the ML estimate, |IN | ≤ M0εL for
N > Nε. This is exactly the statement that lim

N→∞
IN = 0.

Remark 19.2. If we take g(z) ≡ 1 in C, then we get

∫
C

ρ(z)dz =

∞∑
n=0

an

∫
C

(z − z0)ndz = 0 (19.4)

where the expression on the right is 0 by the Cauchy-Goursat theorem and because polynomials are entire.
Therefore, Morera’s theorem tells us that S(z) is analytic in D.
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Corollary 19.3. The power series S(z) is analytic within its disk of convergence.

Therefore, we can conclude that if we have a function f : D → C where D is a disk of convergence, f being
analytic in D is equivalent to f having a Taylor series in D.

Example 19.1. Let f(z) =

{
sin z
z z 6= 0

1 z = 0
. Show f(z) is entire.

We could check this using the definition of the derivative at z = 0, using L’Hopital’s
rule (which holds in the complex case although we haven’t proved that).

lim
z→0

sin z
z − 1

z − 0
= lim
z→0

sin z − z
z2

(19.5)

= lim
z→0

cos z − 1

2z
(19.6)

= lim
z→0

− sin z

2
= 0 (19.7)

However, in light of this new result, we can write out the Taylor series:

sin z =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
(19.8)

sin z

z
=

∞∑
n=0

(−1)n
z2n

(2n+ 1)!
(19.9)

(19.10)

and if we plug in z = 0 to this Taylor series, we get 1, and so our final function does
satisfy this Taylor series. We want to show that the radius of convergence of this
series is infinity, so that the domain of analyticity is all of C.

let ω = z2. Then we get

∞∑
n=0

(−1)n
ωn

(2n+ 1)!
, (19.11)

which has an = (−1)n

(2n+1)! . We can show by the ratio test that this converges:

lim
n→∞

∣∣∣∣∣
1

(2n+3)!

1
(2n+1)!

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ 1

(2n+ 2)(2n+ 3)

∣∣∣∣ = 0, (19.12)
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and so the convergence radius is “ 1
0” =∞.

�

19.1.1 Differentiation by terms

We have a similar result for differentiating term by term!

Theorem 19.4. Let S(z) =
∑∞
n=0 an(z − z0)n on a convergent disk D = {|z − z0| < R}. Then S′(z) =∑∞

n=1 nan(z − z0)n−1 in D.

Proof. Fix any z1 ∈ D. Then S is analytic at z − 1. We want to show that S′(z1) is the target power series
evaluated at z1.

Start with the Cauchy integral formula extension:

S′(z1) =
1

2πi

∫
C

S(z)

(z − z1)2
dz, (19.13)

and integrating term by term and expanding out S, we can say this is equal to

S′(z1) =
1

2πi

∞∑
n=0

an

∫
C

(z − z0)n

(z − z1)2
dz (19.14)

The numerator is a polynomial and therefore entire, so we use the Cauchy formula extension and rewrite
the integrand as a derivative at z1:

S′(z1) =
1

2πi

∞∑
n=0

an2πi
d

dz
(z − z0)n|z=z1 (19.15)

=

∞∑
n=1

ann(z1 − z0)n−1, (19.16)

where we reindex as the n = 0 case just evaluates to 0.

Remark 19.5. The derivative has the same convergence radius as the function itself. If we say S′(z) has
a convergence radius R′, then by the differentiation theorem we have R′ ≥ R but by the integration theorem
we have R′ ≤ R, so R′ = R.

Example 19.2. Consider 1
z . Expand this using a geometric series:

1

z
=

∞∑
n=0

(−1)n(z − 1)n, |z − 1| < 1. (19.17)
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Taking a derivative, we get

− 1

z2
=

∞∑
n=1

(−1)nn(z − 1)n−1, |z − 1| < 1. (19.18)

We could also integrate, to get
∫
C

1
zdz = Log z. Let C be the line segment from 1

to z. 1
z has an antiderivative Log z in D = {|z − 1| < 1}. By integrating by terms,

we get

∫
C

1

z
dz =

∞∑
n=0

(−1)n
∫
C

(z − 1)ndz =

∞∑
n=0

(−1)n

n+ 1
(z − 1)n+1, (19.19)

and therefore we’ve derived the Taylor series for Log.
�

Remark 19.6. Integration by terms also works for Laurent series: if we let ω = 1
z−z0 , the series is∑∞

n=1 bnω
n, and the above results apply for |ω| < r =⇒ |z − z0| > 1

r .

19.2 Uniqueness of Taylor/Laurent Series

Theorem 19.7. Let
∑∞
n=0 an(z − z0)n =

∑∞
n=0 bn(z − z0)n for |z − z0| < R. Then an = bn ∀n.

Proof.

an = bn =
1

2πi

∫
f(z)

(z − z0)n+1
dz =︸︷︷︸

Cauchy integral formula

f(z0)

n!
(19.20)

Theorem 19.8. Let
∑∞
n=−∞ an(z − z0)n =

∑∞
n=−∞ bn(z − z0)n for R1 < |z − z0| < R2. Then an = bn ∀n

Proof. Apply the Laurent theorem:

1

2πi

∫
C

f(z)

(z − z0)n+1
dz =

1

2πi

∞∑
k=−∞

an

∫
C

(z − z0)k

(z − z0)n+1
dz (19.21)

For convenience, let Ik ,
∫
C

(z − z0)k−(n+1)dz.

Ik =


0 k ≥ n+ 1 by Cauchy-Goursat

1
2πi

∫
C

1
z−z0 dz = 1 k = n by Cauchy formula extension at 0

1
2πi

∫
C

(z−z0)k

(z−z0)n+1 dz = dn

dzn (z − z0)
k

= 0 k ≤ n− 1

(19.22)

Therefore, Ik = δnk, so the right hand side is just an and the proof is complete.
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19.3 Multiplying and Dividing Power Series

If f, g are analytic on some domains D1 = {|z− z0| < R1} and D2 = {|z− z0| < R2} respectively, then fg is
analytic on {|z − z0| < min{R1, R2}} and fg has a Taylor series on this domain given by

∑∞
n=0 cn(z − z0)n

where

cn =
[f(z0)g(z0)](n)

n!
=

1

n!

n∑
k=0

(
n

k

)
f (k)(z0)g(n−k)(z0) =

n∑
k=0

akbn−k (19.23)

,

i.e. cn is the convolution of an and bn.

Example 19.3. Consider f(z) = sinh z
1+z around z = 0. The Taylor series of sinh z and 1

1+z are known:

sinh z = z +
1

6
z3 +

120

z

5

+ . . . |z| <∞ (19.24)

1

1 + z
= 1− z + z2 − z3 + . . . |z| < 1 (19.25)

Therefore, their product has a Taylor series that converges for |z| < 1, with coeffi-
cients resulting from the convolution operation. Doing this by hand for a few terms,
we get

sinh z

1 + z
= z − z2 +

7

6
z3 − 7

6
z4 + . . .(|z| < 1) (19.26)

�

We can use this in conjunction with the Cauchy integral formula to extract contour integral values, for
example:

∮
|z|= 1

2

sinh z

(1 + z)z4
dz =︸︷︷︸

n=3

= 2πia3 =
7πi

3
(19.27)

because more generally,

f(z) =

∞∑
n=0

anz
n =

∞∑
n=0

f (n)(0)

n!
zn (19.28)

and



an =
f (n)(0)

n!
=

1

2πi

∫
C

f(z)

zn+1
dz (19.29)

Example 19.4. Consider 1
sinh z = 1

z+ 1
6 z

3+ 1
120 z

5 . The zeros of sinh z are z = nπi, n ∈ Z, so we can

work with the expansion in the punctured disk 0 < |z| < π. In this domain, we can
get the Laurent series by polynomial long division.

�

86



Lecture 20: Residues and poles 87

Math 185: Complex Analysis Spring 2021

Lecture 20: Residues and poles
Lecturer: Di Fang 15 April Aditya Sengupta

20.1 Singular points

The Cauchy-Goursat theorem tells us that if a function f is analytic at all points on C and interior to C,
then

∫
C
f(z)dz = 0. This is a restrictive assumption and not a very useful result, so let’s try and extend it.

In particular, let’s first consider the case where we have some singular points.

With one singular point, we can sometimes write the function as f(z) = g(z)
(z−z0)n , where g is analytic in D̄, and

then we can apply the Cauchy integral extension to get that the contour integral is equal to 2πi
(n−1)!g

(n−1)(z0).

In the past, we’ve only looked at this case; for example, when integrating trigonometric or hyperbolic
functions with zeros on the real axis, we’ve restricted ourselves to contours with only one singularity. What
if we wanted to extend this?

Consider
∫
C

1
z(z−1)dz where C = {|z| = 2} positively oriented. This has two singular points, so how do we

do this integral? Another representative example is
∮
|z|=1

e
1
z dz, which has a singular point at z = 0. This is

not expressible in terms of the form we used above. Let’s try and come up with a way to fix this!

Definition 20.1. A singular point z0 is isolated if there exists some punctured neighborhood of z0 such that
f is analytic with in it.

Example 20.1. Let f(z) = z−1
z5(z2+9) . z = 0,±3i are singular points. These are isolated, as 1-

neighborhoods around each of these points satisfy analyticity.
�

Example 20.2. f(z) = Log z does not have z = 0 as an isolated singular point, due to the branch
cut (no neighborhood of z = 0 that can exclude it.)

�

Example 20.3. Let f(z) = 1
sin π

z
has singularities at π

z = nπ, n ∈ Z, i.e. z = 1
n . Therefore z = 0 is

not isolated but the others are.
�
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20.2 Residues

Let z0 be an isolated singular point, and let the corresponding punctured neighborhood be B′. Then we can
expand f in B′ in a Laurent series around the singular point:

f(z) =

∞∑
n=0

an(z − z0)n +

∞∑
n=1

bn
(z − z0)n

(20.1)

where bn = 1
2πi

∫
C

f(z)
(z−z0)−n+1 dz and C is any positively oriented simple closed contour lying in B′.

Notice that if we take b1, then we see that

2πib1 =

∫
C

f(z)dz, (20.2)

i.e. if we can expand the function into its Laurent series, we get the residue at a pole by taking the coefficient
b1.

Definition 20.2. The residue of a function f at a point z0 is defined as the coefficient of the 1
z−z0 term in

the Laurent series of f around z0: Resz=z0 f(z) = b1.

Remark 20.1. If f is analytic at z0 as well as in the neighborhood, the Laurnt series reduces to just a Taylor
series, b1 = 0, so the residue is 0 and the contour integral is also 0, consistent with the Cauchy-Goursat
theorem.

Remark 20.2. If we can write f as g(z)
(z−z0)n , then the contour integral is 2πi times the n− 1th coefficient of

the Laurent series of g.

Example 20.4. Consider the integral I =
∫
C
ez−1
z4 dz, with C : |z| = 1 positively oriented. Using the

Cauchy integral extension:

I =
d3(ez − 1)

dz3

∣∣∣∣
z=0

=
2πi

3!
=
πi

3
(20.3)

and using the residue:

ez =

∞∑
n=0

zn

n!
=⇒ ez − 1

z4
=

∞∑
n=1

zn−4

n!
, (20.4)

i.e the residue Resz=0 f(z) = 1
3! and I = 2pii

3! = πi
3

�
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Example 20.5. We can now do the integral we weren’t able to do before: I =
∫
C
e1/zdz on C :

|z| = 1 positively oriented. The integrand can be expanded to e1/z =
∑∞
n=0

1
n!z
−n,

so I = 2πi · 1 = 2πi.
�

Example 20.6. The integral I =
∫
C
e

1
z2 dz has an integrand that can be expanded to

∑∞
n=0

1
n!z
−2n,

which has b1 = 0, therefore I = 0.
�

20.3 Residue theorem

What if we have more than one isolated singular points? We can generalize the above result:

Theorem 20.3 (Residue theorem). Let C be a simple closed contour that is positively oriented. Let f be
analytic inside and on C except for a finite number of isolated singular points zk(k = 1, . . . , n) inside C.
Then

∫
C

f(z)dz = 2πi

n∑
k=1

Resz=zk f(z) (20.5)

Proof. This is Cauchy-Goursat v3, considering the overall contour with the neighborhoods around each
isolated singularity removed.

∫
C

f(z)dz −
n∑
k=1

∫
Ck

f(z)dz = 0 (20.6)

∫
C

f(z)dz =

n∑
k=1

Resz=zk f(z) (20.7)

Example 20.7. Consider
∮
|z|=2

4z−5
z(z−1)dz. There are two poles, at z = 0 and z = 1, so summing

their residues gets us

I = 2πi(Resz=0 f(z) + Resz=1 f(z)) = 2πi(5− 1) = 8πi, (20.8)

where the coefficient s come from expanding the integrand using geometric series,
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4z − 5

z(z − 1)
=

(
4− 5

z

)
−1

1− z
=

(
4 −5

z︸︷︷︸
)

( −1︸︷︷︸−z − z2 − . . . ), (20.9)

and

4z − 5

z(z − 1)

1

z − 1

4(z − 1)− 1

z
=

(
4− 1

z − 1

)
1

1 + (z − 1)

(
4− 1

z − 1︸ ︷︷ ︸
)

( 1︸︷︷︸+(z − 1) + . . . )

(20.10)

�

20.4 Residues at infinity

Definition 20.3. Let f be analytic for R1 < |z| < ∞. Then we call “∞” an isolated singular point of f ,
and we define its residue according to

Resz=∞ f(z) , − 1

2πi

∫
C0

f(z)dz, (20.11)

where C0 is |z| = R0 > R1. We further claim this is equal to −Resz=0
1
z2 f

(
1
z

)
.

Theorem 20.4. Let f be analytic in C \ {z1, . . . , zn} where the zks are isolated singular points interior to
some contour C. Then

∫
C

f(z)dz = 2πiResz=0

(
1

z2
f

(
1

z

))
(20.12)

This is an alternate formulation of the residue theorem that might be easier in some cases, where f(1/z)
is easier to deal with than f(z), where it’s not obvious how to deal with the general Laurent series, or just
where we only want to deal with one residue instead of n residues for n singularities.

Proof. By the Laurent theorem,

f(z) =

∞∑
n=−∞

cnz
n (20.13)

and so
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1

z2
f

(
1

z

)
=

∞∑
n=−∞

cn
1

zn+2
(20.14)

The residue of this function at z = 0 is c−1, which by the residue theorem is also
∫
C
f(z)dz.

Example 20.8. Let f(z) = z3(1−3z)
(1+z)(1+2z4) and let C : |z| = 3 (pos). The integral can be found as

follows:

1

z2
f

(
1

z

)
=

1

z

z − 3

(z + 1)(z4 + 2)
(20.15)

The 1
z term is equal to 1

z times the constant term in the Taylor expansion of
z−3

(z+1)(z4+2) , so evaluating this at z = 0 yields a residue of − 3
2 . Therefore I = −3πi.

�

20.5 Types of isolated singular points

Let z0 be an isolated singular point. f can be expanded into a Laurent series around z0 with coefficients an
in the analytic part and bn in the principal part.

The three types of isolated singular points can be classified based on how many of the principal coefficients
bn are nonzero.

1. A removable isolated singular point has no nonzero bns, i.e. the Laurent series is a Taylor series. For

example, z = 0 is removable in both f(z) =

{
ez z 6= 0

0 z = 0
and in f(z) = sin z

z , z 6= 0.

2. An essential isolated singular point has an infinite number of bn 6= 0.

3. A pole of order m has a nonzero finite number of bn nonzero, and m is the maximum index that is
nonzero. Specifically, bm 6= 0 and bk = 0 for all k > m.

Example 20.9. e1/z can be expanded into
∑i
n=0 nfty

1
n!

1
zn , 0 < |z| <∞, so z = 0 is essential.

�

Example 20.10. Let f(z) = 1
z2(1−z) = 1

z2 + frac1z +
∑∞
n=0 z

n. z = 0 is a pole of order 2.
�



Example 20.11. f(z) = z2+z−2
z+1 = z − 2

z+1 . z = −1 is a pole of order 1, or a simple pole.
�
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21.1 Residues at poles

Theorem 21.1. Let z0 be an isolated singular point of f . Then, the following two statements are equivalent:

1. z0 is a pole of order m (m = 1, 2, . . . ) of f .

2. Let f(z) = φ(z)
(z−z0)m (m = 1, 2, . . . ). Then φ(z) is analytic and nonzero at z0.

Moreover, if either of the above holds, then

Resz=z0 f(z) =
φ(m−1)(z0)

(m− 1)!
(21.1)

This gives us a standard way to rewrite a function in terms of its poles, and we can then use the Cauchy
integral formula (for m = 1) or extension (for m > 1) to evaluate its residue.

Proof. We show 1 implies 2.

Let z0 be a pole of order m. We expand f into its Laurent series about m, and because z0 is a pole of order
m we only have principal parts up to the mth power:

f(z) =
∞∑
n=0

an(z − z0)n +
m∑
n=1

bn
(z − z0)n

. (21.2)

Pull out a factor of 1
(z−z0)m :

f(z) =
1

(z − z0)m
(g(z)(z − z0)m + b1(z − z0)m−1 + · · ·+ bm)︸ ︷︷ ︸

,φ(z)

. (21.3)

We see that because φ(z) is a polynomial centered at z0, it is analytic at z0. Further, φ(z0) 6= 0 as
φ(z0) = bm 6= 0.

We show 2 implies 1.

Let f(z) = φ(z)
(z−z0)m be analytic at z0. Taylor expand φ in a neighborhood of z0:
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φ(z) =

∞∑
n=0

an(z − z0)n = a0 + a1(z − z0) + . . . (21.4)

and so

φ(z)

(z − z0)m
=

a0

(z − z0)m
+

a1

(z − z0)m−1
+ · · ·+ am + am+1(z − z0) + am+2(z − z0)2 + . . . (21.5)

and therefore we get that z0 is a pole of order m.

Example 21.1. Let f(z) = z+4
z2+1 . We get that z = ±i are isolated singular points. At z = i, we

rewrite the function in the form suggested by the theorem, f(z) =
z+4
z+i

z−i . Similarly

at z = −i, f(z) =
z+4
z−i
z+i . This makes computing residues a lot simpler:

Resz=i f(z) =
z + 4

z + i

∣∣∣∣
z=i

=
i+ 4

2i
(21.6)

Resz=−i f(z) =
z + 4

z − i

∣∣∣∣
z=−i

=
−i+ 4

−2i
(21.7)

(21.8)

�

Example 21.2. Let f(z) = (log z)3

z2+1 , where log z = ln r + iθ(r > 0, θ ∈ (0, 2π)) (i.e. a branch cut
excluding the positive reals). The poles are z = ±i, and so the residue at i is

Resz=i f(z) =
(log z)3

z + i

∣∣∣∣
z=i

=

(
iπ2
)3

2i
= −π

3

16
(21.9)

and similar for z = −i.
�
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21.2 Zeros of analytic functions

Definition 21.1. z0 is a zero of order m if 0 = f(z0) = f (1)(z0) = · · · = f (m−1)(z0) and f (m)(z0) 6= 0.

Remark 21.2. Note that if f ≡ 0 (identically zero), we cannot say f has zeros of any finite order, because
there are no derivatives that are nonzero.

Theorem 21.3. Let f be analytic at z0. Then the following statements are equivalent:

1. f has a zero of order m at z0.

2. f(z) = (z − z0)mg(z), where g is analytic and nonzero at z0.

This resembles the statement we had for a pole of order m.

Proof. We show 1 implies 2.

Let f have a zero of order m. Since f is analytic at z0, it can be Taylor expanded in a neighborhood of z0:

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n (21.10)

=
f (m)(z0)

m!
(z − z0)m +

fm+1(z0)

(m+ 1)!
(z − z0)m+1 + . . . (21.11)

= (z − z0)m
[
f (m)(z0)

m!
+
f (m+1)(z0)

(m+ 1)!
+ . . .

]
︸ ︷︷ ︸

,g(z)

(21.12)

and we know g(z0) = f(m)(z0)
m! 6= 0 and g is analytic as it is a Taylor series in a neighborhood around z0.

To show 2 implies 1, we Taylor expand g(z) about z0, and inside of that Taylor expansion the first term
corresponds to the nonzero term f (m)(z0).

Theorem 21.4. Let two functions p, q be analytic at z0. Let p(z0) 6= 0 and let q have a zero of order m at

z0. Then p(z)
q(z) has a pole of order m at z0.

Proof. (sketch) We can represent q(z) = (z − z0)mg(z), where g is analytic and nonzero at z0. Therefore,
the quotient can be rewritten as

p(z)

q(z)
=

p(z)
g(z)

(z − z0)m
, (21.13)

where we know the numerator is analytic at z0 and nonzero as it is the quotient of nonzero functions that
are analytic at z0.

Theorem 21.5. Let p, q be analytic at z0, let p(z0) 6= 0, q(z0) = 0, q′(z0) 6= 0, i.e. z0 is a zero of order 1 of

q. Then z0 is a simple pole of p(z)
q(z) , and Resz=z0

p(z)
q(z) = p(z0)

q′(z0) .
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Proof. By the previous theorem, z0 is a simple pole of p
q , so it suffices to show that the residue is what was

claimed above.

Resz=z0
p(z)

q(z)
= Resz=z0

p(z)

(z − z0)g(z)
=
p(z0)

g(z0)
, (21.14)

where q(z) = (z − z0)g(z). Take a derivative at z = z0:

(z − z0)g′(z) + g(z) = q′(z) =⇒ g(z0) = q′(z0). (21.15)

Therefore Resz=z0
p(z0)
q′(z0) .

Lemma 21.6. Let f be analytic at z0 and let f(z0) = 0. Then either f ≡ 0 in some neighborhood of z0, or
there exists some deleted neighborhood 0 < |z − z0| < ε such that f(z) 6= 0 in it.

A simpler way of saying this is that analytic functions that are not identically zero have only isolated zeros.

Proof. Suppose f is not identically zero in any neighborhood of z0, and z0 is a zero of order m ≥ 1. Then
we can write f(z) = (z − z0)mg(z) where g is analytic and nonzero at z0. This tells us that g is continuous
at z0 and g(z0) 6= 0. Therefore, there exists a neighborhood Bε(z0) such that g(z) 6= 0 for any z ∈ Bε(z0).
So, for all z ∈ B′ε(z0) (i.e. 0 < |z − z0| < ε) we just showed that g(z) 6= 0, and we know that (z − z0)m 6= 0,
and so f(z) 6= 0, which is what we wanted.

21.3 Analytic Continuation

We also call this Miracle #4!

Theorem 21.7. A function analytic in a domain D is uniquely determined over D by its values on a smaller
domain contained in D, or along a line segment contained in D.

A different way of stating this is: Suppose f, g are analytic in D. If f = g on a smaller domain in D, or on
a line segment continued in D, then f ≡ g in D.

Let f be defined in some subset of D. Its analytic continuation is a new function which

1. agrees with the old function in the original subset

2. but also makes sense elsewhere

Example 21.3. Consider the geometric series
∑∞
n=0 z

n. This only converges for |z| < 1. But we
know that within |z| < 1, this is equal to 1

1−z , which exists as long as z 6= 1.

Therefore 1
1−z is the analytic continuation of the power series in the domain D =

C \ {1}.
�



Lemma 21.8. Let f be analytic in a domain D. If f = 0 at each point of a domain/line segment contained
in D, then f ≡ 0 in D.

Proof. We will first prove this for a disk centered at z0, where f(z0) = 0. Let the disk be B. f is analytic
inside of B, so we Taylor expand:

f(z) =

∞∑
n=0

an(z − z0)n (21.16)

If z0 is not an isolated zero (which it is not by the statement of the lemma), then there exists some neigh-
borhood Bε(z0) ⊆ B such that f ≡ 0 in Bε(z0). Further, because f is exactly its Taylor series within B and
therefore within Bε(z0), all of the Taylor series coefficients must be zero. Therefore f = 0 in B.

Next, we generalize to an arbitrary domain D. We use the connectedness of the domain: we can draw a
multilinear path between z0 and any z̃ ∈ D, and around each point on this path we draw a ball in which the
function is 0, so it is 0 throughout.

21.4 Reflection Principle

Let f be analytic in some domain D that contains a segment of the x axis and whose lower half is symmetric
to the upper half with respect to the x axis. If f(x) is real for each x on this segmnet, then ¯f(z) = f(z̄)

Remark 21.9. The above condition is generally not true; for instance, let f(z) = z + i. Then f(z) = z + i
but f(z) = z − i.

Proof. Let F (z) , f(z). We want to show that F is analytic in D, and we further want to check that
f(x) = F (x) (analytic continuation using the segment of the x−axis).

Start with the fact that f is analytic at z0, z0inD. Then f(z) =
∑∞
n=0 an(z̄ − z̄0)n, and F (z) = f(z) =∑∞

n=0 an(z − z0)n in a neighborhood of z0. Therefore F (z) is analytic at z0, and therefore analytic in D.

Further, since f is real-valued on the segment, we know that f(x) = f(x) = F (x).
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22.1 Isolated Singularities

Let’s first look at how functions behave near removable singularities.

Theorem 22.1. Let z0 be a removable singularity of a function f . Then f is bounded and analytic in some
deleted neighborhood B′ε(z0).

We almost have the converse:

Theorem 22.2 (Riemann’s theorem of removable singularities). Suppose f is bounded and analytic in some
B′ε(z0) and f is not analytic at z0. Then z0 is a removable singularity of f .

Proof. (of the first theorem) Let g be a function that matches f except at z0, where we set g(z0) such that
it is analytic in Bε(z0). Then g is continuous in Bε0(z0) where 0 < ε0 < ε, which implies g is bounded in
Bε0(z0) and so f is bounded in the punctured neighborhood Bε0(z0) \ {z0}, and therefore f is bounded in
B′ε(z0).

Proof. Since f is analytic in the punctured neighborhood, there exists a Laurent series such that

f(z) =

∞∑
n=0

an(z − z0)n +

∞∑
n=1

bn
(z − z0)n

, z ∈ B′ε(z0). (22.1)

In order for z0 to be a removable singularity, we would like to show that the bns are all 0, i.e.

1

2πi

∫
C

f(z)dz

(z − z0)−n+1
= 0. (22.2)

To do this, we use the M-L estimate on the contour |z − z0 = ε0 for some arbitrary ε0 such that 0 < ε0 < ε.
First, we know that because f is bounded, there exists some M such that |f(z)| ≤M for all z ∈ C, so using
that,

|bn| =
∣∣∣∣ 1

2π

∫
C

f(z)dz

(z − z0)−n+1

∣∣∣∣ ≤ 1

2π

M

ε0

−n+1

︸ ︷︷ ︸
M

2πε0︸︷︷︸
L

(22.3)

= Mεn0 , (22.4)

i.e. by choosing ε0 → 0, we get that |bn| is arbitrarily small and so bn = 0, which completes the proof.



22.2 Pole Singularities

Theorem 22.3. If z0 is a pole of f , then lim
z→z0

f(z) =∞.

This takes away the boundedness we relied on before.

Proof. It suffices to show lim
z→z0

1
f(z) = 0. Suppose f has z0 as a pole of order m. Then, the function can be

written as f(z) = φ(z)
(z−z0)m , and so

lim
z→z0

1

f(z)
= lim
z→z0

(z − z0)m

φ(z)
=

0

φ(z0)
= 0. (22.5)

22.3 Essential Singularities

Theorem 22.4 (Casorati-Weierstrass Theorem). Let z0 be an essential singularity of f (this tells us that f
is analytic in B′δ0(z) because essential singularities are isolated) and let ω0 be any complex number. Then,
for all ε > 0 and for all 0 < δ < δ0, there exists z ∈ B′δ(z0) such that |f(z)− ω0| < ε

That seems powerful and cool! What does it mean?

Suppose there is a function mapping the x − y plane to the uv plane. Consider a δ−neighborhood of some
essential singularity z0. Then, we can get ε−close to whatever point we want in the u− v plane by choosing
some point within the δ−neighborhood of the singularity. Essentially, this maps the small neighborhood
around z0 to the entire u− v plane!

Another way of saying this is the image of B′δ(z0) under f is dense in C.

Proof. Towards a contradiction, say there exists some ω0 that is not attainable for all ε, δ in this way, i.e.
there exists an ε > 0 and some 0 < δ < δ0 such that for all z ∈ B′δ(z), |f(z)− ω0| ≥ ε.

Let g(z) , 1
f(z)−ω0

. Since f(z)−ω0 6= 0 (otherwise we’d be done), this function is analytic as it’s the quotient

of analytic, nonzero functions. Further, it is bounded: since |f(z) − ω0| ≥ ε, we have that
∣∣∣ 1
f(z)−ω0

∣∣∣ ≤ 1
ε .

Therefore, by Riemann’s theorem, z0 is a removable singularity of g.

Redefine g(z0) to make it analytic in Bδ(z0). Now we have two cases.

If g(z0) 6= 0, then we write f(z) = ω0 + 1
g(z) , which is analytic in Bδ(z0) if we say this also holds at z0. In

other words, z0 is a removable singularity of f , which is a contradiction!

If g(z0) = 0, then either g(z) is identically zero (contradiction, as there are no essential singularities) or z0 is
a zero of some finite order m, and so g(z) = (z − z0)mφ(z). z0 is therefore a pole of order m of the function
f , which is a contradiction!

Remark 22.5. (Great Picard theorem, intuitive statement) in each neighborhood of an essential singularity,
the function takes values of every complex number infinitely many times, with at most one complex number
that is not attainable.
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We can use residues to compute difficult improper integrals in R, and to prove even more powerful theorems.
Today, we’ll look at the first of these.

There are four common forms for integrals that can be done using residues; only the first three will be on
our final.

Recall that an improper integral has a form something like
∫∞

0
f(x)dx = lim

R→∞

∫ R
0
f(x)dx, or

∫∞
−∞ f(x)dx =

limR1→∞
∫∞

0
f(x)dx + limR2→∞

∫ 0

R2
f(x)dx. When R1 = −R2 in the second of these, we call the integral

the Cauchy principal value (P.V.) of the integral.

P.V.

∫ ∞
−∞

f(x)dx = lim
R→∞

∫ R

−R
f(x)dx. (23.1)

Remark 23.1. 1. The P.V. of an integral over all of R is not necessarily equal to the integral itself. If∫∞
−∞ f(x)dx converges, it is equal to its principal value, but the converse does not hold.

Example 23.1. Look at the integral
∫∞
−∞ xdx = lim

R1→∞

∫ R1

0
xdx+ lim

R2→−∞

∫ 0

R2
xdx. Both parts

of this evaluate to x2

2 evaluated between 0 and infinity, so the integral does not

converge. However, the principal value exists, as that goes to lim
R→∞

x2

2

∣∣∣R
−R

=

0.
�

2. Suppose f is continuous on (−∞,∞) and odd. Then the principal value of its integral is 0. If it is
continuous and even, then its principal value is double the integral over just the positive reals, i.e.
P.V.

∫∞
−∞ f(x)dx = 2

∫∞
0
f(x)dx.

Now, we consider the four forms. We motivate each one with examples.

Example 23.2. We know that
∫∞
−∞

1
1+x2 dx = π. This integrand is even, and we know it converges

so it should be equal to its principal value.

P.V.

∫ ∞
−∞

1

1 + x2
dx = lim

R→∞

∫ R

−R

dx

1 + x2
. (23.2)

Consider f(z) = 1
1+z2 and C̃R to be the positively-oriented semicircle of radius R

in the upper half-plane (0 ≤ θ ≤ π). Then the contour integral
∮
C̃R

f(z)dz is closed
and positively oriented. Split the curve into the arc of the circle CR, and the real
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axis (from −R→ R) L:

∮
C̃R

f(z)dz =

∫
CR

f(z)dz +

∫
L

f(z)dz =︸︷︷︸
residuetheorem

2πiResz=i f(z), (23.3)

where z = i is a simple pole of 1
1+z2 = 1/(z+i)

z−i , so we can evaluate the residue by

plugging in z = i to 1
z+i , so we get that the residue is 2πi 1

z+i

∣∣∣
z+i

= 2πi 1
2i = π.

Having shown that the whole contour integral is π, we now want to show that the
integral over CR comes out to 0, so that we know that the integral over L (which
is the real-valued integral we’re interested in) comes out to π. We use the M-L
estimate:

∣∣∣∣ 1

1 + z2

∣∣∣∣ ≤ 1

R2 − 1
, |z| = R

∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ ≤ 1

R2 − 1︸ ︷︷ ︸
M

πR︸︷︷︸
L

R→∞−−−−→ 0. (23.4)

and so we get the desired result.
�

This is form 1! In general, if we have
∫∞
−∞

P (x)
Q(x)dx where the integrand is even with no singularities on the

real axis, we first find all the poles in the upper half-plane and then compute the residues and apply the
residue theorem.

∫ R

−R
· · ·+

∫
CR

· · · = 2πi

∑
j

Resz=zj
P (z)

Q(z)

 , (23.5)

for poles at z = zj . Finally, we let R→∞ and apply the M-L estimate to show the CR integral is 0. For the
M-L estimate, we need degQ ≥ degP + 2. The reason for this is that M = O

(
1

RdegQ−deg P

)
= O

(
1
Ra

)
, a ≥ 2

and L = 2πR, so their product is in O
(

1
Ra−1

)
, which implies a− 1 ≥ 1 =⇒ a ≥ 2.

For form 2, we look at functions of the form P (x)
Q(x) sin ax or P (x)

Q(x) cos ax. This is a useful form for integrating

Fourier series. Consider the function

f(z) =
P (z)

Q(z)
eiaz, (23.6)

which combines both at once - at the end we can take a real or imaginary part.

Along the upper-half plane, |eiaz| = |eia(x+iy)| = e−ay ≤ 1 and so this is bounded.
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Example 23.3. Consider
∫∞
−∞

cos ax
1+x2 dx. The answer is πe−a, but how do we get there?

Consider the complex function f(z) = eiaz

1+z2 This has a UHP singularity at z = i.
Split this as we did before:

∫
CR

f(z)dz +

∫ R

−R

eiax

1 + x2
dx = 2πiResz=i

eiaz

1 + z2
= 2πi

eiaz

z + i

∣∣∣∣
z+i

(23.7)

= 2πi
e−a

2i
= πe−a. (23.8)

Now it remains to show the CR integral is 0. This is the case, similar to the above
example:

∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ ≤ 1

R2 − 1︸ ︷︷ ︸
M

πR︸︷︷︸
L

R→∞−−−−→ 0. (23.9)

Therefore, we get that
∫∞
−∞

eiax

1+x2 dx = πe−a. Taking the real part, we get the desired

result. Note that taking the imaginary part shows us that
∫∞
−∞

sin x
1+x2 dx = 0; this

should be expected as sin is odd.
�

Generally, for M-L to work in these cases, we need degQ ≥ degP + 2. Can we generalize this a bit? Yes; if
degQ = degP + 1, we can still show that

∫
CR

f(z)dz → 0, but not via the M-L estimate; the best bound

that can be furnished by the M-L estimate is O(1) whereas we would need at least O(1/R). However, we
can use the Jordan lemma to show this instead.

We first state the Jordan inequality:
∫ π

0
e−R sin θdθ < π

R .

Proof. Let I ,
∫ π

0
e−R sin θdθ = 2

∫ π/2
0

e−R sin θdθ. Between 0 and π
2 , we get that sin θ > 2θ

π , so e−R sin θ <

e−
2θ
π R. Therefore

I < 2

∫ π
2

0

e−
2θ
π Rdθ = −2

π

2
e−

2θ
π R
∣∣∣θ=π/2
θ=0

(23.10)

=
π

R
(1− e−R) <

π

R
. (23.11)

Lemma 23.2 (Jordan lemma). Let CR : z = Reiθ, R > 0, θ ∈ [0, π]. Then the following bound holds:

I =

∫
CR

g(z)eiazdz (23.12)

|I| ≤MR
π

a
, (23.13)
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where MR = maxz∈CR |g(z)|.

Proof.

I =

∫
CR

g(z)eiazdz =

∫ π

0

g(Reiθ)eiaRe
iθ

Rieiθdθ (23.14)

We do something similar to the M-L estimate, except for a regular parameterized integral rather than a

contour integral: bound g(Reiθ) by MR, bound |eiaReiθ | ≤ e−aR sin θ and bound |Rieiθ| = R.

|I| ≤
∫ π

0

MRRe
−aR sin θ <︸︷︷︸

Jordanineq

MRR
π

aR
=
MRπ

a
, (23.15)

as desired.

This inequality works as long as MR = O(1/R), i.e. degQ = degP + 1 at least.

Example 23.4. Consider
∫∞

0
x sin(2x)
x2+3 dx. This is not over all R but it is even, so we can proceed.

The singularity is at z =
√

3i, and so

∫
CR

f(z)dz +

∫ R

−R
f(x)dx = 2πiResz=

√
3i f(z) = 2πi

ei2zz

z +
√

3i

∣∣∣∣
z=
√

3i

= πie−2
√

3.

(23.16)

It remains to show that the CR integral is 0, which is the case here by the Jordan
inequality:

∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ ≤ R

R2 − 3

π

2

R→∞−−−−→ 0. (23.17)

For the final integral value, we take the imaginary part of the result from the residue
divided by 2:

I =
π

2
ie−2

√
3. (23.18)

�

For form 3, we look at integrals where the integrand f has a pole in R. The residue theorem no longer
applies in this case. To fix this, we take an indented path with a little semicircular detour around the pole.
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Example 23.5. Consider the Dirichlet integral
∫∞

0
sin x
x dx = π

2 . We take f(z) = eizz

This does not actually include any poles, so the contour integral actually just reduces
to the Cauchy-Goursat theorem:

0 =

∫
CR

f(z)dz +

∫
Cr

f(z)dz +

∫ −r
−R

f(x)dx+

∫ R

r

f(x)dx. (23.19)

Send R→∞, r → 0. Using the Jordan lemma, the CR integral has no contribution:

∣∣∣∣∫
CR

eiz

z
dz

∣∣∣∣ ≤︸︷︷︸
Jordan lemma

1

R
π

R→∞−−−−→ 0. (23.20)

Now, we look at the second term. We claim the following:

lim
r→0

∫
Cr

eiz

z
dz = −πi. (23.21)

We prove the claim by expanding the integrand in a power series:

eiz

z
=

1

z
(1 + iz +

(iz)2

2!
+

(iz)3

3!
+ . . . ) (23.22)

=
1

z
+ i+

i2

2!
z +

i3

3!
z2 + . . .︸ ︷︷ ︸

analytic part,,h(z)

(23.23)

and we can integrate by terms to get
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∫
Cr

eiz

z
dz =

∫
Cr

1

[
z]dz +

∫
Cr

h(z)dz. (23.24)

We do this by parameterization, noting that Cr is negatively oriented:

∫
Cr

1

z
dz = −

∫
−Cr

1

z
dz = −

∫ π

0

1

reiθ
rieiθdθ = −πi, (23.25)

where −Cr : z = reiθ, θ ∈ [0, π].

Next, we look at the analytic term. Since h(z) is analytic in |z| <∞, it is continuous
on Cr, so |h(z)| ≤M0 on Cr.

∣∣∣∣∫
Cr

h(z)dz

∣∣∣∣ ≤M0πr
r→0−−−→ 0. (23.26)

Therefore, lim
r→0

∫
Cr

eiz

z dz = −πi.

Now, we’re left with the two real parts, which sum to the real integral we are
interested in. We work with the more general complex form, which we can split
apart later:

∫ 0

−∞

eix

x
dx+

∫ ∞
0

eix

x
dx =

∫ 0

−∞

cosx

x
dx+

∫ ∞
0

cosx

x
dx+ i

(∫ 0

−∞

sinx

x
dx+

∫ ∞
0

sinx

x
dx

)
,

(23.27)

where the last term is even and therefore sums to 2
∫∞

0
sin x
x dx. Therefore,

0 = 0− πi+

∫ ∞
−∞

cosx

x
dx+ i2

∫ ∞
0

sinx

x
dx. (23.28)

Take the imaginary part:

0 = −π + 2

∫ ∞
0

sinx

x
dx, (23.29)

which gives us



∫ ∞
0

sinx

x
dx =

π

2
(23.30)

as desired.
�

Skipping form 4 for now for time (out of scope.)

106


