
Math 53: Multivariable Calculus Spring 2018

Lecture 1: Introduction, vectors and vector operations
Lecturer: Nikhil Srivastava January 16 Scribe: Aditya Sengupta

Note: LaTeX template courtesy of UC Berkeley EECS dept.

1.1 Overview of course

Recall from 1A/1B:

• Scalar functions of scalar variables (input and output were both numbers), e.g. f(x) = x2 on IR

• Scalar functions had domains and codomains:

f : I → IR

• How to graph these functions

• Differentiation: dy
dx = f ′(x) = lim

h→0

f(x+h)−f(x)
h = slope of tangent line of graph at (x, f(x)). Maxima

and minima of functions this way.

• Integration:
´ b
a
f(x)dx = lim

∆x→0
f(x∗i )∆x

• Fundamental Theorem of Calculus

ˆ b

a

f ′(x)dx = f(b)− f(a)

In this course, we’ll extend all these concepts from one dimension (scalar inputs/outputs) to two and three
dimensions. This involves dealing with vector valued functions of vector variables. For example,

f(x, y) = x2 + y2 defined on[−1, 1]× [−1, 1]

f(t) = (t, t2, t3), f(x, y) = (x2 + y2, xy)

Both the inputs and outputs can be a vector consisting of multiple scalars in these examples.

The basic idea behind multivariable calculus is the same as in single variable calculus, which is to approximate
curved things/other complex shapes by flat things and to take a limit.

1.2 Applications of multivariable calculus

1. Classical physics/electromagnetism, because the real world has three dimensions. Great. I now have
two courses dedicated to telling me what Maxwell’s equations mean.
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2. Statistics/machine learning. The backpropagation algorithm in deep learning is basically the multi-
variate chain rule.

3. Geometry, graphics

4. Helps develop visual intuition in three dimensions. That’s a thing I can do on a computer screen by
typing.

1.3 Organisation of content

There are four parts to the course,

1. Geometric Preliminaries

2. Differentiation

3. Integration

4. Generalisations of the Fundamental Theorem of Calculus

1.4 Geometric Preliminaries

A point is represented as (a1, a2) ∈ R2 in a plane, and (a1, a2, a3) ∈ R3 in space.

(a1, a2) are the coordinates of the point in 2D space, i.e. it is the point you reach by moving a1 along the
x−axis and a2 along the y−axis. This can be generalised to three dimensions, although a representation on
paper is more difficult to understand. We can use the right hand rule to do this. (Add the right hand rule
in later).

Pythagoras’ Theorem is a useful tool to tell us the distance between pairs of points (or more simply, the
distance of a point from the origin) in R2 and R3. This leads to the distance formula:

Definition 1. The distance between two points (a1, a2, a3) and (b1, b2, b3) is defined to be

√
(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2

1.5 Vectors

A more useful concept than a point in space is a vector.

1.5.1 Definition

Definition 2. A vector is a quantity that has a direction and a magnitude (length).

We represent vectors as arrows. Here’s an example of a vector: →

Vectors are labelled ~a. They do not have a fixed position. This vector is the same as the one above: →.
However, just the use of arrows becomes inconvenient for calculations. Therefore we write vectors in 3D
with respect to a coordinate system.
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1.5.2 Basis vectors

Definition 3. The standard basis vectors î, ĵ, and k̂ are vectors of unit length along the x, y, and z axes
respectively.

(A vector of unit length is denoted â, and the length of a vector is denoted |~a|.)

Any other vector in 3D space can be represented as a sum of these standard basis vectors. Since vectors are
independent of their starting position, we can move the tail of the vector to the origin, then describe the
movement along the vector from the origin as moving some amount along each of the basis vectors:

~a = a1î+ a2ĵ + a3k̂ = 〈a1, a2, a3〉

These are the components of the vector. This seems similar to the representation of a point, with a key
difference being that the vector represents the displacement from the origin to a point.

The length of a vector ~a is defined as

|~a| =
√
a2

1 + a2
2 + a2

3

by the distance formula.

1.5.3 Example

Consider the vector ~a = î+ 2ĵ + 3k̂. We can get the length of this vector from the 3D distance formula:

|~a| =
√

12 + 22 + 32

This can also be derived from the Pythagorean theorem (the 2D distance formula) by first finding the length
of the components of the vector in the x-y plane, then taking this as one side and the z-component as another
side of a right angled triangle.

1.6 Basic operations on vectors

1.6.1 Addition

Vector addition can be visualised by moving the tail of one vector and the head of the other vector together,
and completing the resultant triangle.

Algebraically, vectors ~a = 〈a1, a2, a3〉 and ~b = 〈b1, b2, b3〉 can be added by adding each corresponding pair of
components:

~a+~b = 〈a1 + b1, a2 + b2, a3 + b3〉
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1.6.2 Scalar Multiplication

This involves only a change in the magnitude of the vector, where the length is changed (increased, decreased,
or where the scalar is negative, in the opposite direction and scaled by a corresponding positive amount).

c~a means multiply ~a by c. Where c > 0, the direction stays the same. Where c < 0, the direction becomes
opposite. Where c = 0, it becomes the zero vector, which is the only vector not to have a direction.

Algebraically, this becomes

c~a = 〈ca1, ca2, ca3〉

1.7 Multiplication of vectors

We reject the apparently obvious notion that

〈a1, a2, a3〉〈b1, b2, b3〉 = 〈a1b1, a2b2, a3b3〉

as it has no geometric meaning.

There are two geometrically meaningful ways to multiply vectors:

1.7.1 Dot Product

This takes two vectors and outputs a scalar:

~a ·~b = a1b1 + a2b2 + a3b3

in R3.

e.g. 〈1, 2, 3〉 · 〈0, 1, 0〉 = 1 · 0 + 2 · 1 + 3 · 0 = 2.

We can take the dot products of the standard basis vectors:

î · î = 〈1, 0, 0〉 · 〈1, 0, 0〉 = 1

î · î = 〈1, 0, 0〉 · 〈0, 1, 0〉 = 0

Properties of the dot product:

1. ~a ·~b = ~b · ~a (commutativity)

2. ~a · (~b+ ~c) = ~a ·~b+ ~a · ~c (distributivity)

Note that this is unlike the multiplication of numbers in that ~a ·~b · ~c doesn’t make sense.



1.7.2 Geometric meaning of dot product

A vector dotted with itself gives the length squared:

~a · ~a = a2
1 + a2

2 + a2
3 = |~a|2

More interesting interpretation: dot product gives the angle between two vectors. Suppose ~a = 〈a1, a2, a3〉
and ~b = 〈b1, b2, b3〉, and there is an angle θ between them. We can work out the angle between them

geometrically with the law of cosines. First define ~c = ~a−~b, then using the law of cosines:

|~c|2 = |~a|2 + |~b|2 − 2|~a||~b| cos θ

Now, from the distributive property of the dot product,

|~c|2 = ~c · ~c = (~a−~b) · (~a−~b) = ~a · ~a− ~a ·~b−~b · ~a+~b ·~b

= |~a|2 + |~b|2 − 2~a ·~b

On comparing this with the above, we see that

~a ·~b = |~a||~b| cos θ

Therefore, the dot product gives us an easy way to compute angles.

We can first find the vectors that define the angle using the coordinates of the relevant points,

~a = ~PQ = ~OQ− ~OP = 〈1, 1, 0〉 − 〈0, 0, 1〉 = 〈1, 1,−1〉

Similarly, ~b = 〈0, 2,−1〉.

Then we find the dot product: ~a ·~b = 1 · 0 + 1 · 2 +−1 · −1 = 3

The lengths of the individual vectors can be found by taking each vector’s dot product with itself,

|~a| =
√

12 + 12 + (−1)2 =
√

3

|~b| =
√

4 + 1 =
√

5

Therefore, we can find the cosine of the angle between them:

cos θ =
2√
3
√

5

Special case: if ~a ·~b = 0 then the angle between them is π
2 .
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Lecture 2: Cross product, characterising lines and planes
Lecturer: Nikhil Srivastava January 18 Scribe: Aditya Sengupta

2.1 Projection operation

Projection deals with representing the components of a vector in terms of another vector, not necessarily
the basis vectors.

Definition 4. Given ~a,~b 6= 0, the vector projection of ~b on ~a, written as proj~a(~b), is the unique vector that
is parallel to ~a satisfying the condition that the projection is orthogonal to ¡?¿

We can find the magnitude and direction of the projection. The direction is the same as that of ~a, which
is ~a
|~a| . The magnitude is |~b| cos θ, from trigonometry. Therefore the vector proj~a(~b) = ~a

|~a| |~b| cos θ, or more

simply ~a
|~a|2 (~a ·~b).

The projection gives a decomposition of any vector ~b:

~b = proj~a(~b) +
(
~b− proj~a(~b)

)
Geometrically, we can see that the second part of this is the component perpendicular to the other vector ~a.

2.2 Interpretation of the dot product

From the value of the dot product, we can make conclusions about the angle between the two vectors:

~a ·~b = 0 ⇐⇒ θ =
π

2

~a ·~b > 0 ⇐⇒ θ <
π

2

~a ·~b < 0 ⇐⇒ θ >
π

2

2.3 Cross product

The cross product takes two vectors in IR3 and outputs a vector.

Definition 5. Geometrically, given ~a,~b ∈ IR3, ~a×~b is the unique vector in IR3 with magnitude |~a×~b| equal

to the area of the parallelogram spanned by ~a and ~b, and a direction orthogonal to both ~a and ~b which satisfies
the right hand rule.
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Remark. ~a× t~a = 0

We can simplify the magnitude using the geometric interpretation, in which the area of a parallelogram is
base × height, which works out to |~a||~b| sin θ.

2.3.1 Cross products of basis vectors

ĵ × î

The above can be worked out geometrically by drawing î and ĵ in 3D space. The two define a square of side
1, therefore the vector’s magnitude is 1. From the right hand rule, we see the direction is −k̂. Therefore

ĵ × î = −k̂

Note that if the order of parameters were switched, the right hand rule would work the other way and the
answer would be k̂.

From this we see that ~a×~b = −~b× ~a.

2.3.2 Algebraic definition of cross product

Definition 6. The determinant of a 2x2 matrix

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc

The determinant gives us an algebraic definition for the cross product. Let 〈a1, a2〉 and 〈b1, b2〉 be vectors
in IR2. Then, the determinant ∣∣∣∣a1 a2

b1 b2

∣∣∣∣
gives the area of the parallelogram defined by ~a and ~b. This can be shown:

A = |~a||~b| sin θ = |~a||~b|
√

1− cos2 θ

= |~a||~b|

√
1− (~a ·~b)2

|~a|2|~b|2
= |a1b2 − a2b1|

This can be extended to three dimensions if we first define a 3x3 determinant in terms of 2x2 determinants:

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣b2 b3
c2 c3

∣∣∣∣− a2

∣∣∣∣b1 b3
c1 c3

∣∣∣∣+ a3

∣∣∣∣b1 b2
c1 c2

∣∣∣∣
Geometrically, this gives us the volume of the parallelapiped defined by vectors ~a,~b,~c.
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This allows us to define the cross product algebraically:

~a×~b =

∣∣∣∣∣∣
î ĵ k̂
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ = î

∣∣∣∣a2 a3

b2 b3

∣∣∣∣− ĵ ∣∣∣∣a1 a3

b1 b3

∣∣∣∣+ k̂

∣∣∣∣a1 a2

b1 b2

∣∣∣∣
Example

~a = 〈1, 1, 0〉 = î+ ĵ

~b = 〈1, 0, 0〉 = î

We apply the algebraic definition,

~a×~b = î

∣∣∣∣1 0
0 0

∣∣∣∣− ĵ ∣∣∣∣1 0
1 0

∣∣∣∣+ k̂

∣∣∣∣1 1
1 0

∣∣∣∣ = 0 + 0− k̂

Remark. The direction in ~a×~b indicates a specific side of a parallelogram.

Remark. ~a · (~b× ~c) =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣.
This is the triple product of three vectors.

2.4 Lines and Planes

Lines and points can be described using vectors. The point P (x, y, z) is identified by its position vector
~r = 〈x, y, z〉.

To specify a line in 3D, we need:

• a point on the line (specified by its position vector ~ro = 〈x0, y0, z0〉)

• a vector parallel to the line, ~v = 〈a, b, c〉.

With this information, we can start at any point on the line (the position vector to the point) and add any
multiple of the parallel vector ~v to get any point on the line. The general expression for the line is therefore

~r = ~r0 + t~v

Different values of the auxiliary variable t correspond to different points on the line. This is called a
parametric equation.

Example: Find the vector equation of the line containing the points (1, 2, 3) and (0, 1, 0).

Let ~r0 = 〈1, 2, 3〉. We know that the line has to go through the second point ~r1 = 〈0, 1, 0〉, therefore we can
take ~v = ~r1 − ~r0 = 〈0, 1, 0〉 − 〈1, 2, 3〉 = 〈−1,−1,−3〉.
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Then, we use the general expression ~r = ~r0 + t~v = 〈1, 2, 3〉+ t〈−1,−1,−3〉 = 〈1− t, 2− t, 3− 3t〉.

In general, we can use this component-wise addition approach to show that

〈x, y, z〉 = 〈x0 + at, y0 + bt, z0 + ct〉

This is also a parametric expression. We can convert this into three parametric scalar equations,

x = x0 + at

y = y0 + bt

z = z0 + ct

We can now eliminate t by solving for t in each equation and setting them all equal to each other, which
yields

x− x0

a
=
y − y0

b
=
z − z0

c

which is valid as long as a, b, c 6= 0.

Remark. To describe a line segment between two points characterised by ~r0 and ~r1,

~r = ~r0 + t(~r1 − ~r0), t ∈ [0, 1]

2.5 Planes in 3D

To specify a plane, we need

• a point in the plane (specified by its position vector ~ro = 〈x0, y0, z0〉)

• a normal vector perpendicular to the plane, ~n = 〈a, b, c〉.

For any ~r in the plane, the vector ~r − ~r0 is always perpendicular to ~n. Therefore the vector equation of the
plane is

(~r − ~r0) · ~n = 0

This is not a parametric equation.

We can expand vectors component-wise, resulting in

〈x− x0, y − y0, z − z0〉 · 〈a, b, c〉 = 0



∴ a(x− x0) + b(y − y0) + c(z − z0) = 0 =⇒ ax+ by + cz = d

Example: Find the plane through

~r0 = 〈1, 0, 0〉, ~r1 = 〈1, 1, 0〉 = ~r2 = 〈1, 1, 1〉

We can find the normal vector to the plane by taking the cross product of the vectors between r0 and r1,
and r0 and r2.

(~r1 − ~r0)× (~r2 − ~r0)

The above vector is always orthogonal to the plane provided the points are not collinear.

Theorem 7. The general equation of a plane through three points ~r0, ~r1, ~r2 is

(~r − ~r0) ·
(

(~r1 − ~r0)× (~r2 − ~r0)
)

= 0

Remark. A parametric equation for a plane can also be obtained:

~r = ~r0 + t1 ~v1 + t2 ~v2

as long as ~v1 and ~v2 are not parallel

2-5
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Lecture 3: Curve parameterisation
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3.1 Characterising the division of space by a plane

Do the points P (0, 1, 2) and Q(3, 4, 5) lie on the same side or different sides of the following plane?

(~r − 〈1, 2, 3〉) · 〈1, 1, 0〉 = 0

Approaches:

1. Find line segment PQ and decide whether it intersects the plane.

2. Find ~PA, ~QA for an arbitrary point A on the plane and find the normal vector defined by these (take
the cross product)

3. The above, but with the specific point 〈1, 2, 3〉

Solution with the third approach:

The vector between P and the given point is ~r1 = 〈−1,−1,−1〉. The vector between Q and the given point
is ~r2 = 〈2, 2, 2〉.

Now, if the angle between ~r1 and ~n is acute and that between ~r2 and ~n is obtuse (or vice versa), we know
they are on opposite sides of the plane. Points on one side have acute angles, and points on the other have
obtuse angles.

cos θ1 =⇒ ~r1 · ~n = 〈−1,−1,−1〉 · 〈1, 1, 0〉 = −2 < 0 =⇒ obtuse

cos θ2 =⇒ ~r2 · ~n = 〈2, 2, 2〉 · 〈1, 1, 0〉 = 4 > 0 =⇒ acute

.

Therefore they are on opposite sides of the plane.

3.2 Parameterised curves

Recall that a line is characterised as ~r = ~r0 + t~v. This is implicitly a function of t.

Definition 8. A vector valued function has real inputs (domain) and vector outputs (codomain).

A parameterisation of a curve consists of a vector valued function ~r(t) which specifies position vectors of
points on the curve, and a range of parameters a ≤ t ≤ b. Giving different inputs within the range will yield
position vectors to specific points on the curve.
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3.2.1 Example 1

~r(t) = 〈cos t, sin t〉, t ∈ [0, 2π]

Plot points for different values of t.

t ~r(t) = 〈cos t, sin t〉
0 1, 0
π/2 0, 1

pi/4 1/
√

2, 1/
√

2

Another way of approaching this is to eliminate t.

x = cos t, y = sin t =
√

1− cos2 t = ±
√

1− x2

We see that all points satisfy x2 + y2 = 1, which in terms of vectors means
∣∣∣~r(t)∣∣∣2 = 1. This is the set of all

points at a distance of 1 from the origin, which is a circle.

3.2.2 Example 2

~r(t) = 〈− cos(2t),− sin(2t)〉, t ∈ [0, 2π]

This is a circle that rotates twice and that starts from a different point.

3.2.3 Example 3

~r(t) = 〈cos t, sin t, t〉, t ∈ R

We can visualise this by looking at its projections onto 2D planes.

In the x− y plane, this looks like the vector

~r(t) = 〈cos t, sin t〉

, which is just a circle as above.

We can visualise what happens along the z−axis because it is linear in t. We see the curve spiralling upwards
helically. The curve lies in the cylinder x2 + y2 = 1.

3.2.4 Parameterised curve as moving particle

We can view a parameterised curve as describing the motion of a particle, if we think of t as time. Parame-
terisation can be used to compute interesting features like velocity.

Definition 9.
lim
t→a

~r(t) = lim
t→a
〈x(t), y(t), z(t)〉 = 〈lim

t→a
x(t), lim

t→a
y(t), lim

t→a
z(t)〉

The limit of a vector valued function is a vector with its components set to the limit of each of the corre-
sponding components of the vector valued function.
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Conceptually, this means that as t approaches a from either direction, the vector will move towards the limit
of the general vector expression as t approaches a.

~r(t) is continuous at a if lim
t→a

~r(t) = ~r(a).

The derivative of ~r(t) is the vector

d~r

dt
= lim
h→0

~r(t+ h)− ~r(t)
h

whenever the limit exists. This gives the vector representing an infinitesimal change in the original vector.

d~r

dt
=
〈dx
dt
,
dy

dt
,
dz

dt

〉

3.2.5 Example

~r(t) = 〈cos t, sin t cos t〉, t ∈ [0, 2π]

We can visualise this by drawing tangent vectors to the curve at some point.

t ~r(t) ~r′(t)
0 1, 0 0, 1
π/2 0, 0 -1, -1

π/4 1/
√

2, 1/2 −1/
√

2, 0

The parameterised curve can be at the same point at different times. Velocity is a function of the parame-
terisation, not just the curve.

Remark. The unit tangent at t is defined as

~T (t) =
~r′(t)

|~r′(t)|

This unit tangent is not defined when ~r′(t) = 0.

The velocity changes if you change the parameterisation, e.g. for ~r(t) = 〈cos 2t, sin 2t〉 and ~s(t) = 〈cos t, sin t〉,
~r′(t) = 2~s′(t).

However, the unit tangent vector at a point does not change.

3.3 Mystery of the rolling cycloid

What does it look like when the marked point hits the ground, i.e. upon zooming in?

1. Makes an angle θ

2. Makes no angle (becomes infinitely sharp)

3. Becomes a smooth curve



4. Makes a loop

5. Something else?

In general, given a verbal description of some process, how do you find a parametric equation? After this
has been achieved, we can use ~r′(t) to answer the question.

3-4
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4.1 Mystery of the Rolling Cycloid, contd.

We start by deriving the parametric equation for the trajectory of the marked point P. We parameterise the
path by the angle of the wheel (we choose the parameter that simplifies the most complicated part).

To find the vector OP that tracks the chosen point as θ increases, we express it as a sum of simpler vectors:

~OP = ~OA+ ~AB + ~BP

~OA always has a direction 〈1, 0〉 and a magnitude Rθ.

~AB always has a direction 〈0, 1〉 and a magnitude R.

~BP always has a magnitude R, and via trigonometry we can calculate its direction as 〈− sin θ,− cos θ〉.

Therefore, combining all of these, we get the expression

~r(θ) = 〈Rθ −R sin θ,R−R cos θ〉

This is valid on the interval θ = [0, 2π], and because sin and cos are periodic in 2π, this works for all θ.

Now that we have the equation, we can use it to examine motion of the point near θ = 0. We do this by
taking the component-wise derivative,

~r′(θ) = 〈R−R cos θ,R sin θ〉

At θ = 0, ~r′(0) = 0.

We proceed by computing velocity for small θ,

~r′(θ) ≈
〈
R
θ2

2
, Rθ

〉
The tangent unit vector is

〈 θ2

2|θ|
,
θ

|θ|

〉
In the limit, as θ → 0−, T̂ (θ) ≈ 〈0, 1〉, and as θ → 0+, T̂ (θ) ≈ 〈0,−1〉.

Therefore, as θ → 0, the slope of the line becomes infinite, i.e. the correct option is 2.
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4.2 More interesting quantities

1. Speed (scalar) = |~r′(t)| (magnitude of velocity)

2. Acceleration (vector) = ~r′′(t) (instantaneous rate of change of velocity)

3. Arc length (scalar) L

Given a position vector-valued function ~r(t), a ≤ t ≤ b,

L :=

ˆ b

a

|~r′(t)|dt

4.2.1 Geometric visualisation of arclength

We can approximate a curve as a series of straight lines using the arclength.

Subdivide the interval [a, b] into a < t1 < · · · < tn < b and sum the lengths of the resultant line segments:

|~r(t1)− ~r(a)|+ |~r(t2)− ~r(t1)|+ · · ·+ |~r(b)− ~r(tn)

In the limit as n→∞, this becomes an integral, which is the same as the formula for the arclength as above.

Remark. Arclength can be used as a parameterisation as well. To find this, we first define the arclength
function,

s(t) =

ˆ t

a

|~r′(y)|dy

Assuming the path never goes backwards, this function is invertible to get t(s). Then the arclength parame-
terised path is ~r(t) = ~r(t(s)) = (~r ◦ t)(s).

4.3 Rules of differentiation for vector-valued functions of one vari-
able

4.3.1 Chain rule

Recall the scalar chain rule,

(f(g(x)))′ = f ′(g(x))g′(x)

This definition will not work where the domain and range of the functions to be composed do not necessarily
match.

Suppose ~r(s) is a vector-valued function R→ R3, and s(t) is a scalar function R→ R. The composition here
makes sense, ~r(s(t)) has R→ R3. We can then differentiate,



Lecture 4: January 25 4-3

d

dt
~r(s(t)) = ~r′(s(t))s′(t)

Why does this work?

~r(s) = 〈f(s), g(s), h(s)〉

Therefore

d

dt
〈f(s(t)), g(s(t)), h(s(t))〉 = 〈 d

dt
f(s(t)),

d

dt
g(s(t)),

d

dt
h(s(t)〉

and the scalar chain rule can be applied to each of these, to yield

s′(t)~r′(s(t))

4.3.2 Product Rule

There are three product rules,

1. s(t), ~r(t): d
dts(t)~r(t) = s′(t)~r(t) + s(t)~r′(t)

2. Dot product: ~r1(t), ~r2(t)

d

dt
~r1(t) · ~r2(t) = ~r1

′(t) · ~r2(t) + ~r1(t) · ~r2
′(t)

3. Cross product: (as above)

d

dt
~r1(t)× ~r2(t) = ~r1

′(t)× ~r2(t) + ~r1(t)× ~r2
′(t)

Exercise

Suppose a curve satisfies

~r′(t)× ~r′′(t) = 0∀t

What can you say about it?

4.4 Integration of vector-valued functions

This is also defined component-wise.

If ~r(t) = 〈f(t), g(t), h(t)〉,



ˆ b

a

~r(t)dt = 〈
ˆ b

a

f(t)dt,

ˆ b

a

g(t)dt,

ˆ b

a

h(t)dt〉

This does not appear to have a clear geometric interpretation. It is not area under the curve, because the
output is a vector in 3D.

The geometric interpretation is related to the vector-valued form of the Fundamental Theorem of Calculus,

ˆ b

a

~r′(t)dt = ~r(b)− ~r(a)

which is immediately apparent by vector addition on the subdivision of the arclength from section 4.2.1.

4.5 Warning

(our lawyers told us we had to include this)

∣∣∣∣∣
ˆ b

a

~r′(t)dt

∣∣∣∣∣ 6=
ˆ b

a

|~r′(t)|dt

The two are only the same when the path is a straight line. In a simplified form,

∣∣∣∣∣d~rdt
∣∣∣∣∣ 6= d|~r|

dt

4-4
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5.1 Examining types of functions

In single-variable calculus, we study functions going from a domain denoted by x ∈ R or x ∈ I to f(x) ∈ R.
So far in this course, we’ve extended this to t ∈ I → ~r(t) = 〈f(t), g(t), h(t)〉 ∈ R3.

Now we’ll extend this idea to (x, y) ∈ D ⊂ R2 → f(x, y) ∈ R.

Definition 10. If D is a region in R2, a function is a rule that assigns a unique f(x, y) to every (x, y) ∈ D.
D is called the domain and the set {f(x, y) : (x, y) ∈ D} is called the range.

Geometrically, these functions take a point in space and return a point on the real line.

5.1.1 Examples

• f(x, y) = x+ y − 1
The domain is not specified here, so we use the implicit definition that it is the largest subset of R2 on
which the definition makes sense. In this case, that is R2 itself so D = R2. The range is R.

• f(x, y) = 1− x2 − y2

The domain is once again D = R2 as any x and y can be squared and subtracted. However the range
is R = (−∞, 1] as no value greater than 1 can be reached.

• f(x, y) =
√

9− x2 − y2

The function only makes sense if 9 − x2 − y2 ≥ 0, so the domain is D = {(x, y) : 9 − x2 − y2 ≥ 0}.
Geometrically this is the inside of a circle of radius 3. The range is [0, 3].

Remark. We can have functions defined by physical phenomena, but we will focus on explicit rules.

5.1.2 Visualising functions f : R2 → R

In one dimension, we visualise functions f : R → R as a graph in which we plot all points (x, y) such that
y = f(x). This can be readily extended to two variables.

The graph of f(x, y) is now a surface S = {(x, y, z) : z = f(x, y) and (x, y) ∈ D}. The domain is a subset
of the x− y plane, and each point on the surface representing the graph of the function is above or below a
corresponding point in the domain.

This is a two-dimensional representation because we can parameterise the surface by two free variables.
Alternatively, we can think of the function being characterised by three variables minus one constraint
equation, which yields two dimensions.
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5.2 Techniques for drawing graphs of f(x, y)

1. Draw traces, which are functions of one variable obtained by fixing one of the input variables.

Example 1 - Traces
z = f(x, y) = −y

To draw the graph of this, we fix x = 0, i.e. we’re only looking for solutions in the y − z plane. Then
we can draw it as a line z = −y passing through the point (0, 0, 0). Then we can draw another trace,
by fixing x = 1, and once again drawing a line z = −y through the point (1, 0, 0). In this way we can
get a picture of what the entire plot would look like.

We can alternatively do this by fixing y = 0. The equation then yields z = 0. But this is a bad idea
because of a heuristic we definitely didn’t just come up with, that traces are useful when you actually
get a function of one variable. Yes. That was planned.

2. A level curve of f(x, y) is the set of points (x, y) where f(x, y) = k. That is, we fix the output. This
is also called the contour of a function.

Example 2 - Level Curves
z = f(x, y) = −y

We can start by fixing the output as z = 0. This implies −y = 0, which gives us a line on the x−axis.
z = 1 =⇒ y = −1, which gives us a line parallel to the x−axis. We can continue doing this on the
x− y plane to get a view from above of the function. Each level curve indicates a fixed height, i.e. the
intersection with a horizontal plane z = k.

A plot of many level curves with evenly spaced values of z is called a contour plot.

Example 3 - Both

f(x, y) =
√

1− x2 − y2, D = (x, y) : x2 + y2 ≤ 1

We make a trace at x = 0:

z =
√

1− y2 =⇒ z2 = 1− y2, z ≥ 0

which is a semicircle centered at the origin in the y − z plane.

Another trace at y = 0:

z2 + x2 = 1, z ≥ 0

We can continue doing this to build up a full picture of the surface, but it would be easier to do a contour
plot. We fix z = 0, then x2 +y2 = 1 which is the unit circle on the x−y plane. Then, z = 1 yields x2 +y2 = 0
which is the single point (0, 0, 1). So the contour plot is only the origin. z = 1

2 gives a smaller circle centered

at the origin with radius
√

3
2 . This gives us a clearer idea of what this looks like: the top half of a sphere.

Example 4

f(x, y) = x2 − y2, (x, y) ∈ R2

Traces:
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x = 0 =⇒ z = −y2, an upside-down parabola. y = 0 =⇒ z = x2, a regular parabola.

Contour plot:

z = 0 =⇒ x = ±y
z = 1 =⇒ x2 − y2 = 1
z = −1 =⇒ x2 − y2 = −1

So it looks like a Pringle. If Pringles were infinite. I wish Pringles were infinite.

Remark. All graphs are surfaces, but not all surfaces are graphs of f(x, y). This is because graphs have the
property that ∀(x, y)∃ ≤ 1(x, y, z) i.e. every vertical line has ≤ 1 point.

5.3 Three Variables

A graph of f(x, y, z) defined on a domain D ⊂ R3 is S = {(x, y, z, w) : w = f(x, y, z), (x, y, z) ∈ D}

We visualise this using level surfaces, obtained by fixing the output to some value.

Example w = f(x, y, z) = x2 + y2 + z2.

Fix w = 0, then the level surface is the origin. For every value greater than 0, we get, in this case, a sphere.
So the contour plot is essentially a series of nested spheres, representing a true graph in 4D space that we
cannot draw. that’s wild. or according to this guy next to me, that’s disgusting.

5.4 Limits

5.4.1 Review: One variable

Recall the definition of the limit of a function of one variable:

lim
x→a

f(x) = L

if, as you approach x = a on either side, the value of f(x) approaches L.

Definition 11. Epsilon-delta definition: For every ε > 0,∃δ > 0 such that |f(x) − L| < ε whenever
|x− a| < δ.
Sequence definition: for every sequence approaching a, f(x) → L along the sequence ⇐⇒ lim

x→a+
f(x) =

lim
x→a−

f(x) = L.

Definition 12. f is continuous at a if lim
x→a

f(x) = f(a).

5.4.2 Two variables

Definition 13.
lim

(x,y)→(a,b)
f(x, y) = L

if for every path C approaching (a, b), f(x, y)→ L along C.



Formally, a path is a parameterised curve C(t) on [a,∞) such that

lim
t→∞

~c(t) = (a, b)

.

The main difference between this and the one-variable version of a limit is that there are now infinitely many
paths along which to approach the point. This means this definition is not useful for showing a limit exists.
However, we can use it to show a limit does not exist.

Example

f(x, y) =
x2 − y2

x2 + y2

We want to find the limit as (x, y)→ (0, 0). Set c1 to be along the x−axis from some point (x > 0, 0).

lim
(x,0)→(0,0)

f(x, y) = lim
x→0

x2 − 0

x2 + 0
= 1

Now, define c2 along the y− axis from some point (0, y > 0).

lim
(0,y)→(0,0)

f(x, y) = lim
y→0

0− y2

0 + y2
= −1

Therefore the limit does not exist.

5-4
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6.1 How to show a function is continuous at a point

1. Understand simple functions that are continuous, or verify that they are. e.g. f(x, y) = h(x) or g(y) for
some continuous functions g, h. This means all continuous functions of one variable are still continuous
here.

2. Use properties of limits to conclude that if f(x, y) and g(x, y) are continuous at (x0, y0) then

f + g
cf, c ∈ R

fg
f/g for (g(x0, y0) 6= 0)

h(f(x, y)), for h(t) continuous

are all also continuous.

Example: f(x, y) = sin(xy)ey/x + x is continuous because it is the composition of several continuous
functions.

6.2 Differentiation

In one variable, df
dx = lim

∆x→0

f(x+∆x)−f(x)
∆x whenever the limit exists. It is called differentiable when the limit

exists.

This has the geometric interpretation of the slope of the tangent line at a point. The tangent line has the
equation

y − y0 = (x− x0)f ′(x0)

which we can use to linearly approximate the function:

f(x0 + ∆x) ≈ f(x0) + f ′(x0)∆x

Definition 14. f is differentiable at x0 if

f(x0 + ∆x) = f(x0) + f ′(x0)∆x+ ε(∆x)∆x

where ε(∆x)→ 0 as ∆x→ 0
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6.3 Partial Derivatives

We can use these concepts to define differentiation in two variables. Let f(x, y) be a function of two variables.
Then

Definition 15.
∂f

∂x
(x0, y0) = lim

∆x→0

f(x0 + ∆x, y0)− f(x0, y0)

∆x
=

d

dx
f(x, y0)

∣∣∣∣∣
x=x0

Graphically, this appears as the limit as we vary x for a fixed value of y (just like the trace of a 3D plot in
Lecture 5).

We can similarly define differentiation with respect to y:

Definition 16.
∂f

∂x
(x0, y0) = lim

∆x→0

f(x0 + ∆x, y0)− f(x0, y0)

∆x
=

d

dx
f(x, y0)

∣∣∣∣∣
x=x0

This definition, using partial derivatives, is not perfect, as we do not have an analogous idea for a linear
approximation. Nonetheless it is useful because it is easy to compute - to take the derivative with respect
to one of the variables, we simply treat the other as a constant and differentiate.

Example:
f(x, y) = xex+y

∂f

∂x
= ey

d

dx
(xex) = ey(xex + ex)

∂f

∂y
=

d

dy
(eyxex) = xexey

We can differentiate this again, but who would want to? Lots of people, not including the prof. This gives
rise to the idea of a second partial derivative,

∂

∂x

∂f

∂x
=
∂2f

∂x2

and similarly with y.

More interestingly, we can differentiate the function with respect to both, one at a time. With the above
example,

∂

∂y

∂f

∂x
= fxy = ey(xex + ex)

∂

∂x

∂f

∂y
= fyx = ey

d

dx
(xex) = ey(xex + ex)

We see that the partial derivatives are independent of the order in which they are applied. This is Clairaut’s
theorem, that if fxy and fyx are continuous then they are equal.
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6.3.1 Tangent Plane to a Two-Variable Function

Definition 17. If f(x, y) is differentiable, the tangent plane to the graph of f at (x0, y0) is the plane
containing the two tangent lines defined by

∂f

∂x
(x0, y0)

and
∂f

∂y
(x0, y0)

.

(here we denote a partial derivative wrt x as fx and the same with y)

Call T1 the first tangent line, going through the point ~r0 = 〈x0, y0, f(x0, y0)〉 and with direction ~v1 =
〈1, 0, ∂∂xf(x0, y0〉.

Similarly, T2 has ~r0 = 〈x0, y0, f(x0, y0)〉 and ~v2 = 〈0, 1, ∂∂yf(x0, y0)〉.

We can define a plane with these two tangent vectors, which has the equation

~r(t) = ~r0 + t1 ~v1 + t2 ~v2

.

〈x, y, z〉 = 〈x0, y0, f(x0, y0)〉+ t1〈1, 0, fx(x0, y0)〉+ t2〈0, 1, fy(x0, y0)〉

Eliminating parameters,

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

6.3.2 Linear Approximation

Definition 18. f(x, y) is differentiable at (x0, y0) if

f(x0 + ∆x, y0 + ∆y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + ε1(∆x)∆x+ ε2(∆y)∆y

for ε1, ε2 → 0 as ∆x,∆y → 0.

We now have a full picture of differentiation in two-variable functions.

Theorem 19. If fx and fy exist and are continuous at (x0, y0) then f is differentiable at (x0, y0).

6.3.3 Example of an application

Find
√

(3.01)2 + (3.98)2.



We do this by defining a function f(x, y) =
√
x2 + y2. Given that it is differentiable at (3, 4) (which can be

easily verified) we apply the linear approximation,

f(3.01, 3.98) ≈ f(3, 4) + (0.01)fx(3, 4) + (−0.02)fy(3, 4)

We evaluate the partial derivatives,

fx = 2x

2
√
x2+y2

, fy = 2y√
x2+y2

which at the given point evaluate to

fx(3, 4) = 3
5 , fy = 4

5

Then we plug these values into the above equation to get

f(3.01, 3.98) ≈ 4.99

For comparison, the actual value ≈ 4.99004...

6.4 Total Derivative

The total derivative of a function f(x, y) is

df =
∂f

∂x
dx+

∂f

∂y
dy

which is a shorthand notation for the linear approximation. In the total differential, the base point (x0, y0, z0)
is implicit. It only expresses the relationship between rates of change.

6.5 Three Variables

We can extend this idea of a partial derivative to three dimensions,

∂f(x0, y0, z0)

∂x
= lim

∆x→0

f(x0 + ∆x, y0, z0)

∆x
=

d

dx
f(x, y0, z0)

and the linear approximation still holds,

f(x0 + ∆x, y0 + ∆y, z0 + ∆z) = f(x0, y0, z0) + fx∆x+ fy∆y + fz∆z

6.6 Timely Warning from UCPD

Existence of fx, fy does not imply differentiability by itself. The partial derivatives must also be continuous.

6-4
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there’s a staaaaaarman waiting in the sky

7.1 Tangent Plane

The tangent plane to the graph of z = f(x, y) at (x0, y0, z0) is given by

(z − z0) = fx · (x− x0) + fy · (y − y0) (7.1)

The tangent plane is the graph of the linear approximation. The partial derivatives are the coefficients of
the linear approximation.

7.2 d vs. ∆

The book says things like dx = ∆x. This is garbage. I have it on good authority.

The way we interpret the difference between them is that dy
dx is the slope of the line, which means that

for every change ∆x there is a corresponding change ∆y = dy
dx∆x. ∆x,∆y,∆z reduce to dx, dy, dz in the

infinitesimally small limit.

7.3 Chain Rule

7.3.1 Single Variable Chain Rule

Recall the single variable chain rule, in which f is a differentiable function of x and x is a differentiable
function of t. Then we can view f(t) = f(x(t)), and its derivative with respect to t becomes

df

dt
=
df

dx
· dx
dt

(7.2)

or

f ′(t) = f ′(x(t)) · x′(t) (7.3)

The ”answer” for why it works could be that we cancel the dx’s, but this is not rigorous. The actual answer
can be found with the linear approximation.
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Proof.
x(t0 + ∆t) ≈ x(t0) + ∆tx′(t0) (7.4)

and similarly

f(x0 + ∆x) ≈ f(x0) + ∆xf ′(x0) (7.5)

We can compose these linear approximations to get

f(x0 + ∆x) ≈ f(x0) + ∆tx′(t0)f ′(x0) (7.6)

Therefore, when we try to compute f(x(t0 + ∆t)), we get

f(x(t0 + ∆t)) ≈ f(x0) + ∆t
d

dt
f(x(t)) (7.7)

The shorthand proof using differentials is shown below:

Proof.
dx = x′(t0)dt (7.8)

df = f ′(x0)dx (7.9)

∴ df = f ′(x0)x′(t0)dt (7.10)

7.3.2 �����
A New Multivariate Chain Rule

Let x, y, be functions of some other parameter t, and let f(x, y) be a differentiable function. Then

f(t) = f(x(t), y(t))

What is df
dt? We can attempt to answer this as follows:

df =
∂

∂x
fdx+

∂

∂y
fdy (7.11)

”Divide by dt”, then:

df

dt
=

∂

∂x
f
dx

dt
+

∂

∂y
f
dy

dt
(7.12)

This is correct, but we do not have a picture of what it means to divide by dt. We can get an answer with
the linear approximation.

For (x0, y0) = (x(t0), y(t0)),
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∆f ≈ ∂

∂x
f∆x+

∂

∂y
f∆y ≈ ∂f

∂x

(
x′(t0)∆t

)
+
∂f

∂y

(
y′(t0)∆t

)
(7.13)

The above is the linear approximation of f in terms of partial derivatives, derivatives of the components,
and ∆t. We can take a limit as ∆t → 0, and set the resultant df

dt equal to the coefficients in the linear
approximation above. Then we get

df

dt
=

∂

∂x
f · dx

dt
+

∂

∂y
f · dy

dt
(7.14)

Intuitively, for 2D motion, the rate of ascent is equal to the sum of the products of slope and velocity in the
x and y directions.

7.3.3 Example 1

z = f(x, y) = y2 − x2

Consider x(t) = y(t) = t. Then the rate of change of z with respect to time is

dz

dt
=

∂

∂x
z · dx

dt
+

∂

∂y
z · dy

dt
= (−2x) · 1 + (2y) · 1 = 2y − 2x = 2t− 2t = 0 (7.15)

i.e. by walking along the lines y = ±x, the z does not change at all. This is consistent with the contour
plot. We plot the contour for z = 0 and notice that the crossed lines y = x and y = −x appear.

7.3.4 Example 2

z = f(x, y) = y2 − x2

Consider x(t) = cos t, y(t) = sin t. Then the rate of change of z with respect to time is

dz

dt
=

∂

∂x
z
dx

dt
+

∂

∂y
z
dy

dt
= (−2x) sin t+ (2y) cos t = 2 sin t cos t+ 2 sin t cos t = 2 sin 2t (7.16)

7.4 The Chain Rule Strikes Back

Let x and y depend on two variables s and t. Then, if we want to find ∂
∂sf and ∂

∂tf , we use linear
approximations again, using total differentials.

df =
∂

∂x
fdx+

∂

∂y
fdy (7.17)

We also know that

dx =
∂

∂s
xds+

∂

∂t
xdt (7.18)
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and

dy =
∂

∂s
yds+

∂

∂t
ydt (7.19)

Therefore we can compose these approximations to get

df =
∂

∂x
f
( ∂
∂s
xds+

∂

∂t
xdt
)

+
∂

∂y
f
( ∂
∂s
yds+

∂

∂t
ydt
)

(7.20)

Then we expand, and take terms in ds and dt common:

df =
( ∂
∂x
f
∂

∂s
x+

∂

∂y
f
∂

∂s
y
)
ds+

( ∂
∂x
f
∂

∂t
x+

∂

∂y
f
∂

∂t
y
)
dt (7.21)

Therefore

df =
∂

∂s
fds+

∂

∂t
fdt (7.22)

Example 1

Let f(x, y) = 3x+ 4y + 10, x(s, t) = s+ t, and y(s, t) = s− t.

We want to compute ∂
∂sf :

∂

∂s
f =

∂

∂x
f
∂

∂s
x+

∂

∂y
f
∂

∂s
y = (3)(1) + (4)(1) = 3 + 4 = 7 (7.23)

and similarly,

∂

∂t
f = fxxt + fyyt = (3)(1) + (4)(−1) = 3− 4 = −1 (7.24)

which gives us the total differential,

df = 7ds− dt (7.25)

We should get the same answer if we just use the linear approximation,

f = 3x+ 4y + 10 = 3(s+ t) + 4(s− t) + 10 = 7s− t+ 10

Therefore with differentials the constant drops out and we get df = 7ds− dt as above.



Example 2

Let f(x, y) = ex sin y, x(s, t) = s2t, y(s, t) = st2.

Then we use the chain rule,

fs = fxxs + fyys = ex sin y · 2st+ ex cos yt2 = 2stes
2t sin(st2) + t2es

2t cos(st2) (7.26)

7.5 Implicit Differentiation

We may in some cases be given z implicitly by an equation F (x, y, z) = 0, e.g. x2 + y2 + z2 = 3 in the
neighbourhood of (1, 1, 1).

7-5
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8.1 Chain Rules

We previously discussed the two forms of the multivariate chain rule,

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

when x and y are dependent on only one variable t, and

∂f

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s

when x and y depend on s and t.

It is not always clear which of these forms to use. For example, let z be a function of x and y, and let h(z)
be differentiable. To find ∂h

∂x , which do we use?

dh

dz

∂z

∂x
, or

dh

dz

∂z

∂x
+
dh

dz

∂z

∂y
?

We can clearly see that the first expression seems more likely to be correct, because there is no reason for
an x−partial derivative to be dependent on y. To explicitly see this, we can do the following:

∂

∂x
h(z(x, y)) =

dh

dz
· d
dx
z(x, y) =

dh

dz

∂z

∂x

It is possible to more rigorously prove this using linear approximations:

Proof.

h
(
z(x0 + ∆x, y0)

)
≈ h

(
z(x0, y0) + ∆x

∂z

∂x
(x0, y0)

)

≈ h
(
z(x0, y0)

)
+
dh

dz

(
z(x0, y0)

)∂z
∂x

(x0, y0)∆x = h
(
z(x0, y0)

)
+
∂h

∂x
∆x



8.2 General Chain Rule

For a function f(x1, . . . , xn), in which each xi = xi(t1, . . . , tm), the following holds for every j:

∂f

∂tj
=

∂f

∂x1

∂x1

∂tj
+ · · ·+ ∂f

∂xn

∂xn
∂tj

8.3 Implicit Partial Differentiation

In cases where we are not given z(x, y) explicitly, but rather are given some function F (x, y, z) = 0, it is
possible to implicitly define z = z(x, y) and differentiate. For example, let

F (x, y, z) = x3 + y3 + z3 + 6xyz = 1

This is a level surface of the function F .
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9.1 Maxima and minima

We are interested in finding the maximum or minimum of a function f on a domain D.

This has many applications:

• Find the point on a plane closest to the origin

• (Regression) find the line that best fits a given set of data points

• Find the fastest route from one point to another

• Machine learning

Recall how we did this in one variable:

Given a differentiable f(x) on a domain, interval, find a local or global maximum or minimum of f(x).

Local means to find some a such that f(a) ≥ f(x) for x ∈ neighbourhood of a, and global means to find
f(a) ≥ f(x), x ∈ D.

I could draw what that means, but I’m a bit lazy and haven’t entirely figured out tikzgraphics that aren’t
compositions of lines and circles yet. Eventually I’ll go back through these notes and get all this stuff off his
online notes. Same for 54.

We observe that if a is a local extremum, f ′(a) = 0, i.e. the tangent line is horizontal.

Proof.

f(a+ ∆x) ≈ f(a) + ∆xf ′(a)

If f ′(a) 6= 0, can increase/decrease.

Remark. Local extrema in the interior are critical points, but f ′(a) = 0 does not imply a local minima or
maxima, for example f(x) = x2 has a critical point at x = 0 but is not a min or max.

We can figure out whether a critical point is a min or max by the second derivative test.

If f ′(a) = 0, then:

• f ′′(a) > 0 =⇒ local min

• f ′′(a) < 0 =⇒ local max

• f ′′(a) = 0 =⇒ inconclusive
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This gives us a procedure for finding the max or min:

1. Find critical points (maybe use the second derivative test to refine this).

2. Evaluate the function on boundary points.

The global max or min is the largest or smallest of the points above, provided they exist.

Definition 20. Extreme Value Theorem: if f is continuous, and D is closed and bounded, then f
achieves its global max/min on D.

9.2 Generalising 1D optimisation to two variables

Given a scalar function of two variables f(x, y) that is differentiable on some domain D ⊆ R2, we want to
find

local minima f(a, b) ≤ f(x, y)∀x, y ∈ disc of radius δ > 0 around (a, b), or

global minima f(a, b) ≤ f(x, y)∀x, y ∈ D

or the equivalents for maxima.

The gradient will help us to do this, as it points in the direction of steepest ascent. We observe that if
∇f(a, b) 6= 0 and (a, b) is in the interior of the domain D then (a, b) cannot be a local extremum.

Proof.
f(a+ ∆x, b+ ∆y) ≈ f(a, b) +∇f · < ∆x,∆y >

So unless ∇f = 0, we can increase or decrease f.

Put another way, if ∇f(a, b) = 0, then (a, b) is a critical point.

In terms of partial derivatives, ∇f(a, b) = 〈fx(a, b), fy(a, b)〉 = 0 at a critical point so both partials are zero.
If (a, b) ∈ interior(D) is a local extremum then fx = fy = 0.

This implies that the extrema of f(x, y) on D are either critical points or boundary points.

Example 1

f(x, y) = x2 + y2 − 2x+ 4y + 8, D = R2

We take the partial derivatives,

fx = 2x− 2, fy = 2y + 4

Therefore the gradient is

∇f(x, y) = 〈2x− 2, 2y + 4〉

For this to be a critical point, both the partials must be zero, therefore we get x = 1, y = −2.
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To find out whether this is a max or a min, we complete the square:

f(x, y) = (x− 1)2 + (y + 2)2 + 3

. It is clear that at (1,−2) the value of this function is 3, and it is greater at every other point. Therefore it
is a global minimum.

Example 2

f(x, y) = x2y2e−x
2−y2 on R2

We take the partial derivatives,

fx = 2xye−x
2−y2(1− x2)

fy = 2yx2e−x
2−y2(1− y2)

We observe that if x = 0 or y = 0, or if x, y = ±1, the partial derivatives are zero. The points f(x, 0) = 0
and f(0, y) = 0 are global minima, because the function is zero for these values but it is positive otherwise.
It turns out that x, y = ±1,±1 are local maxima.

9.3 Second Derivative Test

Suppose ∇f(a, b) = 0, D = fxxfyy − (fxy)2.

If D > 0 and fxx > 0, then (a, b) is a local minima. If D > 0 and fxx < 0, then (a, b) is a local maxima. If
D < 0, then (a, b) is a saddle point. If D = 0, this is inconclusive.

But what is D conceptually? Let’s look at some examples.

Examples

f(x, y) = x2 + y2

In this case, D evaluates to 4 (∂
2f
∂x2 ) which is greater than 0.

f(x, y) = −x2 − y2

Similarly, D = (−2)2 = 4.

f(x, y) = y2 − x2

In this case D = −4 < 0.



The reason why this has anything to do with the second derivative test statement above is in the second
order Taylor approximation of f(x, y).

f(x, y) ≈ f(a, b) + ∆xfx + ∆yfy +
∆x2

2
fxx +

∆y2

2
fyy + ∆x∆yfxy

9.4 How do we know whether there are global maxima or minima?

We can apply the extreme value theorem in two dimensions to answer this.

Theorem 21. If f(x, y) is continuous and D is closed and bounded, then f achieves its global max/min on
D.

D is closed if D contains all of its limit points.

9.5 Algorithm to find extrema

1. Find critical points - perhaps using second derivative test

2. Check values on the boundary.

That isn’t very clear.

So let’s try and find the max of x2 + 3xy − y on D = {−1 ≤ x ≤ 1,−1 ≤ y ≤ 1}.

We start by finding partial derivatives and setting them equal to zero. This yields x = 1
3 and y = − 2

9 . This
gives us a potential local max or min. Finding the value at the point yields

f
(1

3
,−2

9

)
=

1

9

To check the values on each of the boundaries, we look at each line segment in turn:

L1 : x ∈ [−1, 1], y = −1

. The function in this case becomes fL1
(x) = x2 − 3x + 1, for which we can find the extrema using one-

dimensional methods. Repeat this for L2, L3, L4 to get maxima m1, . . . ,m4.

Then the max is the max of 1
9 ,m1, . . . ,m4. We can compute corners first plus the four critical points.
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10.1 Finding extrema when boundaries are not line segments

What if D = {x2 + y2 ≤ 1}?

In this example, we could use the fact that x = ±
√

1− y2 on the boundary, and substitute it into f(x, y),
but this won’t work in general.

10.1.1 Constrained Optimisation

We want to maximise or minimise an objective function f(x, y) subject to the constraint equation g(x, y) = k.
Note that x and y are no longer independent.

Examples

1. Minimise f(x, y) = x2 + y2 subject to the constraint g(x, y) = xy = 2.

2. We could ask a similar question in three dimensions: minimise f(x, y, z) = 3x2 + 4x2y2 + 5z2 subject
to x+ y + z = 1.

3. More practical examples would be to find the maximum volume of a box made with 100 m2 of card-
board. We see there is an objective function as well as a constraint here.

In the first example, we observe that if level curves of f and {g = k} intersect non-tangentially, we can move
a bit in the same direction and reach a lower level curve of f .

Theorem 22. If x0, y0 is an optimum of max/min f(x, y) subject to g(x, y) = k, then ∇f ‖ ∇g at (x0, y0),
therefore

∇f(x0, y0) = λ∇g(x0, y0) (10.27)

where λ is the Lagrange multiplier.

Proof. Let g = k be a level curve of a function and let (x0, y0) be on that curve. Let ~r(t) be a parameterised
curve along {g = k} where ~r(0) = (x0, y0). Then f(~r(t)) has a time derivative of zero, i.e. ∇f(x0, y0) ·~r′(0) =
0. This means the gradient of f is perpendicular to the velocity at 0. As it is a level curve, the same argument
applies to g (as g = k everywhere) and so ∇g(x0, y0) · ~r′(0) = 0. Therefore the gradients of f and g are
parallel.

So let’s use this to solve the first example. We know fx = 2x, fy = 2y, gx = y, and gy = x. Because
∇f = λ∇g, we know that
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2x = λy, 2y = λx, xy = 2

where we get the third equation from the constraint. So we can solve for x, y, λ to get

x = ±
√

2, y = ±
√

2, λ = ±2

10.2 who needs the real world anyway

What is the maximum volume of an open top box with surface area 12 m2?

We want to maximise f(x, y, z) = xyz subject to g(x, y, z) = xy + 2yz + 2zx.

We take partial derivatives,

fx = λgx =⇒ yz = λ(y + 2z)

fy = λgy =⇒ xz = λ(x+ 2z)

fz = λgz =⇒ xy = λ(2y + 2x)

and xy + 2yz + 2zx = 12.

Solving this yields z = 0, λ = 0, or x = y. We reject the first two so that x = y. We also get x = 2z by a
similar method.

Therefore we plug this into g = 12 to get (x, y, z) = (2, 2, 1).

Remark. These equations only generate candidates for external points. They do not even assure that an
optimum has been achieved. We need to ensure that the global max exists by other reasoning.

10.3 What does λ mean?

Let M(k) be the max value with constant g(x, y, z) = k, and let ~r(k) = 〈x(k), y(k), z(k)〉 be a parameterised
curve such that f(~r(k)) = M(k).

We claim that dM(k)
dk = λ, which gives us information about the variation in the solution to an optimisation

problem upon varying one of the inputs.

Proof.
dM(k)

dk
=

d

dk
f(~r(k)) = ∇f · ~r′(k) = λ∇g · ~r′(k) = λ

d

dk
g(~r(k)) = λ

dk

dk
= λ

10.4 Partial Differential Equations

A partial differential equation relates an unknown function of two or more variables and its partial derivatives.

examples: u(x, y), ∂u∂x = 0, ∂u∂x + ∂u
∂y = 0, (∂u∂x )2 + (∂u∂y )2, etc etc etc.



All the laws of classical physics are partial differential equations. For example, the heat equation from the
1800s. We mathematically define heating and cooling as a function U(x, t), x ∈ R.

In summary, the heat equation is simple:

∂u

∂t
=
∂2u

∂x2

10-3
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11.1 Finishing PDEs

The heat equation is still simple:

∂u

∂t
=
∂2u

∂x2

Suppose we have a rod of infinite length, and we unevenly heat it up. At time t = 0, the distribution of heat
u(x, 0) is uneven, and it evens out over time until the whole rod is at thermal equilibrium at some time.

We want to know the general expression for u(x, t) given an initial condition, e.g. u(x, 0). Suppose the initial
temperature for one rod is given by sinx, and that for a second is sin 10x. Intuitively, the second one will
cool faster as the discontinuities in temperature happen over smaller x distances.

We can formalise this by thinking of the rod as many tiny elements of width ∆x and constant temperature
across that small width. A physical law tells us that the rate of heat flow is directly proportional to the
slope of temperature across a point.

The heat in each element is equal to the temperature multiplied by ∆x. Let the heat flowing in to an element
at distance x and time t be Ux(x, t) and let that flowing out be −Ux(x + ∆x, t) (the negative sign denotes
the outflow). Then, the net heat change in time ∆t is β∆t(Ux(x, t)− Ux(x+ ∆x, t)). We can compare this
with the definition of heat above, which yields the equation

U(x, t+ ∆t)− U(x, t)

∆t
=
−βUx(x+ ∆x, t)− Ux(x, t)

∆x

In the limit, this becomes

∂u

∂t
= −β ∂

2u

∂x2

Some solutions to this are any constant, or e−t sinx. These can be easily verified by computing the partial
derivatives. So this solution models exactly what happens to a rod heated according to sinx: the heat decays
exponentially.

In general, e−k
2t sin(kx) is a solution to this PDE. So sin(10x) decays 100 times faster.

Another interesting solution to this is the formula for the bell curve, u(x, t) = 1√
t
e
−x2

4t .

11.1.1 What does it mean to satisfy the heat equation anyway?

If you plug in a function that is a solution to the heat equation, you get the differential form of the heat law
as stated above.



11.2 Wave Equation

Suppose you have an infinite string, and you displace the string according to a function g(x, t). What
happens when the string is released?

The answer is given by a thought experiment. Imagine that a string is a series of small springs, on which
Hooke’s law applies. If we follow a similar line of reasoning as with the heat equation, we get the PDE

∂2g

∂t2
= c2

∂2g

∂x2

We observe that g(x − ct) is always a solution to this PDE, which is easily verified via the chain rule. So
easy, in fact, that I’m not going to do it here. This margin is too narrow to contain it.

11.3 Review

There’s 50 minutes left in this lecture and my battery is on 14% (I have no idea how, I had like 60% two
hours ago). And it’s not like there’s anything too new here. So I might update this section with this material
later. But for now this is all.
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12.1 with one variable

Let f(x) ≥ 0 be a continuous function on the interval a ≤ x ≤ b. Plotting a graph of this function gives
us a one-dimensional curve in the two-dimensional plane, and it defines the region between the graph of the
function and the interval [a, b]. The area of this region is represented by the definite integral,

ˆ b

a

f(x)dx

This leads to the concept of a Riemann sum, in which we approximate the area by n rectangles of width
∆x, where xi+1 − xi = ∆x. If f is a nice function, the height won’t change much in each subinterval.

Therefore

ˆ b

a

f(x)dx = lim
n→∞

∑
0≤i≤n

Areai = lim
n→∞

∑
i

f(x∗i )∆x

This lead to ideas about sums and scalar multiples of integrals, the Fundamental Theorem of Calculus, etc.

12.2 with two variables

Let f(x, y) ≥ 0 be continuous and defined on a rectangular region:

R = a ≤ x ≤ b, c ≤ y ≤ d

Analogous to the idea of an area under the curve, we can compute a volume under the surface.

Subdivide the region into a grid, consisting of a set of small rectangles.

a < x1 < x2 < · · · < xn < b

c < y1 < y2 < · · · < yn < d

Then, we define the double integral over this surface:

ˆ ˆ
R

f(x, y)dA = lim
m→∞,n→∞

∑
i≤n,j≤m

volij = lim
n→∞

lim
m→∞

∑
i≤n

∑
j≤m

f(x∗i , y
∗
i )∆x∆y
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12.3 Anonymous Method

Maybe it’s an iterated integral.

ˆ ˆ
R

f(x, y)dA = lim
n→∞

∑
i≤n

lim
m→∞

∑
j≤m

f(xi∗, yi∗)∆y∆x

= lim
n→∞

∑
i≤n

ˆ d

c

f(xi∗, y)dy∆x

This just simplifies to

ˆ b

a

ˆ d

c

f(x, y)dydx

12.4 Example

What is the volume of the 3D region bounded by the surface z = x2 + 2y2 + 3, and the planes x = 1, y = 3,
and the planes x = 0, y = 0?

We draw traces and stuff like that

but the point is just to do the integrals:

ˆ 3

0

ˆ 1

0

(x2 + 2y2 + 3)dxdy

=

ˆ 3

0

1

3
+ 2y2 + 3dy = 28

(just trust me (read: trust the prof.))

You can do it the other way too:

ˆ 1

0

ˆ 3

0

x2 + 2y2 + 3dydx

=

ˆ 1

0

(3x2 + 27)dx = 28

12.5 Warning

Often, the integral one way is easy and the other way is impossible, even though

ˆ ˆ
f(x, y)dydx =

ˆ ˆ
f(x, y)dxdy



12.6 Integrating over any subset of R

First, define some rectangle containing the subset of R over which we want to integrate. Then the integral
over the subset is equivalent to the integral over the rectangle. The proof is in Math 104.

You may think I’m distracted today based on how little detail I’m writing, and you’d be right because I’m
actually trying to do my CS project in parallel with this. Sorry.

Example

ˆ ˆ
D

ok you know what i’m just doing this later
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14.1 Volume of a sphere

We know that the volume of a sphere of radius R is V = 4
3πR

3. We can derive this from the formula of a
sphere, which is

{(x, y, z) : x2 + y2 + z2 = R2}

Therefore the surface is twice the area of the graph of f(x, y) =
√
R2 − x2 − y2 over the region D =

{x2 + y2 ≤ R2}. Therefore we can set up a double integral,

V

2
=

ˆ ˆ
f(x, y)dA

which is

V

2
=

ˆ R

−R

ˆ √R2−x2

−
√
R2−x2

√
R2 − x2 − y2dydx

This isn’t fun. Math should be fun. So to make math fun we use polar coordinates. Yes. That is a true
statement. Everyone loves polar coordinates.

14.2 Everyone loves polar coordinates

Polar coordinates characterise a point by the distance from the origin and either one or two angles, depending
on whether you’re in R2 or R3. In R2, we can define a point by (r, θ) where x = r cos θ and y = r sin θ.

Integrating in this coordinate system is a little less simple, but still reasonable. We can subdivide a region
into small arcs subtending angle dθ. Then we can invoke magic to get the trivial result

ˆ ˆ
D

f(r, θ)dA =

ˆ β

α

ˆ b

a

f(r, θ)rdrdθ

14.3 Volume of a sphere in the coordinates everyone loves

The integral we were looking at before in polar coordinates is



ˆ 2π

0

ˆ R

0

√
R2 − r2rdrdθ

which we can evaluate to get

V

2
=

2π

3
R3

14.4 More examples

idc
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Blank for now. (Wasn’t here.)
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16.1 Change of variables, continued

In one dimension, we are familiar with the concept of a variable change. Let x = g(u), then the integral is

ˆ b

a

f(x)dx =

ˆ d

c

f(g(u))g′(u)du

In two dimensions, the concept is similar. Say we have a function

ˆ ˆ
R

f(x, y)dA

Then, we substitute x = x(u, v) and y = y(u, v). Analogous to changing the limits of one-dimensional
integration, we change the region R over which we’re integrating. A small rectangle of area ∆u∆v in R is
transformed to a slightly different area in the new region S. So the integral becomes

ˆ ˆ
S

f(x(u, v), y(u, v))

∣∣∣∣ ∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ dudv
(for now, just zoom in)

We denote this determinant by

∣∣∣∂(x, y)

∂(u, v)

∣∣∣
16.1.1 Derivation for the determinant

Consider a small rectangle of side lengths ∆u and ∆v. The sides are vectors 〈∆u, 0〉 and 〈0,∆v〉. To find
the magnitude of a small change in u in the transform, we take the partial derivative of the point mapped
as (x, y) to get one side length of the new parallelogram 〈xu, yu〉∆u.

By symmetry the other is 〈xv, yv〉∆v. Therefore, the area is

A = ∆u∆v

∣∣∣∣xu xv
yu yv

∣∣∣∣
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16.1.2 Example

ˆ ˆ
R

1
√
xy
dA

where R is defined by the lines

x+ y = 1, y = x/3, x+ y = 4, y = 3x

We make the substitution x = u2, y = v2. Then, with the definition T (u, v) = (u2, v2), we can find the
region S such that T (S) = R is a one-to-one correspondence.

On y = 3x, v2 = 3u2.

On y = x/3, v2 = u2/3.

On x+ y = 1, u2 + v2 = 1.

On x+ y = 4, u2 + v2 = 4.

This defines our transformed region.

The Jacobian is:

∣∣∣∣2u 0
0 2v

∣∣∣∣ = 4uv

Therefore, the integral becomes

ˆ ˆ
R

1
√
xy
dA =

ˆ ˆ
S

1

uv
4uvdudv = 4

ˆ ˆ
S

dudv

which is just an area computation, which we can do in polar coordinates.

The lines make angles of π
6 and π

3 respectively, and r goes from 1 to 2. So the integral becomes

4

ˆ π/3

π/6

ˆ 2

1

rdrdθ = π

16.2 Triple Integrals

Let R = [a, b]× [c, d]× [r, s], and let f : R→ R. Then, we subdivide the regions as follows:

a < x0 < x1 < · · · < xn < b

c < y0 < y1 < · · · < yn < d

r < z0 < z1 < · · · < zn < s



Define ∆x = xi − xi−1, and ∆y and ∆z similarly. Then, take a sample point in one of the sub-boxes on
the region (x∗i , y

∗
j , z
∗
k). We can find the volume of the entire region by summing over the volumes of each

sub-box:

lim
n→∞

n∑
i,j,k=1

fx∗i , y
∗
j , z
∗
k)∆x∆y∆z

i.e. as an integral, this is

ˆ ˆ ˆ
R

f(x, y, z)dV

As with double integrals, we do this as an iterated integral.

16.2.1 Example

R = [0, 1]× [2, 3]× [4, 5]

and f(x, y, z) = xyz.

The integral is

ˆ 5

4

ˆ 3

2

ˆ 1

0

xyzdxdydz

=

ˆ 5

4

ˆ 3

2

yz

2
dydz =

ˆ 5

4

y2z

4

∣∣∣3
2
dz =

5

4

z2

2

∣∣∣5
4

=
45

8

16.2.2 yay fun

We can define this integral for any bounded solid region.

16.2.3 Another example

Find
´ ´ ´

xdV where the region is bounded by x = 4y2 + 4z2 and x = 4.

After a lot of drawing, we get the following integral, after we decide to set it up in the order dxdA.

Actually I’m not doing this
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20.1 Line Integrals, Continued?

”Recall” that F = P î+Qĵ implies that the line integral is

ˆ
C

~F · d~r =

ˆ b

a

F (~r(t)) · ~r′(t)dt =

ˆ
C

Pdx+

ˆ
C

Qdy

F = ∇f for some continuous f =⇒
´
C
∇f · d~r = f(~r(b))− f(~r(a))

We can say that F is conservative if the value of its line integral depends only on the end points, or that´
C
~F · d~r = 0 over every closed C. This in turn suggests that Qx = Py.

Suppose F = 〈P,Q〉 = ∇f = 〈fx, fy〉. This implies P = fx, Q = fy. Then Py = Qx by Clairaut’s theorem.

Therefore we can check if a field is conservative by checking whether the opposite partial derivatives are
equal. For example, F = −yî+ xĵ is not conservative because Qx = 1 and Py = −1.

The Qx = Py condition is not an if-and-only-if relation. If Qx = Py and F exists on a simply connected
domain, then F is conservative. So what’s a simply connected domain?

Definition 23. A domain D is simply connected if every simple closed curve encloses a region containing
only points of D.

Definition 24. C is simple if it does not intersect itself.

Definition 25. It’s turtles all the way down.

Theorem 26. Jordan Curve Theorem: a simple closed continuous curve divides the plane into two regions,
one of which is simply connected.

20.2 Nonconservative Field

F = P î+Qĵ

D simply connected

Qy − Px = 0 for conservative fields. This is called the curl of the vector field.

If the curl is zero, there is no rotation of the vector field. If it’s positive, the field is counterclockwise, and if
it’s negative, the field is clockwise.



20.3 Green’s Theorem

Theorem 27. if C is a simple closed curve is enclosing a region D, and F = P î+Qĵ is a vector field, then

˛
C

~F · d~r =

ˆ ˆ
∇× ~FdA

In terms of our earlier example, this means

ˆ
C

Pdx+

ˆ
C

Qdy =

ˆ ˆ
(Qx − Py)dA

20-2
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Sorry about the lack of images. Use your imagination a bit? :P

Wow emoticons don’t typeset nicely at all

21.1 Review of Green’s Theorem

Given a vector field F = P î+Qĵ, the line integral over a simple closed positively oriented curve C is

ˆ
C

~F · d~r =

ˆ ˆ
D

curl(F )dA

where the curl of F is Qx − Py. More explicitly, this means

ˆ
C

Pdx+Qdy =

ˆ ˆ
D

(∂Q
∂x
− ∂P

∂y

)

21.2 Applications

1. Can change complicated
´
C

into simple
´ ´

D
and vice versa

2. Can calculate the area of complicated curves, such as Florida.

The area is represented as a double integral over a weird-shaped domain,
´ ´

D
dA. By Green’s theorem,

this is equal to

ˆ
C

Pdx+Qdy

where F = 〈P,Q〉 such that curl(F ) = 1. For example, F = xĵ.

If we take the above example, this becomes a Riemann sum:

ˆ
C

xdy ≈
n∑
i=1

x(ti)y
′(ti)∆t

3. A vector field F is conservative if and only if
¸
C
~F · d~r = 0 for closed C. F being conservative also

implies Qx − Py = 0 Therefore, we can use Green’s theorem to prove the following:

Theorem 28. If D is simply connected and Qx − Py = 0 on D, then F = ∇f on D.

Proof. Pick some simple closed curve C. We know that the curl of F is 0. This means
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ˆ
C

~F · d~r =

ˆ ˆ
D

curl(F )dA = 0

Therefore, F is the gradient of another function.

21.3 Proof of Green’s Theorem

We want to show that
´
C
Pdx+Qdy =

´ ´
D

(Qx − Py)dA for components P, Q of a two-dimensional vector
F.

One way of approaching this is to show the following:

ˆ
C

Pdx =

ˆ ˆ
D

−PydA

ˆ
C

Qdy =

ˆ ˆ
D

QxdA

which are, respectively, the Q = 0 and P = 0 cases. Then we can simply add these two results to get Green’s
theorem.

21.3.1 Proving the first statement

It’s not entirely clear how to go about this, because we don’t know how to do double integrals over arbitrary
regions. So, as a first step, we prove this statement for Type I regions:

ˆ
C

Pdx =

ˆ ˆ
D

−PydA,D = {a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}

We calculate the line integral, by dividing it into four parts C1 through C4. The line integral evaluates to

ˆ
C

Pdx =

ˆ
C1

Pdx+

ˆ
C2

Pdx+

ˆ
C3

Pdx+

ˆ
C4

Pdx

Since x does not change on C2 and C4 (get pictures), the second and fourth integrals become zero.

=

ˆ b

a

P (x, g1(x))dx+

ˆ a

b

P (x, g2(x))dx =

ˆ b

a

P (x, g1(x))− P (x, g2(x))dx

Now for the double integral:

ˆ ˆ
D

−PydA =

ˆ b

a

ˆ g2(x)

g1(x)

− ∂

∂y
P (x, y)dydx

By the Fundamental Theorem of Calculus, this is equal to
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ˆ b

a

−
(
P (x, g2(x))− P (x, g1(x))

)
dx

which is the same as the above.

Therefore,

ˆ
C

Pdx =

ˆ ˆ
D

−PydA

for Type I regions.

21.3.2 Extending this to general regions

The idea behind this is to decompose complicated regions into simpler ones. Let an arbitrary region consist
of sub-regions R1 and R2, traced by curves C1 and C2 respectively. Suppose we know that the statement
above is true for both regions, i.e.

ˆ
C1

Pdx =

ˆ ˆ
R1

−PydA

ˆ
C2

Pdx =

ˆ ˆ
R2

−PydA

On the right hand side, we can add these up to get an area integral over the entire region. On the left side,
we get a line integral over the original C, plus two integrals over the interface between the regions which end
up being equal and opposite, therefore they cancel.

Now, for general regions, we can subdivide them into Type I regions. We know that the statement is valid for
all such regions, and for combinations of such regions, therefore the statement is valid for the larger region
as well.

21.3.3 Repeat the above for the Qdy statement

This can be done using all the same methods as above.

21.3.4 Add the two statements

Proof. of Green’s theorem: See sections 21.3.1 through 21.3.3.

21.4 Flux Interpretation of Green’s Theorem

So far, we have considered the physical interpretation of line integrals:



21-4 Lecture 21: 3 April

ˆ
C

~F · d~r =

ˆ b

a

~F (~r(t)) · ~r′(t)dt

We can also express this geometrically as a tangent vector. Change ~r′(t)dt to T̂ (t)|~r′(t)|dt. Since |~r′(t)|dt =
ds, the line integral becomes

ˆ
C

~F · T̂ ds

We could consider the integral of ~F · ~n, where ~n(t) is the normal vector, which is 90o clockwise relative to T̂
and perpendicular to it.

Physically, if F is a velocity field, this integral of ~F · ~n is the flux,or the net outflow across C per unit time.

Suppose F = xî+ yĵ, and C is the circle of radius 1 centered at (1, 1). As ~F is not constant, it isn’t exactly
clear what net flux is. To make this notion mathematically precise, let’s derive an expression for ~n.

We know that T̂ (t) = ~r′(t)
|~r′(t)| = 〈x′(t),y′(t)〉

|~r′(t)| . We can easily verify by taking a dot product that 〈y′(t),−x′(t)〉
is perpendicular to T̂ . Therefore, we normalise this to find that

~n(t) =
〈y′(t),−x′(t)〉
|~r′(t)|

We can now give an explicit description of the flux:

Flux =

ˆ
C

~F · ~nds =

ˆ
〈P,Q〉 · 〈y

′(t),−x′(t)〉
|~r′(t)|

|~r′(t)|dt

=

ˆ
P (x, y)y′(t)−Q(x, y)x′(t)dt =

ˆ
C

Pdy −Qdx

to which we can apply Green’s theorem. This is slightly modified, however: we take P = −Q and Q = P .
This means the area integral becomes

ˆ ˆ
D

Px +QydA

This quantity is called the divergence.

21.5 Divergence Form of Green’s Theorem

Define div(F ) = Px +Qy. Then,

ˆ
C

~F · ~nds =

ˆ ˆ
D

div(F )dA

for a simply closed positively oriented C.



We can use this to solve the example in 21.4, in which F was not constant. We can take the divergence:

divF =
∂

∂x
x+

∂

∂y
y = 2

Therefore, by this form of Green’s theorem, the flux becomes

ˆ
C

~F · ~nds =

ˆ ˆ
D

div(F )dA =

ˆ ˆ
D

2dA = 2π

Conclusions:

1. This was easy

2. Flux only depends on area, not on location. (my addition: As long as divergence is a constant and
does not depend on x or y. Which is probably not always the case.)

21.6 Physical Meaning of Divergence

Imagine the graph of a vector field 〈x, y〉. There is no net inflow, and there is a net outflow. This is reflected
in that the divergence has a positive value. For the vector field−〈x, y〉, divergence is −2, and there is a net
inflow, or a net negative outflow. The divergence of a constant vector field is zero, because there is no net
inflow or outflow in a constant field such as 〈1, 1〉.

Therefore, the divergence represents the flux over a small area. (Rate of net outflow over unit time and area)
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The goal for the rest of the course is to generalise the ideas of curl and divergence to three dimensions. In
order to do this, we need to formalize a two-dimensional analogue of a line integral, which turns out to be a
surface integral.

22.1 Curl in 3D

Given a vector field F = 〈P,Q,R〉,

curl(F ) = ∇× F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣ = î(Ry −Qz)− ĵ(Rx − Pz) + k̂(Qx − Py) = 〈Ry −Qz, Pz −Rx, Qx − Py〉

Why does this make sense?

22.1.1 The 2D curl is a special case

Let R = 0 in the above. Then, Pz = Qz = 0 and Rx = Ry = Rz = 0, and the curl simplifies to

curl(F ) = 〈0, 0, Qx − Py〉

22.1.2 It appears to measure local rotation

Take a constant F . The curl is zero both intuitively and by computing partial derivatives (which will all
individually be 0).

Now, let F = 〈x, y, z〉. The curl is 0 again, because curl is meant to measure rotation, and plotting the
corresponding vector field shows us that F only causes displacement, not rotation.

Let F = 〈0, z,−y〉. The curl of F is 〈−2, 0, 0〉, which is consistent with the corresponding vector field plot,
which shows clockwise rotation in the x−direction.

22.1.3 It lets us check whether a vector field is conservative

Theorem 29. If F = ∇f, curl(F ) = 0.

Proof. Let F = 〈Fx, Fy, Fz〉. The curl of F is
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〈fzy − fyz, fxz − fzx, fyx − fxy〉

which is the zero vector by Clairaut’s theorem.

Theorem 30. If F is defined on R3 and curl(F ) = 0, then F = ∇f for some f .

Example

Is the vector field F = 〈ez, 1, xez〉 conservative?

We compute the determinant,

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

ez 1 xez

∣∣∣∣∣∣ = 〈0, ez − ez, 0〉 = ~0

Therefore the vector field is conservative. This means we know that

〈ez, 1, xez〉 = 〈fx, fy, fz〉

for some f . From this, we know

fx = ez, fy = 1, fz = xez

We integrate each of these to get:

f =

ˆ
ezdx+ g1(y, z) =

ˆ
dy + g2(x, z) =

ˆ
xezdz + g3(x, y)

= xez + y + C

We can show that all possible gradients of a function are the same up to a constant. Let f1 and f2 both
satisfy F = ∇f . Then,

∇f1 −∇f2 = F − F = 0

i.e., ∇(f1 − f2) = 0 which implies they are the same up to a constant.

22.2 Divergence in 3D

Definition 31.
div(F ) = Px +Qy +Rz

We can do the same sanity checks as with the generalization of curl, with the physical intuition that the
divergence of a vector field measures the outflow of a vector field at a point.



22.3 Relationship between gradient, curl, and divergence

functions
∇−→ vectorfields

curl−−−→ vectorfields
div−−→ functions

Note that the curl of the divergence, or vice versa, is always 0. We can also take the divergence of the
divergence of a function, which gives us the Laplacian ∇2 of a function.

22.4 Surface Integration

In order to do line integrals, we needed to parameterize the curve we were integrating over. We need to
parameterize a surface in much the same way to do a surface integral.

Let D ⊆ R2 be the domain over which we want to do a surface integral. We parameterise it by a vector
~r(u, v) = x(u, v)̂i+ y(u, v)ĵ + z(u, v)k̂, where (u, v) ∈ D.

Suppose the surface is a graph of a function f(x, y). Then, we can parameterise the surface as (x, y, z) →
(x, y, f(x, y)).

In a plane, where ~ra and ~rb are nonparallel vectors in the plane and ~r0 is the position vector of any point in
the plane, we can parameterise it by ~r0 + u~ra + v~rb, (u, v) ∈ R2.

To parameterise a sphere, we can say

x = ρ sinu cos v, y = ρ sinu sin v, z = ρ cosu

u ∈ [0, π], v ∈ [0, 2π]

To complete the analogy, we need an analogue to the tangent or velocity vector in line integrals. We define
a u−velocity and a v−velocity, where ~ru = 〈xu, yu, zu〉 and the same with v. Therefore, we can define the
tangent plane to be

~s(u, v) = ~r(u0, v0) + u~ru(u0, v0), v ~rv(u0, v0)

Now, with only three minutes remaining, we’re ready to do an integral over a surface!

In the u− v plane, a rectangle of area ∆u∆v is mapped onto a strange curvy thing.
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23.1 Double integrals

The idea of a double integral is that we partition the region over which we are integrating, D, into infinites-
imally small rectangles of area ∆x∆y.

ˆ
D

f(x, y)dxdy =

ˆ
D

f(x, y)dA = lim
n→∞

∑
i,j≤n

f(x∗i , y
∗
j )∆x∆y

If we take f = 1, then we get
´
D
dA which is the area of the region.

23.1.1 Computing double integrals

23.1.1.1 Type 1

ˆ b

a

ˆ g2(x)

g1(x)

f(x, y)dydx

23.1.1.2 Type 2

ˆ d

c

ˆ h2(y)

h1(y)

f(x, y)dxdy

23.2 Polar coordinates and change of variables

x = r cos θ, y = r sin θ

This allows us to more easily describe regions more naturally defined by circles and arcs, making integration
easier:

ˆ
f(x, y)dA =

ˆ
f(r cos θ, r sin θ)rdrdθ

The extra r term comes from the Jacobian of the associated Cartesian-polar transformation. In general, a
change of variables allows us to transform an arbitrarily-shaped region into a rectangle that we can easily
integrate over.

The multiplier for a change of variables is the Jacobian:
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J =

∣∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣∣ =

∣∣∣∣xu xv
yu yv

∣∣∣∣
If we change an integral in dxdy into one in dudv by a transformation T , we get the transformed integral

ˆ ˆ
D

f(x, y)dxdy =

ˆ ˆ
S

f(T (u, v))

∣∣∣∣xu xv
yu yv

∣∣∣∣ dudv
23.3 Triple Integrals

These are just double integrals with one more integral, with the physical interpretation being that they are
a volume instead of an area. This allows us to define more coordinate systems:

23.3.1 Cylindrical Coordinates

A point in cylindrical coordinates is characterised by r, θ, z where x = r cos θ, y = r sin θ.

ˆ ˆ ˆ
fdV =

ˆ ˆ ˆ
frdzdrdθ

23.3.2 Spherical Coordinates

We can also generalize polar coordinates in 3D with a sphere.

x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ

and the integral becomes

ˆ ˆ ˆ
fdV =

ˆ ˆ ˆ
fρ2 sinφdρdϕdθ

23.4 Line Integrals

The line integral of a function (scalar field)
´
C
fds, where f : R2 → R, is found by by defining a position

vector ~r(t), t ∈ [a, b]. Then the line integral becomes

ˆ
C

f(~r)ds =

ˆ b

a

f(~r(t))
∣∣∣~r′(t)∣∣∣dt

~r(t) and ~r′(t) are both vector-valued functions from R to R2, whose output consists of components 〈x(t), y(t)〉

or their time derivatives. It follows that |~r′(t)| =
√(

x(t)
)2

+
(
y(t)

)2

.



An easier way of going about this is to consider the line integral equal to
´
C
~F · d~r, which is

ˆ b

a

~F (~r(t)) · ~r′(t)dt =

ˆ b

a

[
P (~r(t))

dx(t)

dt
+Q(~r(t))

dy(t)

dt

]
dt

This depends on the orientation of C, but is much simpler to compute.

23.5 Conservative Fields/FTLI

If F = ∇f for some f , then we can change the vector field ~F into a scalar field f . So if C is still parameterised
by t ∈ [a, b], then we can say

ˆ
C

~F · d~r = f(~r(b))− f(~r(a))

In one dimension, this is simply the fundamental theorem of calculus. The statement that this is true means
that the line integral is path independent, which is the statement that ~F is a conservative field. If ~F = 〈P,Q〉,
~F is conservative if and only if Qx = Py.

23.6 Green’s Theorem

This is the generalization of integration by parts in two dimensions. If C is a simple, closed, positively
oriented curve enclosing a region D, we can say that

ˆ
C

~F · d~r =

ˆ
C

Pdx+Qdy =

ˆ ˆ
D

(Qx − Py)dA
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27.1 The Story So Far and Stokes’ Theorem

1. The fundamental theorem of line integrals:

ˆ
C

~F · d~r = f(~r(b))− f(~r(a))

2. Green’s Theorem:

ˆ ˆ
D

curl(F )dA =

˛
~F · d~r

3. Gauss’s Theorem:

ˆ ˆ ˆ
∇ · ~FdV =

‹
S

~F · ~ndS

These have a common pattern of changing an integral over a region into a lower-dimensional integral over
the boundary of that region. So, we can extend this to:

4. Stokes’ Theorem

2D → S, enclosed surface in R3. 1D → C, boundary of S, positively oriented.

Let ~F = 〈P,Q,R〉 be a vector field defined on S with continuous partial derivatives. Then, we can
state Stokes’ Theorem as follows:

Theorem 32. ˆ ˆ
S

curl(~F ) · ~ndS =

˛
C

~F · d~r

This requires us to define positively oriented. We say that if you are walking on a positively oriented curve,
with the interior to the left, then the normal is pointing upward. Alternatively, we can use a right hand rule,
in which if the index finger of your right hand is tangent to C, and your middle finger points to the interior
of S, then your thumb is the normal vector.

Verbally, Stokes’ Theorem tells us that the net circulation (work) done by a field over a path is equal to the
local circulation (curl) of that field along the surface.
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Example 1

Let ~F = 〈P,Q, 0〉, let S be a region in the x− y plane oriented upwards, and let C be the positively oriented
boundary of S. To verify Stokes’ Theorem, we compute the surface integral of the curl:

curl(~F ) =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

P Q 0

∣∣∣∣∣∣
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the z component of which is Qx − Py. We disregard the other two because the normal vector is 〈0, 0, 1〉.
Therefore, on the left hand side we get

ˆ ˆ
S

(Qx − Py)dA =

˛ b

a

〈P,Q, 0〉 · 〈x(t), y(t), 0〉dt =

ˆ
C

Pdx+Qdy

which is true by Green’s Theorem.

Example 2

Let S be the region of the plane 3x+ 2y + z = 1 in the first octant. We want to find

˛
C

~F · d~r

where F = 〈1, x+ yz, xy −
√
z〉 and C is the positively oriented boundary of S.

We apply Stokes’ Theorem. The normal vector is 〈3,2,1〉√
14

, and the surface is the graph of z = 1 − 3x − 2y.

Since the graph lies in the first octant, the domain is equal to

D = {x ≥ 0, y ≥ 0, 3x+ 2y ≤ 1}

Then, the curl is

curl(F ) =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

1 x+ yz xy −
√
z

∣∣∣∣∣∣ = 〈x− y,−y, 1〉

Therefore, the integral becomes

1√
14

ˆ ˆ
S

〈x− y,−y, 1〉 · 〈3, 2, 1〉dS =
1√
14

ˆ ˆ
D

(3(x− y)− 2y + 1)
√

14dA

where we add in a magnification factor of | ~rx × ~ry| =
√

14


