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1 Lecture 1: Overview, Integration by Parts

1.1 Overview

This course is divided into three overall parts:

1.1.1 Techniques of Integration

• How to compute
∫
f(x)dx for many different types of functions f(x)

• How to compute the definite integral
∫ a
b
f(x)dx approximately

•
∫∞
a
f(x)dx

etc.

1.1.2 Sequences and Series

• Convergence, divergence, absolute and conditional convergence of series
and sequences.

• Power series

• Taylor series

1.1.3 Differential Equations

• Separation of variables, integrating factor method

• Homogeneous second-order differential equations

• Non-homogeneous differential equations

1.2 Review of Math 1A

1.2.1 Continuity

A function f(x) is continuous at x = a if

• f(a) is defined

• lim
x→a

f(x) = f(a)
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f(x) is continuous on a closed interval [c, d] if it is continuous at every
point on that interval.

1.2.2 Differentiation

f ′(a) =
df(a)

dx
:= lim

x→a

f(x)− f(a)

x− a
When the above limit exists, f(x) is said to be differentiable at x = a.
f(x) is differentiable on a closed interval [c, d] if it is differentiable at each

point of [c, d].

1.3 Rules of differentiation and integration

Recall three basic rules of differentiation:

(f + g)′ = f ′ + g′

f(g(x)) = f ′(g(x))g(x)

(fg)′ = f ′g + fg′

Integration has three corresponding rules,∫
(f + g)dx =

∫
fdx+

∫
gdx∫

f(g(x))′dx =

∫
f ′(g(x))g′(x)dx = f(g(x)) + C

The third corresponding rule is referred to as ”integration by parts” and
is covered in a later section of this lecture.

1.4 Basics of Integration

The indefinite integral or antiderivative of a function f(x) is defined as the
function F (x) given that

F ′(x) = f(x)
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Note that in general, we can add an arbitrary constant C to F (x) with-
out affecting this relation, as constants vanish during differentiation of the
antiderivative to get the function back again.

For example, if f(x) = xn,

F (x) =

∫
f(x)dx =

xn+1

n+ 1
+ C

In general, finding F (x) is difficult, and is sometimes not possible analyt-
ically, e.g. for f(x) = e−x

2
.

1.5 The definite integral

Geometrically, the antiderivative of a function is the area under the curve
defined by that function. We can find the area enclosed between two specific
limits - call the lower limit a and the upper limit b - by taking the area of
an infinitesimally small slice and adding up the areas of each slice between
a and b.

Let there be n slices, where x0 = a and xn = b. Then, the width of the
i -th slice is

∆xi = xi − xi−1

Then, to find the area of the slice, we evaluate the function f(x) at some
intermediate value x∗i where xi−1 ≤ x∗i ≤ xi.

The value of the area under the curve is then

n∑
i=1

f(x∗i )∆xi

and we define the definite integral as this value as n goes to infinity:∫ b

a

f(x)dx := lim
n→∞, ∆xi→0

n∑
i=1

f(x∗i )∆xi

1.6 Fundamental Theorem of Calculus

If F (x) is an antiderivative of f(x), then
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F (x)
∣∣∣b
a

:= F (b)− F (a) =

∫ b

a

f(x)dx

The key point in this is that it does not matter which of infinitely many
antiderivatives is chosen for this. In indefinite integrals, an arbitrary constant
is added to represent the entire set of possible antiderivatives, but this is not
a consideration in definite integration.

1.7 Integration by Parts

We start with the product rule for differentiation, stated above as

(fg)′ = f ′g + fg′

Then, as stated above, the antiderivative of the sum of two functions is
the sum of the individual antiderivatives of each function; therefore, we can
integrate this expression on both sides:∫

(fg)′dx =

∫
f ′gdx+

∫
fg′dx

The left-hand side of this expression corresponds simply to fg, as we are
taking the integral of a derivative of the original function. Therefore, we can
rearrange this: ∫

fg′dx = fg −
∫
f ′gdx

This gives us a way to simplify the antiderivatives of the products of some
functions. In general, we want to choose f and g so that f ′ is ”simpler” than
f .

1.8 Examples

1

I =

∫
lnxdx =

∫
lnx(x′)dx

We choose f = lnx, and g′ = dx = (x′)dx:
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I = x lnx−
∫

(lnx)′xdx = x lnx−
∫

1

x
xdx

= x lnx− x+ C

2

I =

∫
x sinxdx

Choose f = x, g′ = sinxdx:

I = −x cosx−
∫

(− cosx)dx = −x cosx+ sinx+ C

3

I =

∫
xexdx

We choose f = x, and g′ = exdx:

I = xex −
∫
exdx = (x− 1)ex + C

Note: a more compact way of writing the general form of integration by
parts is

∫
udv = uv −

∫
vdu, in which you choose g′ = dv and find v as the

antiderivative of g′ or dv. This makes no functional difference, but may be a
little easier to understand.

2 Lecture 2: Trigonometric Integrals

2.1 A specific case of Integration by Parts

I =

∫
ex sinxdx

Choose f = ex, g′ = sinxdx:

I = −ex cosx−
∫
−ex cosxdx
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This requires that we use integration by parts again, with f = ex and
g′ = cosxdx: ∫

ex cosxdx = ex sinx−
∫
ex sinxdx

The integral in this is the original problem, which we represented by I.
Therefore,

I = −ex cosx+ ex sinx− I =⇒ 2I = ex(sinx− cosx)

So the original integral is

I =
ex

2
(sinx− cosx) + C

Note that the practice of referring to the value of the required antideriva-
tive as I is not standard for this course, but as can be seen above, it can
simplify problems.

2.2 Trigonometric Integrals

This name refers to any integrals involving the functions cosx or sin x. They
can frequently be simplified using trigonometric identities:

2.2.1 A first example

I =

∫
sin3 xdx =

∫
(1− cos2 x) sinxdx

(− cosx)′ = sinxdx, therefore,

I =

∫
(1− cos2 x)(− cosx)′ =

∫
(cos2 x− 1)(cosx)′

We make the substitution u = cosx:

I =

∫
(u2 − 1)du =

u3

3
− u+ C

Now, reverse the substitution:

I =
cos3 x

3
− cosx+ C
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2.3 Trigonometric identities

The above example used the identity sin2 x + cos2 x = 1. Other important
identities include:

• sin2 x = 1
2
(1− cos 2x)

• cos2 x = 1
2
(1 + cos 2x)

• sin(x+ y) = sin x cos y + sin y cosx

• cos 2x = cos2 x− sin2 x

• cos(x+ y) = cos x cos y − sinx sin y

Also noteworthy is Euler’s formula, which is not strictly necessary but
may still be useful:

eix = cosx+ i sinx

This can be restated as:

cosx =
eix + e−ix

2

sinx =
eix − e−ix

2i

Some other important formulas are:

(tanx)′ =
1

cos2 x

tan2 x = sec2 x− 1, secx =
1

cosx

(secx)′ = secx tanx
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2.3.1 Examples using identities

1

I =

∫
sin2 xdx =

∫
1

2
(1− cos 2x)dx

I =
1

2

∫
dx− 1

2

∫
cos 2xdx

I =
x

2
− 1

4

∫
cos(2x)d(2x)

∴ I =
x

2
− sin 2x

4
+ C

2 ∫
dx

cos2 x
=

∫
(tanx)′dx = tanx+ C

2.4 General forms of trigonometric integrals

1 ∫
sinm x cos2k+1 xdx =

∫
sinm x cos2k x cosxdx

=

∫
sinm x(1− sin2 x)k cosxdx

Substitute u = sinx, u′ = cosxdx:

=

∫
um(1− u2)kdu

upon which it reduces to a polynomial, which can be easily solved and
the substitution reversed using

∫
xndx = xn+1

n+1
+ C.
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2 ∫
(sinx)2k+1 cosn xdx =

∫
cosn x(1− cos2 x)k sinxdx

As above, use the substitution u = cosx, and the expression reduces to a
polynomial.

3

I =

∫
(tanx)m(secx)2kdx(k ≥ 2)

I = (tanx)m(secx)2k−2 sec2 xdx

I = (tanx)m(tan2 x+ 1)k−1d(tanx)

Substitute u = tanx and solve the polynomial antiderivative.

2.5 A note on trigonometric integrals

It is possible for one integral to be solved in multiple ways, which may result
in different-looking answers which are really the same. For example:

I =

∫
dx

cosx
=

∫
cosxdx

cos2 x
=

∫
d(sinx)

1− sin2 x
=

∫
du

1− u2
=

1

2
(log(u+1)−log(1−u))+C

The last step above was done using partial fractions, which will be covered
later. Re-substituting u = sinx, we get

I =
log(sinx+ 1)− log(1− sinx)

2
+ C

Alternatively, we can multiply and divide by secx+ tanx:

I =

∫
secx

secx+ tanx

secx+ tanx
dx

I =

∫
sec2 x+ secx tanx

secx+ tanx
dx

Let u = secx+ tanx, then du
dx

= secx tanx+ sec2 x:
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I =

∫
du

u
= log u+ C = log(secx+ tanx) + C

It is possible to show that these two expressions are really the same, even
though the procedure for both is very different.

3 Lecture 3: Trigonometric Substitutions

3.1 Overall Goal

Suppose we have a function of the form∫
R(x)

√
Ax2 +Bx+ Cdx

where R(x) is any rational function. Then, our goal is to convert this
into a trigonometric integral of the form∫

F (cosx, sinx)dx

since in general these functions are easier to compute.

3.2 Rational Functions

A rational function is any function of the form

R(x) =
P (x)

Q(x)

where P,Q are polynomials, which means they can be represented as

f(x) =
n∑
k=1

akx
k with the condition that an 6= 0.

3.3 Procedure for trigonometric substitution

1: Complete the square

ax2 + bx+ c = |a|
(
±
(
x+

b

2a

)2

+
( c

|a|

)
∓ b2

4a2

)
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We define new variables X and A, as follows:

X = x+
b

2a

±A2 =
c

|a|
∓ b2

4a2

Then, the original expression ax2+bx+c becomes one of three expressions,
which we convert into a trigonometric expression according to the table in
the next step.

2: Substitute

Expression Substitution Result√
A2 −X2 X = A sin θ A cos θ√
A2 +X2 X = A tan θ A sec θ√
X2 − A2 X = A sec θ A tan θ

3.4 Examples

1

I =

∫ √
1− x2dx

We consider the substitution x = sin θ, then dx = cos θdθ:

I =

∫ √
1− sin2 θ cos θ =

∫
cos2 θdθ

I =

∫
1

2
(1 + cos 2θ)dθ =

θ

2
+

sin 2θ

4
+ C

Then we reverse the substitution by setting θ = arcsinx:

I =
arcsinx

2
+

2 sin(arcsinx) cos(arcsinx)

4
+ C

I =
arcsinx

2
+
x
√

1− x2

2
+ C
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2

I =

∫
dx√

1 + x2

We substitute x = tan θ, then dx = sec2 θdθ:

I =

∫
sec2 θdθ√
1 + tan2 θ

=

∫
sec θdθ

I = ln(sec θ + tan θ) + C

Then, we reverse the substitution:

I = ln(sec(arctanx) + tan(arctanx)) + C = ln(
√
x2 + 1 + x) + C

3

I =

∫
dx√

9x2 + 6x− 8

In this case, we have to start by completing the square:

9x2 + 6x− 8 = (3x)2 + 2(3x)(1) + 12 − 9 = (3x+ 1)2 − 32

We can do one substitution to directly get a trigonometric integral, but
it may be easier to substitute twice, as follows: u = 3x+ 1, 3dx = du:

I =

∫
du/3√
u2 − 9

=
1

3

∫
du√
u2 − 9

Then, the next substitution: let u = 3 sec θ, then du = 3 sec θ tan θdθ,
and:

I =
1

3

∫
3 sec θ tan θdθ√

9 sec2 θ − 9
=

1

3

∫
3 sec θ tan θdθ

3 tan θ
=

1

3

∫
sec θdθ

As explained in section 2.5, this is equivalent to

I =
1

3

(
log(sec θ + tan θ)

)
+ C

We then reverse two substitutions: take θ = sec−1 u, then
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I =
1

3

(
log(u+

√
u2 − 1)

)
+ C

Now, take u = 3x+ 1:

I =
1

3

(
log(3x+ 1 +

√
9x2 + 6x− 8)

)
+ C

Note that it is possible to do this with one substitution, 3x+ 1 = 3 sec θ,
but multiple substitutions (although it may be more time consuming) are
less prone to error.

4

I =

∫
x− 2

x+ 2

dx√
1− x2

Substitute x = sin θ, then dx = cos θdθ:

I =

∫
sin θ − 2

sin θ + 2

cos θdθ

cos θ

I =

∫
sin θ − 2

sin θ + 2
dθ

This function can be split as follows:

I =

∫ (
1− 4

sin θ + 2

)
dθ

I = θ − 4

∫
dθ

sin θ + 2

We use the standard Weierstrass substitution (see next section), t = tan θ
2

and dθ = 2dt
1+t2

:

I = θ − 4

∫ 2dt
1+t2

2t
1+t2

+ 2

Then, multiplying throughout by 1 + t2:

I = θ − 4

∫
dt

1 + t+ t2
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Since θ is out of the integral, we do not need to change it so that it is
in terms of t; once we reverse all the substitutions, it will convert back into
terms of x either way.

Completing the square yields:

I = θ − 4

∫
dt

(t+ 1
2
)2 + 3

4

This suggests the substitution u =
t+ 1

2√
3/2

= 2t+1√
3

, dt =
√

3du
2

:

I = θ − 4

∫ √
3du/2

3u2

4
+ 3

4

I = θ − 4
√

3/2

3/4

∫
du

u2 + 1

∴ I = θ − 8√
3

arctanu+ C

Reversing substitutions,

I = θ − 8√
3

arctan
(2t+ 1√

3

)
+ C

I = θ − 8√
3

arctan
(2 tan( θ

2
) + 1

√
3

)
+ C

∴ I = arcsinx− 8√
3

arctan
(2 tan(arcsinx

2
) + 1

√
3

)
+ C

3.5 Weierstrass Substitution

When a trigonometric substitution is required, but no selection of new vari-
able is apparently correct, we can use the Weierstrass substitution as a ”silver
bullet”:

t = tan
(θ

2

)
=⇒ dθ =

1

2
sec2 θ

2
dx =⇒ dθ =

2dt

1 + t2

The advantage of this substitution is that it always gives a relatively
simple expression for sin θ and cos θ, as follows:
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sin θ =
2t

1 + t2
, cos θ =

1− t2

1 + t2

The result, in general, is:∫
R(sin θ, cos θ)dθ =

∫
R
(1− t2

1 + t2
,

2t

1 + t2

) 2dt

1 + t2

which is a rational function in t. In the next lecture, we will cover a
method to simplify rational functions.

4 Lecture 4: Partial Fraction Decomposition

4.1 Step 1: Long Division

Suppose we have a function f = P
Q

in which P and Q are polynomials of the
form

P (x) =
n∑
k=0

akx
k, an 6= 0

Q(x) =
m∑
k=0

akx
k, am 6= 0

We can then carry out long division to obtain the form

f = S +
R

Q

where the degree of R is strictly less than that of Q, yielding a proper
rational function.

Example 1

x2 + x+ 1

x− 1
=
x(x− 1) + 2x+ 1

x− 1
=
x(x− 1) + 2(x− 1) + 3

x− 1
= x+ 2 +

3

x− 1
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Example 2

x3 + 1

x2 + x+ 1
=
x(x2 + x+ 1)− x2 − x+ 1

x2 + x+ 1
=
x(x2 + x+ 1)− 1(x2 + x+ 1) + 2

x2 + x+ 1

= x− 1 +
2

x2 + x+ 1

4.2 Step 2: Fundamental Theorem of Algebra

Any polynomial with real coefficients can be expressed as a product, as fol-
lows:

Q(x) = (a1x+ b1)r1(a2x+ b2)r2 ...(c1x
2 + d1x+ e1)s1(c2x

2 + d2x+ e2)s2 ...

The polynomials of the form cx2 + dx + e are not decomposable any
further.

In general, for quadratic polynomials, they can be decomposed as follows:

ax2 + bx+ c = a(x− x1)(x− x2)

x1,2 =
−b±

√
b2 − 4ac

2a

When b2 − 4ac > 0, the solutions are both real. When b2 − 4ac = 0,
the solutions are both real and equal. When b2 − 4ac < 0, the solutions are
complex, i.e. for our purposes it cannot be decomposed.

4.3 Step 3: Decomposition

Assuming that P
Q

is proper, then it can be decomposed:

P

Q
=

A1

a1x+ b1

+
A2

(a2x+ b2)2
+...+

Ar1
(a1x+ b1)r1

+
B1x+ C1

c1x2 + d1x+ e1

+...+
Bs1x+ Cs1

(c1x2 + d1x+ e1)s1
+...
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Example 1

1

2x2 + 3x− 2
=

1

(2x− 1)(x+ 2)
=

A

2x− 1
+

B

x+ 2

To find the coefficients, we multiply by (2x− 1)(x+ 2) throughout:

1 = A(x+ 2) +B(2x− 1) = (A+ 2B)x+ (2A−B)

A+ 2B = 0, 2A−B = 1 =⇒ A =
2

5
, B =

−1

5

This means the decomposition into partial fractions is

2/5

2x− 1
− 1/5

x+ 2

Example 2

x

x3 − 1
=

x

(x− 1)(x2 + x+ 1)
=

Ax+B

x2 + x+ 1
+

C

x− 1

x = (Ax+B)(x−1)+C(x2 +x+1) = (A+C)x2 +(B−A+C)x+(−B+C)

∴ A+ C = 0, B − A+ C = 1, −B + C = 0

A = −1

3
, B = C =

1

3

x

x3 − 1
=
−1

3
x+ 1

3

x2 + x+ 1
+

1
3

x− 1

5 Lecture 5: Using PFD to Solve Integrals

Once we use partial fraction decomposition to simplify a high-degree poly-
nomial, it is relatively easy to integrate each of the resultant fractions.
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Example 1

I =

∫
dx

1− x2

We decompose this into partial fractions as follows:

1

1− x2
=

A

1− x
+

B

1 + x
=⇒ 1 = A(1 + x) +B(1− x)

A−B = 0, A+B = 1 =⇒ A = B =
1

2

Therefore,

I =

∫
dx

1− x2
=

∫
dx

2(1− x)
+

∫
dx

2(1 + x)

Evaluating both of these and adding the result, we get

I =
log(1 + x) + log(1− x)

2
+ C

Example 2

I =

∫
dx

x4 − 1

1

x4 − 1
=

A

x− 1
+

B

x+ 1
+
Cx+D

x2 + 1

1 = A(x2 + 1)(x+ 1) +B(x2 + 1)(x− 1) + (Cx+D)(x2 − 1)

1 = A(x3 + x2 + x+ 1) +B(x3 − x2 + x− 1) + Cx3 +Dx2 − Cx−D

1 = (A+B + C)x3 + (A−B +D)x2 + (A+B − C)x+ (A−B −D)

∴ A =
1

4
, B =

−1

4
, C = 0, D =

−1

2
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I =
1

4

∫
dx

x− 1
− 1

4

∫
dx

x+ 1
− 1

2

∫
dx

x2 + 1

Integrating term by term,

I =
1

4
log |x− 1| − 1

4
log |x+ 1| − 1

2
arctanx+ C

Example 3

I =

∫
x2 + 2x− 1

2x3 + 3x2 − 2x
dx

We split this using partial fraction decomposition,

I =

∫ ( 1

2x
+

1

5(2x+ 1)
− 1

10(x+ 2)

)
dx

I =
1

2
ln |x|+ 1

5

1

2
ln |2x+ 1| − 1

10
ln |x+ 2|+ C

∴ I =
1

2
ln |x|+ 1

10
ln
∣∣∣2x− 1

x+ 2

∣∣∣+ C

Note: the rest of this lecture was not exactly relevant to the course; the
residue theorem (in Math 185) was briefly introduced, but it is not at all
required for Math 1B.

6 Lecture 6: Approximate Integration

Some integrals are impossible to compute analytically, such as
∫
e−x

2
dx.

However, a corresponding definite integral can be computed approximately,
as follows: ∫ b

a

f(x)dx = lim
n→∞, ∆xi→0

n∑
i=1

f(x∗i )∆xi

This definition of the definite integral was covered in Lecture 1. The
difference here is that instead of taking limits, e.g. n→∞, we take particular
values and see what the value of the definite integral approaches.
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6.1 Left/Right End Point Approximation

If we choose a value of N, the rest of the approximation follows:

∆xi =
b− a
N

, xi = a+
i

N
(b− a), i = 0, 1, ....N

Left Approximation: x∗i = xi, Right Approximation: x∗i = xi+1

Then, the approximations become

Ln =
n−1∑
i=0

f(xi)
b− a
n

, Rn =
n−1∑
i=0

f(xi+1)
b− a
n
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I don’t really have the time or patience right now to figure out LATEXgraphics,
so I’m just doing this.

6.2 Midpoint Approximation

We can get a more accurate approximation, or rather lower the n required to
get an equally accurate approximation and therefore save on computational
effort, by taking the midpoint of each thin slice under the curve, as follows:

x∗i :=
xi−1 + xi

2
, i = 1, ..., n, xi = a+

i

n
(b− a)

Then the approximation is
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Mn =
n∑
i=1

f
(xi−1 + xi

2

)

6.3 Error

Since the above are all approximations, there will be some difference between
the value to which the integral tends and the approximated value. This is
characterised by a function En:

E(M)
n =

∣∣∣ ∫ b

a

f(x)dx−Mn

∣∣∣ ≤ K(b− a)3

24n2

The last expression is the error bound, which defines a maximum value
that the error cannot exceed. K is defined as any integer that is always
greater than the absolute value of the second derivative of f on the entire
interval [a, b]:

K ≥ |f ′′(x)|∀x ∈ [a, b]

A greater value of K implies a greater value for the error bound, therefore
we want to find the minimum possible value of K to get the most precise
estimate we can.

6.4 Trapezoidal and Simpson’s Rule

Rather than estimating the area under the curve of a function as a series of
rectangles of infinitesimal width, it is possible to model it with a series of
trapezoids or parabolas. The error bounds for both of these are

E(T )
n =

∣∣∣ ∫ b

a

f(x)dx− Tn
∣∣∣ ≤ K(b− a)3

12n2

E(S)
n =

∣∣∣ ∫ b

a

f(x)dx−Mn

∣∣∣ ≤ K(b− a)5

180n4

where K is defined as above.
For the error bound questions, it’s not really that necessary to know the

geometric interpretation of these approximations. You get the idea from the
midpoint approximation.
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6.5 Applications

In general, we are interested in the question: How accurate an answer can we
get for a given value of n, or the converse: Given an acceptable error bound,
how many computations must we carry out (how large must we take n) to
get an answer within that bound?

Consider the problem
∫ 2

1
dx
x

. Suppose we want to use the trapezoidal
approximation to obtain an answer accurate to within 10−4. Then, we look
at the error bound:

E(T )
n ≤ K(b− a)3

12n2

We first need to find a value for K before we can use this. Therefore, we
take the second derivative:

f ′′ =
2

x3
, x ∈ [1, 2]

This function is monotonically decreasing, therefore its maximum value
is at x = 1. f ′′(1) ≥ f ′′(x)∀x ∈ [1, 2] =⇒ K = 2.

Note that this is just the minimum possible choice of K, not the only
possibility. In general, though, we want to minimiseK within the constraints.
Therefore, we substitute K = 2, a = 1, b = 2 into the error bound and set it
less than 10−4:

E(T )
n ≤ 2

12n2
=

1

6n2
≤ 10−4

Solving for n and rounding up to the nearest natural number yields

n ≥ 100√
6
≈ 40.8 =⇒ n ≥ 41

A choice of n ≥ 50 is also acceptable (approximating
√

6 > 2) if the
required computation is difficult without a calculator.

6.6 Examples

1

Find the minimum n to obtain an approximate value for the integral from 0
to 1 of f(x) = x7 + x5 − x4, accurate to within 10−4.
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f ′′(x) = 42x5 + 20x3 − 12x2

We use the triangle inequality |a+ b| ≤ |a|+ |b| and consider the absolute
value of the second derivative, which is maximum at x = 1. Therefore we
take K = 42 + 20 + 12 = 74.

∴ E(M)
n ≤ 74

24n2
=

37

12n2
≤ 10−4

Solving for n yields

n ≥ 176

2

How large should we take n in order to guarantee that the trapezoidal ap-
proximation to

∫ 2

0
ex

2
dx is accurate to within 0.0001?

We take the second derivative,

f ′′(x) = 2ex
2

(2x2 + 1)

This is at a maximum on the given interval at x = 2, i.e.

K = 2e4(9) = 18e4 ≈ 1000

Then,

E(T )
n ≤ 1000 · 23

12n2
=

2000

3n2
≤ 10−4

Solving for n, we get n = 2582.

7 Lecture 7: Improper Integrals

7.1 Improper Integrals

When one of the limits of an integral is ill-defined, or both are, we can take
a limit to more accurately define the value of the definite integral, as follows:∫ ∞

a

f(x)dx := lim
t→∞

∫ t

a

f(x)dx
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Similarly for the lower limit,∫ b

−∞
f(x)dx := lim

s→∞

∫ b

−s
f(x)dx

We can put these together to define a definite integral across the entire
real line, ∫ ∞

−∞
f(x)dx :=

∫ a

−∞
f(x)dx+

∫ ∞
a

f(x)dx

If both integrals exist, this is independent of the value of a.
If an improper integral exists, it is called convergent, else it is called

divergent.
In general, we wish to find out whether an improper integral is convergent.

If it is, we can compute it analytically or approximately.

7.2 A Standard Integral for Convergence Comparisons

I =

∫ ∞
1

dx

xp

Depending on the value of p, we can evaluate this in two different ways,
using the definition of a definite integral with one limit at +∞ as above:

p 6= 1 =⇒ I =
1

1− p
(t1−p − 1)

p = 1 =⇒ I = ln t

Then, we let t→∞:

p > 1, lim
t→∞

t1−p = 0

p = 1, lim
t→∞

ln t =∞

p < 1, lim
t→∞

t1−p =∞

Therefore, the limit does not exist and the integral diverges for p ≤ 1,
and the integral converges for p > 1.
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7.3 Comparison Test for Integrals

Suppose we have two functions f and g such that f ≥ g ≥ 0∀x ≥ a, then

if

∫ ∞
a

fdx converges, then

∫ ∞
a

gdx converges

if

∫ ∞
a

gdx diverges, then

∫ ∞
a

fdx diverges

Example 1 ∫ ∞
1

dx√
x(1 + x)

We can approximately see whether the comparison test will work by com-
paring high values of x.

When x >> 1, x+ 1 ≈ x, therefore the integral becomes∫ ∞
1

dx

x
√
x

which we know to be convergent as p > 1.
We formalise this intuition by using the comparison test with

∫∞
1

dx

x
3
2

:

1√
x(1 + x)

≤ 1

x
3
2

∴ choosef(x) =
1

x
3
2

, g(x) =

∫ ∞
1

dx√
x(1 + x)

Since
∫∞

1
f(x)dx converges, and f ≥ g, we can conclude that∫ ∞

1

dx√
x(1 + x)

converges.

Example 2 ∫ ∞
1

x2 + 100x+ 51

5x3 + 50x2 + 20x+ 1
dx

As before, we take x >> 1, i.e. effectively only comparing the highest-
degree terms, which yields
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x2

5x3
=

1

5x

which is the case p = 1. We therefore expect divergence.
coming back to this later

Example 3∫ ∞
1

| sin3 x|
x2 + 1

dx ≤
∫ ∞

1

1

x2 + 1
dx ≤

∫ ∞
1

1

x2
dx which is convergent as p > 1

8 Lecture 8: Discontinuous Integrals

8.1 Recap of last time: example of comparison test

Consider the integral ∫ ∞
1

| sinx3|+ x

x
5
2

dx

Assuming x >> 1, take the highest order terms:∫ ∞
1

x

x
5
2

This has p > 1, therefore we expect convergence. We formalise this
through a series of comparisons, as follows:∫ ∞

1

| sinx3|+ x

x
5
2

dx ≤
∫ ∞

1

x+ x

x
5
2

dx = 2

∫ ∞
1

dx

x
3
2

which has p > 1, therefore it converges, and so does the original integral.

8.2 Discontinuous Integrals

Let f(x) be discontinuous at x = b. Then, we can still define a definite
integral as follows:∫ b

a

f(x)dx := lim
t→b−

∫ t

a

f(x)dx if the limit exists
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Similarly for the lower limit x = a,∫ b

a

f(x)dx := lim
t→a+

∫ b

t

f(x)dx if the limit exists

And for an intermediate point c ∈ [a, b]:∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx

In each of these cases, the integral is convergent if the limit exists, and
divergent if it does not.

8.3 p-integrals on different intervals

We previously covered the p-integral on an interval [1,∞]. Now we can use
the definition of the discontinuous integral to define it over the interval [0, 1],
as follows:

I =

∫ 1

0

dx

xp
:= lim

t→0+

∫ 1

t

dx

xp

Evaluating this yields

p 6= 1 =⇒ I =
1

1− p
(1− t1−p)

p = 1 =⇒ I = − ln t

Therefore, taking the limit implies that the p-integral is divergent for
p ≥ 1 and convergent for p < 1.

8.4 Example using new p-integral∫ 1

0

dx√
x(x+ 1)

Instead of very large x, we now consider very small values of x, so that
all but the lowest order terms vanish:∫ 1

0

dx√
x
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This is the case p < 1, which implies that the integral will converge.
We confirm this by taking f(x) = 1√

x(x+1)
and selecting g(x) = 1√

x
. As g

is convergent, and
∫
g(x)dx ≥

∫
f(x)dx ≥ 0, the integral converges.

8.5 sin function comparisons

For high values of x, when we can neglect all but the highest order terms,
we can use the inequality sinx < 1 to justify ignoring the sine term. We see
this in section 8.1’s example of a comparison test question. However, with
low values of x, we can use the inequality sin x < x.

This is justified by the limit

lim
x→0

sinx

x
= 1

which can be verified using L’Hopital’s rule:

lim
x→0

sinx

x
= lim

x→0

(sinx)′

x′
= lim

x→0

cosx

1
= 1

Below is an example where this inequality is required:

Example

I =

∫ 1

0

sinx2

x3
dx

In this case, we could use the inequality sinx < 1 as we did before, which
yields ∫ 1

0

sinx2

x3
dx <

∫ 1

0

1

x3
dx

However, this is the case p > 1 which is divergent on the interval [0, 1].
Therefore the comparison test is invalid for this case.

Instead, we consider the inequality sinx < x:

I =

∫ 1

0

sinx2

x3
dx <

∫ 1

0

x2

x3
dx =

∫ 1

0

dx

x

This indicates we should expect divergence.
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8.6 Note

If you have an integral of the form

I =

∫ ∞
a

f(x)dx

then it can be expressed as

I =

∫ T

a

f(x)dx+

∫ ∞
T

f(x)dx

The original integral converges if and only if the integral from T to ∞
converges as well. Therefore, if one function is greater than another for small
x, but in the long run the inequality reverses, it is possible to split it into two
integrals, and only consider the region from some T to∞ for the comparison
test (more compactly, if g(x) > f(x) up to a constant).

9 Lecture 9: Review

9.1 Integral Convergence

Example 1

I =

∫ ∞
1

x2 + 5√
x(x3 + 1)(x+ 2)

dx

We first take the highest order terms,

I ≈
∫ ∞

1

dx

x
5
2

This suggests we should expect convergence.
A series of inequalities confirms this:

I =

∫ ∞
1

x2 + 5√
x(x3 + 1)(x+ 2)

dx ≤
∫ ∞

1

x2 + 5√
x(x3)(x)

≤
∫ ∞

1

x2 + 5x2

x
9
2

dx

The last of these inequalities is justified when x ≥ 1, which it is, given
the limits of integration. Simplifying this yields
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I ≤
∫ ∞

1

6

x
5
2

which is the case p > 1, i.e. it converges.

Example 2

I =

∫ ∞
1

x4 − 100x2 − 200x− 300

x6 + 1
dx

At very high x, this function behaves as 1
x2

and is therefore convergent,
but at smaller x, it is negative and so the comparison test does not apply.
Therefore, we choose T >> 1 and redefine the integral:

I =

∫ ∞
1

f(x)dx =

∫ T

1

f(x)dx+

∫ ∞
T

f(x)dx

We can use the comparison test on the integral from T to ∞ (compare
with 1

x2
and find it is convergent), and as there are no discontinuous points or

infinite limits on the integral from 1 to T , that is also convergent. Therefore,
the entire integral converges.

9.2 True-False Questions

1

If f ≥ g for x ≥ 1 and
∫∞

1
f 2dx converges then

∫∞
1
g2dx converges.

False: take f = −1
x

and g = −1√
x
. (This would be true for g ≥ 0).

2

If 0 ≤ f ≤M and
∫∞

1
fdx converges, then

∫∞
1
f 2dx converges.

True: as f ≤M , Mf ≥ f 2. We know that
∫
fdx converges, therefore so

does
∫
Mfdx, and by comparison test this is greater than

∫
f 2dx, so

∫
f 2dx

converges.

3

If
∫∞

1
fdx converges, f ≥ 0 then

∫∞
1
f 2dx converges.

False: take f = 1
x
√
x−1

.
∫
fdx converges (comparison with 1

x
3
2

) but its

square has a discontinuous point with a nonexistent limit near x = 1.
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9.3 Approximate Integration

1

Find K for the function f(x) = x cosx2 over the interval x ∈ [0, 1].
We take the second derivative using the product rule,

|f ′′(x)| = 6x| sinx2|+ 4x3| cosx2|

Then we use | sinx| < 1, | cosx| < 1:

|f ′′(x)| ≤ 6x+ 4x3

which, over the given interval, has a maximum value of 10. Therefore we
can take K = 10.

2

Find K for the function sin(
√
x) + 211x+ 103, 1 ≤ x ≤ 2.

The second derivative is

f ′′(x) = − 1

4x
3
2

cos(
√
x)− 1

4x
sin
√
x

We take the absolute value and use | sinx| < 1, | cosx| < 1 as above:

|f ′′(x)| ≤ 1

4x
3
2

+
1

4x

This has a maximum value over the given interval at x = 1:

K =
1

4
+

1

4
=

1

2
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