
Math 54: Linear Algebra and Differential Equations Spring 2018

Lecture 1: Introduction to linear algebra
Lecturer: Alexander Paulin January 17 Aditya Sengupta

Note: LATEXformat adapted from template courtesy of UC Berkeley EECS dept.

1.1 What is linear algebra?

Linear algebra is difficult to describe succinctly; officially it’s the “study of linear transformations on vector
spaces”. That doesn’t mean anything when you compare it to something like calculus.

Linear algebra can be better defined as the mathematics that emerges when trying to solve systems of linear
equations (linear systems). This leads to the question of what a linear system is. An example of a linear
system would be something like:

Example 1

Find all x and y s.t. x− y = −1 and 4x+ 2y = 8.

This can be solved using a number of methods:

Method 1: solve first equation in y and substitute into the second equation.

The problem with this approach is it isn’t easy to generalise to more equations or more variables/unknowns.

Method 2: combine equations to simplify

x− y = −1

4x+ 2y = 8

To eliminate the x, we can scale the first equation:

x− y = −1 =⇒ 4x− 4y = −4

With the scaled version of the first equation, we can subtract the first equation from the second:

2y − (−4y) = 8− (−4) = 12 =⇒ 6y = 12 =⇒ y = 2

We can then substitute this back into the first equation,

x− y = −1 =⇒ x− 2 = −1 =⇒ x = 1

We can also think about this system of equations geometrically, by thinking about the equations as straight
lines in the x − y plane that intersect at the point (1, 2). This shows us the other possibilities for linear
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systems: the lines could run parallel and not intersect, i.e. no solutions exist, or the lines could actually be
the same, which would yield infinitely many solutions.

Example 2

Find x, y, z such that x+ 3y + 5z = 1 and x+ y + 7z = 2.

The first method in this case breaks down, as we will be left with one linear equation in two variables. We
try the second method,

x+ 3y + 5z = 1

x+ y + 7z = 2

We subtract the first from the second,

−2y + 2z = 1

There is no way to proceed (e.g. to eliminate the y) without reintroducing the x and once again getting one
equation in two variables. We can proceed by choosing a particular value of z. We get

y = z − 1

2

Then, the first equation gives us

x = 1− 3y − 5z = 1− 3
(
z − 1

2

)
− 5z =

5

2
− 8z

Therefore, the selection of a particular value of z gives us the corresponding value of x and y. This means
the general solution is

(5

2
− 8z, z − 1

2
, z
)

Geometrically, this represents two planes intersecting in a line.

1.2 General situation

A linear equation in n variables (a fixed number of unknowns, n > 0) is usually represented in general as

a1x1 + a2x2 + · · ·+ anxn = b

where ai and b are constants.

A system of linear equations is a collection of these linear equations, which can be represented as follows:



a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

an1x1 + an2x2 + · · ·+ annxn = bn
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2.1 Solving linear systems, contd.

We can represent the linear system from last time in matrix notation, in which a matrix is a rectangular
array of numbers.


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

am1 am2 . . . amn bn


This is called the augmented matrix of a linear system. The augmented matrix without the bis is called the
coefficient matrix, denoted A.

The strategy to solve the linear system in this representation is to combine the equations to systematically
eliminate variables. The operations that are allowed for these combinations, in this representation, are:

1. Scale an equation or row by a nonzero number.

2. Add or subtract one row from another.

3. Rearrange rows.

None of these row operations will change the solutions to the linear system, because all of them are reversible.

2.2 Echelon Form

Definition 1. A matrix is in echelon form if

1. all non-zero rows (those with at least one non-zero element) are above zero rows

2. each non-zero leading entry of a row is to the left of any non-zero leading entries of lower rows.

For example,

[
a b b
0 0 a

]
is a matrix in echelon form.
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
0 a b b b b
0 0 0 a b b
0 0 0 0 0 a
0 0 0 0 0 0


is also in echelon form.

Definition 2. A matrix is in reduced echelon form (REF) if

3. non-zero leading entries are 1

4. there are zeros above all leading non-zero entries.

For example,

[
1 a 0
0 0 1

]
is in reduced echelon form.


0 1 a 0 a 0
0 0 0 1 a 0
0 0 0 0 0 1
0 0 0 0 0 0


is also in REF.

Theorem 2.1. Every matrix can be put into unique REF using row operations.

Example 0 0 1 4 −1 1
2 −2 4 6 3 7
1 −1 1 −1 2 1


The first step in the row reduction is to get a non-zero term in the top-left corner, by R1 ⇐⇒ R3:

1 −1 1 −1 2 1
2 −2 4 6 3 7
0 0 1 4 −1 1


Now, we eliminate the 2 by scaling the first row by 2 and subtracting: R2 → R2 − 2R1.

1 −1 1 −1 2 1
0 0 2 8 −1 5
0 0 1 4 −1 1


We move to the third column, which is the next one not in echelon form. First, we do R2 ⇐⇒ R3:
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1 −1 1 −1 2 1
0 0 1 4 −1 1
0 0 2 8 −1 5


To eliminate the 2 in the bottom row, we scale the second row by 2 and subtract: R3 → R3 − 2R2

1 −1 1 −1 2 1
0 0 1 4 −1 1
0 0 0 0 1 3


This matrix is now in EF. We can continue to get to REF, by finding a method to change all the elements
above each row’s leading element to zeros.

R2 → R2 +R3

R1 → R1 − 2R3

1 −1 1 −1 0 −5
0 0 1 4 0 5
0 0 0 0 1 3


Finally, to change the element above the second row’s leading element, R1 → R1 −R2:

1 −1 0 −5 0 −9
0 0 1 4 0 4
0 0 0 0 1 3


This is now in reduced echelon form.

2.3 Calculating General Solutions to Linear Systems

Let the augmented matrix representing a linear system be in echelon form.

Definition 3. A pivot column is a column with a non-zero leading entry.

Definition 4. A pivot position is the location of a non-zero leading entry.

Definition 5. A free column is a non-pivot column which is in the coefficient matrix.

For example,

1 −1 0 −5 0 −9
0 0 1 4 0 4
0 0 0 0 1 3


Columns 1, 3, and 5 are pivot columns. Columns 2 and 4 are free columns. Column 6 is not a pivot column
but it cannot be a free column as it is not in the coefficient matrix.

There are three possibilities:



1. The last column of the augmented matrix is a pivot column. This means the linear system is inconsis-
tent, i.e. no solutions exist.

2. The last column of the augmented matrix is not a pivot, and there are no free columns. This happens
if and only if there is a single unique solution. For example,[

1 −1 −1
0 6 12

]
This corresponds to linear equations x1 − x2 = −1 and 6x2 = 12, which implies x1 = 1, x2 = 2.

3. The last column of the augmented matrix is not a pivot, and there are free columns. This corresponds to
infinitely many solutions. Here, we can write pivot column variables in terms of free column variables.
For example, 1 −1 0 −5 0 −9

0 0 1 4 0 4
0 0 0 0 1 3


This corresponds to linear equations x1 − x2 − 5x4 = −9, x3 + 4x4 = 4, and x5 = 3, which gives us a
general solution:

x1 = −9 + x2 + 5x4

x2 is free

x3 = 4− 4x4

x4 is free

x5 = 3
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3.1 Overview

3.2 Vectors

Now that we know how to solve linear systems in general, we wish to find a conceptual way of understanding
how linear systems work. This can be found in vectors in Rn, since we can draw the analogy that both
involve working with ordered collections of numbers.

If R is the set of real numbers, and n is the set of natural numbers (1, 2, 3, ...), it follows that

Rn := the set of ordered n-tuples of real numbers

The solution to any linear system in which the n variables correspond to x1, x2, . . . , xn can therefore be
represented as a vector in Rn. For this course, elements of Rn will always be written as columns.
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Rn = set of all


x1
x2
...
xn

where x1, x2, . . . , xn ∈ IR.

We call an element of IRn a vector in IRn. We can look at specific values of n,

R1 = R = number line

R2 = plane (x = x1, y = x2)

R3 = 3D space (x = x1, y = x2, z = x3)

Our geometric intuition breaks down for n > 3.

Notation:

x =

x1...
xn

 in Rn

We aren’t using the ~x notation because that relies on the idea of an arrow going between the origin and a
point, which doesn’t work at high dimensions.

3.3 Important Observations about Vectors

• We can add vectors in IRn

• We can scale vectors in IRn

Definition 6. If x = x1...
xn


and y = y1...

yn


then we define

x + y :=

x1 + y1
...

xn + yn


and
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λx :=

λx1...
λxn


The geometric picture of this in R2 is below:

Addition and scalar multiplication of vectors in Rn satisfy familiar rules of arithmetic, e.g.

(u+ v) + w = u+ (v + w)

0 + v = v

λ(u+ v) = λu+ λv

0v = 0

Definition 7. Let v1, v2, . . . , vk be vectors in IRn. For constant values λ1, . . . , λk,

λ1v1 + λ2v2 + · · ·+ λkvk

is a linear combination of vectors v1, v2, . . . , vk.

Definition 8. The span of v1, v2, . . . , vk is the set of all linear combinations of v1, v2, . . . , vk.

It is intuitive that span(v1, . . . , vk) is everywhere we can get to in IRn by travelling only in directions
v1, . . . , vk.

3.3.1 Examples

1:

v1 =

[
1
1

]
in IR2

The span of v1 is the set of all λv1 for λ ∈ IR.



2:

v1 =

1
0
0



v2 =

0
1
0


Both are vectors in R3. We make an arbitrary linear combination,

λ1v1 + λ2v2 =

λ1λ2
0


therefore the span is an xy-plane in 3D space.

3:

v1 =

 2
−1
4



v2 =

−1
1
2
−2


Notice that v1 = −2v2, therefore when we make the linear combination, we get:

λ1v1 + λ2v2 = (−2λ1 + λ2)v2

Therefore the span of both vectors is only the span of v2, which is a straight line rather than a plane.
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4.1 Span of sets of vectors

The span of a single vector in R2 is the straight line representing the set of all points that can be reached
by moving in that direction (positive or negative) by any amount.

The span of two linearly independent vectors in R2 is R2 itself, as we can reach any point in the plane as a
combination of these two vectors.

The span of two linearly dependent vectors (in which v2 is a multiple of v1) is the same as that of a single
vector, i.e. a straight line. With the addition of the second vector, we cannot reach any new points.

There are only three possibilities for the span of vectors in R2, which are the entire space R2, a straight line,
or a single point at the origin (where the vector is a zero vector). In R3, this extends to four possibilities:
the entire space, a plane, a line, and the origin.

4.2 Relating span to linear systems

Example: Can we write

[
1
4

]
as a linear combination of

[
1
3

]
and

[
1
2

]
in R2?

We need to find x1, x2 such that

x1

[
1
3

]
+ x2

[
1
2

]
=

[
1
4

]
This is true if and only if

x1 + x2 = 1, 3x1 + 2x2 = 4

[
1 1 1
3 2 4

]
Through a linear transformation, we bring this to echelon form:

[
1 1 1
0 −1 1

]

x2 = −1 =⇒ x1 = 2
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Therefore

2

[
1
3

]
− 1

[
1
2

]
=

[
1
4

]

4.3 General case of span relating to a linear system

Let a linear system have the following augmented matrix:
a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
am1 am2 . . . amn bn


which we can simplify into a series of vectors in Rm:

(a1, a2, . . . , am|b)

Let the solution to (A|b) be the vector x =


x1
x2
...
xn


Then, this yields the linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

...

am1x1 + am2x2 + · · ·+ amnxn = bm

which can be rearranged:

x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n

...
amn

 =


b1
b2
...
bm


i.e. the b vector is in the span of a1, . . . , an.

In matrix equation notation, if A = (a1, . . . , an) where ai is a vector in Rm, and x =

x1...
xn

 in Rn, then

Ax := x1a1 + x2a2 + · · ·+ xnan



4.4 Conclusion

The linear system (A|b) admits a solution ⇐⇒ b in Span(a1, . . . , an) ⇐⇒ last column of reduced (A|b)
not a pivot.

4.5 Example

Is

1
2
3

 in Span

(−1
1
2

 ,
2

1
0

 ,
1

2
2

)?

This can be expressed as the augmented matrix

−1 2 1 1
1 1 2 2
2 0 2 3


Start by scaling the first row by −1,

1 −2 −1 −1
1 1 2 2
2 0 2 3


Then, we eliminate the first-column coefficients from the second and third rows,

−1 2 1 1
0 3 3 3
0 4 4 5


We scale the second row and subtract 4 times the second row from the third,

1 −2 −1 −1
0 1 1 1
0 0 0 1



The last column is a pivot, therefore the system is inconsistent. This means

1
2
3

 is not in Span

(−1
1
2

 ,
2

1
0

 ,
1

2
2

)

A linear system (A|b) has a solution for any b ⇐⇒ Span(a1, . . . , (an)) = Rm ⇐⇒ the last column of the
reduced (A|b) is never a pivot for any b.

This suggests the reduced A has no zero rows.
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We previously covered how to find whether a linear system (A|b) has a solution for any b. What properties
of a1, . . . , an, b determine whether the solution is unique?

5.1 Homogeneous case

We approach this by examining a related problem, the homogeneous linear system in which Ax = 0.

Ax = 0 ⇐⇒ x1a1 + x2a2 + · · ·+ xnan = 0

Note that this is always consistent as the trivial solution x = 0 exists.

Definition 9. Let v1, v2, . . . , vk be vectors in Rm. We say that {v1, v2, . . . , vk} is linearly independent if

λ1v1 + λ2v2 + · · ·+ λkvk = 0 =⇒ λi = 0∀i ∈ [0, k]

i.e. there is no linear combination of the vectors that sums to zero. If this is not the case, we say
{v1, v2, . . . , vk} is linearly dependent.

Take {v1, v2, . . . , vk} linearly dependent. This implies that there exist λ1, . . . , λk not all zero such that

λ1v1 + · · ·+ λkvk = 0

.

For example, take λ1 6= 0. Then,

v1 +
λ2
λ1
v2 + · · ·+ λk

λ1
vk = 0

v1 =
−λ2
λ1

v2 + · · ·+ −λk
λ1

vk

which is a linear combination of {v2, . . . , vk}. Therefore v1 is in the span of the other vectors.

Example

Take the vectors

1
2
3

 ,
4

5
6

 ,
2

1
0





They are linearly dependent because

10

1
2
3

− 5

4
5
6

+ 5

2
1
0

 =

0
0
0



Therefore

1
2
3

 is in Span

(4
5
6

 ,
2

1
0

).

The intuition here is that if {v1, v2, . . . , vk} are linearly independent, then none of them are in the span of
the others, i.e. they are all in totally independent directions.

Example

1
0
0

 ,
0

1
0

 ,
0

0
1


These are linearly independent as all of them are going in independent directions.

Conclusion

Ax = 0 has unique solution (i.e. x = 0) ⇐⇒ a1, . . . , an linearly independent ⇐⇒ reduced (A|0) has no
free columns.

5.2 The non-homogeneous case

Here, we have Ax = b where b 6= 0. Let vp be a particular solution i.e. Avp = b. Then

Av = b =⇒ A(v − vp) = Av −Avp = b− b = 0. Therefore we can, in general, write the general solution as
vp + vh where vh is a general solution to the homogeneous case.

We can conclude that Ax = b has a unique solution ⇐⇒ it has a solution and Ax = 0 has a unique
solution.

Ax = b has a unique solution ⇐⇒ b in Span(a1, . . . , an) and {a1, . . . , an} linearly independent. The last
column of the reduced (A|b) should not be a pivot and it should have no free columns.

Example[
1 3 5 1
0 −2 2 1

]
We note that the last column is not a pivot, but the third column is free and is not a pivot. So we expect
infinitely manyy solutions. We rearrange linear equations yielded from this matrix,

x2 = x3 − 1
2 x1 = 5

2 − 8x3

Therefore the general solution is

 5
2 − 8x3
x3 − 1

2
x3

 =

 5
2
− 1

2
0

+ x3

−8
1
1

 = vp + vh.
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6.1 Linear transformation

Consider an m× n matrix A, which consists of n columns, each of which is a vector in Rm: a1, . . . , an. We
can also consider this as the set of solutions to linear systems with coefficient matrix A, a vector in Rn:

x =

x1...
xn


We can combine these two interpretations to see the linear combination we saw before:

Ax := x1a1 + x2a2 + · · ·+ xnan

This gives us a link between the Rn interpretation and the Rm one. We can build a function to formalise
this link.

Summary: Given A, an m× n matrix, we can construct a function TA : Rn → Rm. We call TA the linear
transformation associated to A.

6.2 Example of a linear transformation

Let A =

[
1 3 5
2 4 6

]
. Then from the definition, TA : R3 → R2.

x1x2
x3

→ x1

[
1
2

]
+ x2

[
3
4

]
+ x3

[
5
6

]
=

[
x1 + 3x2 + 5x3
2x1 + 4x2 + 6x3

]

For example,

TA

( 1
−1
3

) =

[
1
2

]
−
[
3
4

]
+ 3

[
5
6

]
=

[
13
16

]

6.3 Properties of TA

1. A(u + v) for all u, v ∈ Rn =⇒ TA(u + v) = TA(u) + TA(v) This is interesting because it suggests a
sum of vectors in Rn is equivalent to one in Rm.
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2. A(λu) = λ(Au) for all u ∈ Rn and λ ∈ R. This suggests the above property holds for scalar multipli-
cation too.

This is non-trivial. Most functions will not preserve addition and scalar multiplication like this.

E.g. f : R2 → R2 is characterised by

[
x1
x2

]
→
[
x21 + 1
x1 + x2

]
.

Try

f
([

1
1

]
+

[
2
1

])
= f

([
3
2

])
=

[
10
5

]
and contrast with

f
([1

1

])
+ f

([2
1

])
=

[
7
5

]
So addition is not preserved, as it is with linear transformations.

Definition 10. We say a function T : Rn → Rm is a linear transformation if

1. T (u+ v) = T (u) + T (v)

2. T (λu) = λT (u)

for all u, v ∈ Rn, λ ∈ R

6.4 Finding matrices corresponding to linear transformations

Given a function T : Rn → Rm linear, can we find a matrix A such that T = TA?

Definition 11. e1 =


1
0
...
0

, e2 =


0
1
...
0

, . . . , en =


0
0
...
1



Given a general x =


x1
x2
...
xn

, we can say

x = x1e1 + x2e2 + . . . xnen

This implies

T (x) = T (x1e1 + x2e2 + · · ·+ xnen) = T (x1e1) + T (x2e2) + · · ·+ T (xnen)



= x1T (e1) + x2T (e2) + · · ·+ xnT (en)

=

(
T (e1), . . . , T (en)

)
x

which is an m× n matrix.

Definition 12. Given T : Rn → Rm linear, the standard matrix associated to T is the m× n matrix

AT =

(
T (e1), . . . , T (en)

)

T (x) = ATx∀x ∈ R

Therefore we can freely move between the m× n matrix representation and the linear transformation.

6.5 Example

Consider the function

IDRn : Rn → Rn, x→ x

This is linear, therefore its standard matrix exists.

AIDRn =

(
IDRn(e1)IDRn(e2) . . . IDRn(en)

)
= (e1e2 . . . en)

which corresponds to a matrix


1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
...

...
...

... . . .
0 0 0 . . . 1


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7.1 Graphical interpretation of linear transformation-matrix rela-
tion

7.2 Example of transformation-matrix relation

Let T : R2 → R2 be a transformation that rotates a vector about the origin by angle θ anticlockwise. Then,
T is linear. This means T has a corresponding standard matrix.

Here is an advanced graph that requires the use of complicated tools:

Consider what happens to the basis vectors e1 =

[
1
0

]
and e2 =

[
0
1

]
. When T is applied to e1 it is rotated to

another point on the circle, yielding T (e1) =

[
cos θ
sin θ

]
. Similarly T (e2) =

[
− sin θ
cos θ

]
. This gives us the columns

of the matrix.

T (x) =

[
cos θ − sin θ
sin θ cos θ

]
x =

[
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

]

7.3 Examples

Find the standard matrix associated to the following:
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1. T : R2 → R2 - reflection in the line y = −x.
Answer:

We examine what reflection will do to the basis vectors

[
1
0

]
and

[
0
1

]
.

T
([1

0

])
=

[
0
−1

]
and T

([0
1

])
=

[
−1
0

]
Therefore in general it transforms a vector such that

T
([x1
x2

])
=

[
−x2
−x1

]
or in a pure matrix form

AT =

[
0 −1
−1 0

]
2. T : R2 → R2 - linear such that

T
([ 1
−1

])
=

[
2
4

]
, T
([1

1

])
=

[
−2
6

]
Add the transformed forms and inputs to get

T
([2

0

])
=

[
0
10

]
=⇒ T

([1
0

])
=

[
0
5

]
Then subtract this from the first given transformation matrix

T
([ 1
−1

]
−
[
1
0

])
=

[
2
4

]
−
[
0
5

]
therefore

T
([

0
1

])
=

[
−2
1

]
So we can combine these in general to get the transform,

T
([
x1
x2

])
=

[
5x2

−2x1 + x2

]
or in a pure matrix form

AT =

[
0 −2
5 1

]

7.4 Range of Linear Transformations

An m×n matrix is associated with a transformation TA : Rn → Rm which maps x→ x1a1+x2a2+· · ·+xnan.

The range of TA is the image of Rn under TA which is span{a1, . . . , an}.

b is in the range of TA ⇐⇒ b ∈ span{a1, . . . , an} ⇐⇒
(
A|b
)

is consistent.



Definition 13. TA is said to be onto if and only if the range of TA = Rm.

This suggests that TA is onto if and only if
(
A|b
)

is consistent for all possible b. This, in turn, is true if and

only if there is a pivot position in every row of the reduced A.
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8.1 Linear Transformation Definitions and relation to other con-
cepts

Definition 14. TA is onto iff its range is Rm.

The graph shown here is not onto as it shows a range that is less than Rm.

Definition 15. TA is one-to-one iff

TA(x) = TA(y) =⇒ x = y

.

We now have a set of related concepts to express similar basic ideas, which can be summarised in this table:

Linear Transformations Vectors Linear Systems Reduced Echelon Matrix

TA is onto span(a1, . . . , an) = Rn Ax = b always has
a solution

Pivot position in every
row

TA is one-to-one {a1, . . . , an} linearly
independent

Ax = b admits at
most one solution

Pivot position in every
column of reduced A
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8.2 Adding, Scaling, Composing

We have established that a matrix and a linear transformation are essentially the same. This means we can
translate the idea of adding, scaling, and composing functions to matrices.

Given A = (a1, . . . , an) and B = (b1, . . . , bn), we can define

A+B := (a1 + b1, a2 + b2, . . . , ulan + bn)

the term by term sum of the two matrices. In terms of linear transformations, this is

TA + TB = TA+B

where TA, TB : Rn → Rm.

By the linearity of transforms, this also means

(TA + TB)(x) = TA(x) + TB(x)

Similarly with scaling, for matrices we have

λA = (λa1, . . . , λan)

and for linear transforms,

λTA = TλA

For the sum of two matrices to be meaningful, their sizes must be the same.

Composition of matrices will be more difficult, as the domain of one has to be the same as the codomain
as the other. Let A consist of n vectors in Rm, ai and let B consist of p vectors in Rn, bi. We can define
corresponding linear transforms,

TA : Rn → Rm, v → Av

TB : Rp → Rn, x→ Bx

So we can start in Rp, undergo transform TB , then end up in Rn whereupon we can apply transform TA and
reach Rm. We can introduce the notion of composed linear transforms, in which a vector x goes to

x→ Bx→ A(Bx)

The composed linear transform TA ◦ TB : Rp → Rm is also linear. We can try and find the standard matrix
of this composed transform by tracking what happens to the basis vectors.

(TA ◦ TB)(e1) = A(Be1) = A(Be1) = A(1 · b1 + 0 · b2 + · · ·+ 0 · bp) = Ab1



and in general,

(TA ◦ TB)(ei) = Abi, 0 < i ≤ p

so the standard matrix of the transformation is

(TA ◦ TB) : Rp → Rm = (Ab1, . . . , Abp)

This gives rise to the idea of matrix “multiplication”.

Definition 16.
Am×nBn×p := (Ab1, . . . , Abp)

The individual vectors in the above matrix, denoted by Ax, can also be interpreted as matrix multiplication
where p = 1. The key takeaway from this is that matrix multiplication is the same as the composition of
linear transformations.

i.e. TAB = TA ◦ TB

8.3 Row-Column Rule to compute AB

(AB)ij = ai1b1j + ai2 + b2j + · · ·+ ain + bnj

where i and j represent, respectively, the number of the row and of the column entry of the multiplied
matrix.

add in his graph

e.g.

[
1 2 3
4 5 6

]1 −1
0 2
1 1


This makes sense to do because the first matrix is 2× 3 and the second is 3× 2. So we expect a 2× 2 matrix
out.

The product is

[
1 · 1 + 2 · 0 + 3 · 1 1 · (−1) + 2 · 2 + 3 · 1
4 · 1 + 5 · 0 + 6 · 1 4 · (−1) + 5 · 2 + 6 · 1

]
=

[
4 6
10 12

]

Lecture 8-3



Lecture 9: 5 February Lecture 9-1

Math 54: Linear Algebra and Differential Equations Spring 2018

Lecture 9: Invertible Matrices
Lecturer: Alexander Paulin 5 February Aditya Sengupta

9.1 Matrix Multiplication contd.

Matrix multiplication has some strange properties. For example, it is not commutative: in general, AB 6=
BA, and AB = 0 does not imply A = 0 or B = 0. This can be understood if we interpret matrices
as a composition of two linear transforms. We see in functions from R to R that composition is also
noncommutative.

9.2 Invertibility

To avoid the issue of the domain and codomain not matching up, we define an n× n matrix A. Then

Definition 17. A is invertible if there exists B, an n× n matrix such that AB = BA = In.

If such a B exists it is unique. We write B = A−1.

Proof. We prove the above fact by contradiction. Let B and B′ be two inverses of A with the property that
B 6= B′. Then

B = BI = BAB′ = IB′ = B′

Therefore we have a contradiction, so B 6= B′ cannot be true. This means a matrix has a unique inverse.

Example

[
1 2
1 3

] [
3 −2
−1 1

]
=

[
1 0
0 1

]
and [

3 −2
−1 1

] [
1 2
1 3

]
=

[
1 0
0 1

]
We can interpret this in terms of linear transformations,

TA ◦ TA−1 = TAA−1 = IDRn

which is the identity transform that sends x to x.

Similarly,
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TA−1 ◦ TA = TA−1A = IDRn

This tells us that TA−1 is the inverse function of TA. So we can interpret matrix inversion in terms of function
inversion. Recall that a function has an inverse if and only if it is both one-to-one and onto.

Therefore, given an n×n matrix A, it is invertible if and only if TA : Rn → Rn is one-to-one and onto. This,
in turn, is true if and only if the columns {a1, . . . , an} are linearly independent and span{a1, . . . , an} = Rn.

An interesting coincidence occurs in the n × n case, in which span{a1, . . . , an} = Rn implies the reduced
A has a pivot position in every row and {a1, . . . , an} are linearly independent means the reduced A has a
pivot position in every column. Therefore, for an n× n matrix, these two conditions are the same: a pivot
position in every row implies there is one in every column.

For a 3× 3 matrix, the only possible echelon form with a pivot in every row is

p ∗ ∗
0 p ∗
0 0 p


where p is a pivot element. Therefore there is a pivot in every row and in every column. This means that
for n× n matrices, TA is onto if and only if it is one-to-one.

9.3 Summary

Given an invertible n× n matrix, TA : Rn → Rn is one-to-one and onto, and we can show the converse too,
in any direction: given TA is either one-to-one or onto, we can show its matrix is invertible and that TA has
the other property as well.

The one-to-one and onto conditions can be further interpreted in terms of standard matrices. One-to-one
implies {a1, . . . , an} are linearly independent, i..e there is a pivot position in every column, and onto implies
span{a1, . . . , an} = Rn, i.e. there is a pivot position in every row. Both of these combine to give us the
condition that the reduced echelon form of the original matrix has a row equivalent to In.

Every one of the above statements guarantees all the others.

9.4 General Inverse of a Matrix

While it is possible to take general expressions for a matrix and its inverse, multiply them, set them equal
to In and come up with constraints on the inverse, this becomes algebraically complicated.

Instead, it turns out that A being invertible happens if and only if det(A) := ad− bc 6= 0, for a 2× 2 matrix[
a b
c d

]
, and the inverse matrix is

A−1 =
1

ad− bc

[
d −b
−c a

]
Example



[
1 2
1 3

]−1
=

1

1 · 3− 2 · 1

[
3 −2
−1 1

]
=

[
3 −2
−1 1

]
For n > 2, a simple formula is no longer applicable, just because of how complicated it is. Instead, we
observe that A is invertible iff A is row equivalent to In.

Therefore, we construct an inverse matrix using linear transformations.(A|In) is row equivalent to (In|A−1).
So we have the following algorithm to compute A−1:

1. Write down (A|In)

2. Put in reduced echelon form (In|B)

3. A−1 = B.

Example

A =

1 3 0
2 1 1
0 1 1


We write the augmented matrix,

A =

1 3 0 1 0 0
2 1 1 0 1 0
0 1 1 0 0 1


Then we perform row operations to get

A =

1 0 0 0 1
2

−1
2

0 1 0 1
3

−1
6

1
6

0 0 1 −1
3

1
6

5
6


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10.1 Generalising the determinant in n× n matrices, n > 2

Given an n×n matrix A, let Aij be the (n−1)× (n−1) matrix formed by removing the i−th row and j−th
column of A.

Then, we define

det(A) := a11det(A11)− a12det(A12) + a13det(A13) (10.1)

where aij is the element at the i−th row and j−th column of A. This can be expanded fully for a 3 × 3
matrix, into a horrific mess:

det(A) = a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31) (10.2)

This is a terrible formula, but fortunately, we have the recursive definition to simplify this. Mathematically,
the n× n determinant is expressed as follows:

Definition 18.

det(An×n) := a11det(A11)− a12det(A12) + · · ·+ (−1)n+1a1ndet(A1n) (10.3)

This is also absolutely diabolical, because it requires you to compute n (n− 1)× (n− 1) determinants, each
of which requires you to do (n − 1) (n − 2) × (n − 2) determinants, and so on until a base case is reached.
We need to find a simpler method.

We can calculate
∣∣A∣∣ using alternating sums using any row or column. The following pattern must be

followed:

+ − + − . . .
− + − + . . .
...


Expanding along a different row or column helps in case a lot of values are zero along one of them.

Example

Let A =

2 1 3
0 2 1
0 0 3

. We see the first column has two zero values, so expanding along that gives us



Lecture 10-2 Lecture 10: 7 February

∣∣A∣∣ = 2

∣∣∣∣2 1
0 3

∣∣∣∣− 0

∣∣∣∣1 3
0 3

∣∣∣∣+ 0

∣∣∣∣1 3
2 1

∣∣∣∣ = 12− 0 + 0 = 12

Notce that in this case the determinant is equal to the product of the leading diagonal. This leads us to a
definition,

Definition 19. An n× n matrix is upper triangular if it has zero entries below the diagonal.

An upper triangular matrix has a determinant equal to
∣∣A∣∣ = a11a22 . . . ann. This can be proven by induction.

Proof. Base case: let A2×2 be an upper triangular matrix of the form

A =

[
a b
0 d

]
Then

∣∣A∣∣ = ad− b(0) = ad, which is the product of upper diagonal elements.

Inductive step: let
∣∣Ak×k∣∣ be the product of its upper diagonal elements. Then, we consider the upper

triangular matrix A(k+1)×(k+1), which has a first column of the form


a
0
0
...
0


We expand this determinant along the first column, which from the above definition yields

∣∣Ak+1×k+1

∣∣ = a
∣∣A11

∣∣− 0
∣∣A21

∣∣+ · · ·+ (−1)k+2 · 0 ·
∣∣An−1,1∣∣ = a

∣∣A11

∣∣ (10.4)

which is the top-left element multiplied by the upper diagonal elements of the k × k submatrix, i.e. the
product of the upper diagonal elements of A(k+1)×(k+1)

Therefore by induction, the determinant of an upper triangular matrix is the product of its upper diagonal
elements.

Now, we notice that an n × n matrix in echelon form has to be upper triangular. We supplement this
observation by two useful facts that let us reduce the matrix to echelon form and preserve information about
the determinant,

1. Switching two rows in a matrix multiplies the determinant by -1.

2. Adding a scalar multiple of one row to another does not change the determinant.

10.2 Algorithm to calculate det(A)

1. Put A in echelon form U using only the above two observations.

2. Compute det(U) as the product of diagonal entries.

3. det(A) = (−1)rdet(U), where r is the number of operations that switch two rows.



Example

∣∣A∣∣ =

∣∣∣∣∣∣∣∣
0 1 0 1
1 1 2 3
1 0 3 1
0 2 3 1

∣∣∣∣∣∣∣∣
By row operations, including one row switch (r = 1), this matrix can be brought to

U =


1 1 2 3
0 1 0 1
0 0 1 −1
0 0 0 2


Therefore

∣∣A∣∣ = (−1)×
∣∣U ∣∣ = −1 · 1 · 1 · 1 · 2 = −2

10.3 Conclusion

∣∣A∣∣ 6= 0 if and only if
∣∣U ∣∣ 6= 0, i.e. there are nonzero entries down the diagonal, which means A is row

equivalent to a matrix with a pivot in every column/row and zero entries below, which in turn is row
equivalent to In. Therefore A is invertible.
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11.1 What do a matrix and differentiation have in common?

Let A be an m× n matrix associated to a transformation TA : Rn → Rm

Recall the definition of a linear transformation,

TA(u+ v) = TA(u) + TAv

TA(λu) = λTA(u)

So, isn’t differentiation living in a completely different world?

Let C(R) = {f : R→ R continuous}, and C1(R) = {f : R→ R with continuous derivative}.

Then we can think of differentiation as a function itself,

d

dx
: C′(R)→ C(R), f → df

dx

Consider the sum rule of derivatives which states that d
dx (f + g) = df

dx + dg
dx .

Also, recall that d
dx (λf) = λ dfdx .

These are the same as the linearity conditions on a transformation above. This allows us to make the impor-
tant observation that the conditions make sense because we can add and scalar multiply in Rn,Rm,C1(R),C(R).

11.2 Vector Spaces

Definition 20. Informally, a real vector space is a set V that comes with a concept of ”addition” and ”real
scalar multiplication” satisfying some nice properties.

1. Polynomials with real coefficients

2. Infinite series with real numbers

3. Rn

4. {m× n matrices}

5. Planes or lines containing 0 in R3

6. R−valued functions in more than one variable
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7. Random variables and sample spaces

8. R−valued functions on any set: {f : [a, b]→ R}

9. Sequences of real numbers

10. Complex numbers

A vector in a vector space V is just an element of V.

For example,

1
2
3

 is a vector in R3, sinx is a vector in C(R).

In all the above examples, the following properties hold:

1. (u+ v) + w = u+ (v + w)

2. ∃0 where 0 + v = v + 0 = v.

3. Given v,∃−v s.t. v +−v = −v + v = 0

4. u+ v = v + u

5. λ(u+ v) = λu+ λv

6. (λ+ µ)u = λu+ µu

7. (λµ)u = λ(µu)

8. 1 · u = u

We are now able to give a precise definition of a vector space,

Definition 21. A real vector space is a set that comes with ”addition” and ”real scalar multiplication” such
that the eight properties above hold.

A non-example is the upper right quadrant of R2, i.e.

V = x, y|x, y ∈ R, x, y ≥ 0

This does not satisfy the requirement that given a vector, its negative exists such that v+−v = 0. Therefore
it is not a vector space even though it has addition and scalar multiplication.

Definition 22. A linear transformation between two vector spaces V and W is a function T : V →W such
that

1. T (u+ v) = T (u) + T (v)

2. T (λu) = λT (u)

for all u, v in V and λ in R.



11.3 Examples

1. A−m× n matrix → TA linear transform from Rn to Rm.

2. d
dx = linear transformation from C1(R) to C(R)

3.
∫ b
a

= linear transformation from {f : [a, b]→ R} to R.
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12.1 Definition

A linear transformation between two vector spaces V and W is a function T : V →W such that

1. T (u+ v) = T (u) + T (v)

2. T (λu) = λT (u)

This clarifies the definition of linear algebra from the start of the course: the study of linear transformations
between vector spaces.

For example, we can define a linear transformation between C1(R) and C(R):

d

dx
: f → df

dx

.

Definition 23. A subspace of a vector space V is a subset U ⊆ V such that

1. 0 in U

2. x, y in U =⇒ x+ y in U .

3. x in U =⇒ λx in U∀λ ∈ R

A subspace is also its own vector space.

12.1.1 Examples

1. C1(R) ⊂ C(R)

2. Pn(R) ⊂ P(R)

3. All solutions to y′′ + y = 0 in C1(R)

Is this a vector space? We see that the zero function is a solution, trivially as 0 + 0 = 0, that this space
has addition because (f + g)′′ + (f + g) = 0 if f and g are both solutions, and that this space has scalar
multiplication because λ(f ′′ + f) is a solution if f is a solution. Therefore this is a vector space.
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12.2 Relation between Linear Transformations and Vector Spaces

Let T : V →W be a linear transformation, and let V,W be any vector spaces.

We define the kernel Ker(T ) := {x ∈ V s.t.T (x) = 0} where 0 is the zero vector in W .

Range(T ) := {T (x) ∈Ws.t.x ∈ V }

Theorem 12.1.
Ker(T ) ⊂ V and Range(T ) ⊂W

are subspaces.

Proof. Ker(T ) ⊂ V is a subspace:

1. T (0) = T (0 · 0) = 0T (0) = 0 Therefore the kernel of T has a zero vector.

2. x, y in kernel of T =⇒ T (x) = T (y) = 0

T (x) + T (y) = 0

T (x+ y) = 0 =⇒ x+ y ∈ Ker(T )

3. x ∈ Ker(T ), λ ∈ R =⇒ T (x) = 0 =⇒ T (λx) = 0 =⇒ λx ∈ Ker(T ).

Range(T ) ⊂W is a subspace:

1. T (0) =⇒ 0 ∈ Range(T )



2. u, v ∈ Range(T ) =⇒ T (x) = u, T (y) = v for some x, y ∈ V

u+ v = T (x) + T (y) = T (x+ y)

therefore u+ v is in the range of T

3. u in Range(T ), λ ∈ R
T (x) = u

for some x ∈ V
=⇒ λu = λT (x) = T (λx)

therefore λu is in the range of T

12.3 Specific Examples (or not)

Let A be an m× n matrix associated to a linear transform TA : Rn → Rm. Then

Kernel(TA) = {All x ∈ Rn such that Ax = 0}

This is associated with all solutions to the homogeneous linear system Ax = 0.

Range(T ) = {Axsuch that x ∈ Rn} = span(a1, . . . , an) = Col(A)

This is called the column space of A.

Define T : y → y′′ + y. We previously checked that this was a vector space, i.e. it has addition and scalar
multiplication. We can see that the kernel is the solution set to the output differential equation.
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13.1 Span of Vector Spaces

Let V be any vector space. Then define a set of vectors {v1, . . . , vp} ⊂ V . We can define an arbitrary linear
combination of these vectors,

λ1v1 + · · ·+ λnvn

where the linear combination is also a vector in V.

Definition 24. The span of {v1, . . . , vp} is the subset of all linear combinations of {v1, . . . , vp}.

The span is a subspace, which means it has a zero vector, has addition and has scalar multiplication. We
say {v1, . . . , vp} is a spanning set of V if span{v1, . . . , vp} = V . For example {e1, e2, . . . , en} ⊂ Rn, i.e.

x =

x1...
xn

 =⇒ x = x1e1 + · · ·+ xnen

{1, x, x2, . . . , xn} ⊂ Pn(R) means all polynomials are linear combinations of the above set of powers of x.

13.2 Dimension

Definition 25. We say that V is a finite-dimensional (f.d.) vector space if there exists a finite spanning
set.

For example, Rn and Pn(R) is f.d. But the list of all continuous functions is not finite dimensional.

So what is the dimension of a f.d. vector space?

Definition 26. v1, . . . , vp is L.I ⇐⇒ the only linear combination that sums to zero is the trivial solution,

and it is L.D. ⇐⇒ there exists λi not all zero such that
∑
λivi = 0.

v1, . . . , vp L.D. ⇐⇒ vj in span{v1, . . . , vj−1, vj+1, . . . , vp} for some j.

Therefore vj does not affect the span of the set of vectors. Because the set is linearly dependent, vj can be
expressed as a linear combination of the other vectors, therefore it can be removed and a linear combination
of all the other vectors to reach any vector in the previous span still exists.



13.3 Fundamental Definition

Definition 27. A basis for V is a subset ulv1, . . . , vp ⊂ V such that

1. span(v1, . . . , vp) = V

2. {v1, . . . , vp} L.I

For example, e1, . . . , en is a standard basis for Rn.

Let’s define a vector space V = {solution to y′′ + y = 0}. This has a basis {sinx, cosx}.

Note that bases are not unique. Any n linearly independent vectors in Rn could be bases for Rn, for example.
This tells us that if {v1, . . . , vp} is a spanning set of V, then it contains a basis. Also, if {v1, . . . , vp} is linearly
independent, then it can be extended to a basis.

If we have a linearly independent set with p elements, and a spanning set k, then p ≤ k.

Theorem 13.1. Let V be a f.d. vector space. Any two bases have the same size.

Proof. Let {v1, . . . , vp}, {u1, . . . , uk} be bases for V. Then {vi} is L.I and {ui} is spanning, i.e. p ≤ k.

However if they are both bases then {vi} is spanning and {ui} is L.I., therefore k ≤ p. This means p = k.

Definition 28. Let V be a f.d. vector space. Then dimV is the size of any basis.

Lecture 13-2
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14.1 Bases, continued

Any linearly independent set is contained in a basis, and a basis by definition has size dimV . Therefore any
L.I. set has this property:

{v1, . . . , vp} L. I. =⇒ p ≤ dim(V )

Similarly,

{v1, . . . , vp} spanning =⇒ p ≥ dim(V )

Let p = dimV and let {v1, . . . , vp} be linearly independent. This happens if and only if {v1, . . . , vp} is a

basis, because there are dimV linearly independent vectors. Similarly, let {v1, . . . , vp} be spanning. This
also happens if and only if they are a basis, if p = dimV .

For example, let V = Rn and take vectors {a1, . . . , an} ⊂ Rn L. I ⇐⇒ reduced A has a pivot position in
every column. This is a square matrix, therefore there is also a pivot in every row. This implies {a1, . . . , an}
spans Rn.

14.2 Subspaces

Theorem 14.1. Let U ⊂ V be a subspace. Then

1. dimV <∞ =⇒ dimU <∞

2. dimU ≤ dimV

3. dimU = dimV =⇒ U = V

14.3 Rank and Nullity

Let V and W be vector spaces, and let T : V →W be linear. Then,

Ker(T ) = {x ∈ V s.t.T (x) = 0} ⊂ V

Range(T ) = {T (x) ∈Ws.t.x ∈ V } ⊂W
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This can be made more concrete with an example using a matrix. Let A be an m× n matrix associated to
the transform TA : Rn → Rm. Then the kernel is defined as

Ker(TA) = {x ∈ Rns.t.Ax = 0} = Nul(A)

and the range is

Range(TA) = {Ax = x1a1 + · · ·+ xnan} = Span(a1, . . . , an) = Col(A)

Then, we see that

Ker(TA) = {0} ⇐⇒ {a1, . . . , an} L. I.

i.e. the bigger Ker(TA) is, the more linearly dependent (a1, . . . , an).

For a finite-dimensional vector space, the dimensions of the kernel and range are also both finite.

Definition 29. The rank of a linear transformation T is the dimension of the range of T .

Definition 30. The nullity of T is the dimension of the kernel of T .

For example, consider the matrix

A =


1 2 0 1 0
0 0 1 1 0
1 2 0 1 1
−1 −2 0 −1 0


Row reduce to get

A =


1 2 0 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0


Let the i−th column be ai. Then, we see that a2 is in the span of a1 and a4 is in the span of {a1, a2, a3}.

=⇒ Range(TA) = Col(A) = span(a1, . . . , a5) = span(a1, a3, a5)

We can verify this by noticing that there are pivots in columns 1, 3, 5, therefore the first, third and fifth
vectors are L.I. Put another way, a1, a3, a5 form a basis for Col(A) and the rank of TA is 3.

In general, we can say that the pivot columns of A form a basis for Range(TA)/Col(A). This means the rank
of TA is the number of pivot columns.

The kernel of TA is the set of x ∈ R5s.t.Ax = 0 We make an augmented matrix out of the above row reduced
matrix, with the last column all zeros. This gives us a general solution,



x =


−2x2 − x4

x2
−x4
x4
0


This is the set of input vectors for which the output of the linear transform associated to A is the zero vector,
i.e. this is the kernel.

In parametric form this becomes

x2


−2
1
0
0
0

+ x4


−1
0
−1
1
0


which gives us a spanning set for the kernel.

=⇒ Ker(TA) = span

(
−2
1
0
0
0

 ,

−1
0
−1
1
0


)

These are linearly independent, therefore the nullity of TA is 2. This process always gives a basis for the
kernel or null space.

Also notice that the nullity is equal to the number of free columns of A.

Major consequence of this

(not major enough to get its own numbered subsection, but major)

Given an m× n matrix A,

n = rank(TA) + Nullity(TA) = dim(span(a1, . . . , an)) + dim({x ∈ Rns.t.Ax = 0})
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Let B be a basis for V . This means the vectors {b1, . . . , bn} span V and are linearly independent. We want
to be able to use B to think about V in a more concrete way. We observe that each x in V can be written
as a linear combination of the basis vectors in a unique way. This gives rise to a definition,

Definition 31. The coordinate vector of x with respect to basis B is

λ1...
λn

 in Rn, where x = λ1b1+· · ·+λnbn.

This allows us to translate between the abstract notion of a vector space to the concrete notion of Rn that
we are used to.

15.1 Examples of coordinate bases

1. Trivially, if we take V = Rn, we see the coordinate vector of x is x.

2. A more interesting example is Pn(R), where the basis is {1, x, x2, . . . , xn}. To write the arbitrary vector
in this space

a0 + a1x+ a2x
2 + · · ·+ anx

n

in coordinates, we employ the above definition and see the coordinate vector is


a0
a1
...
an


which is a vector in Rn+1.

3. V = R2, B =

{[
1
1

]
,

[
2
1

]}
Suppose we want to write

[
5
3

]
in B coordinates. We row reduce the augmented matrix consisting of

the basis vectors and see that the vector we get is

[
1
2

]
. Therefore

[
5
3

]
B

=

[
1
2

]

The geometric intuition for this is that the x− y plane is warped. I’m stealing a picture from 3Blue1Brown
brb:
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15.2 General Situation

Let B be a basis in Rn. Then in general we have an n× n matrix augmented by an arbitrary vector x, that
we row reduce:

(b1, . . . , bn|x)→ (In|(x)B)

Choosing a basis B allows us to identify V with Rn. Because the transform x → xB is linear, one-one and
onto, so is the general transform from V to Rn that is characterised by the above transform on a generic
vector.

The structural properties of V are preserved when we switch it to Rn.

Example

Is {x2 + 2x+ 1, x2, x+ 1} linearly independent in P2(R)?

We switch these vectors into their coordinate representation, and get

{

1
2
1

 ,
0

0
1

 ,
1

1
0

 }
Row reduction shows us that this set is linearly independent in R3. This implies the original set of vectors
is linearly independent in P2(R).

15.3 Timely Warning from UCPD

(yes I’m stealing my own bad not-even-jokes from 53 notes)

Different bases give different coordinate systems. Even if two different bases are valid, i.e. they are linearly
independent sets and therefore an arbitrary vector can be expressed as a linear combination of them, the
coefficients of the linear combination will naturally be different and so the coordinate vector related to each
of them will be different.

We can convert between coordinate systems by using the fact that all transformations in this case are linear.
Say there are two bases B and C. Given the coordinates in B, we want to find those in C, i.e. we need
T (xB) = xC for all x ∈ V .

Because T is linear, A(xB) = xC for some n×n matrix A. Recall that T = (T (e1), . . . , T (en)) and (bi)B = ei.
Therefore

T (ei) = T ((bi)B) = (bi)C

which gives rise to a definition,

Definition 32.
PB→C := ((b1C), . . . , bnC)



therefore the B to C conversion can be found just by knowing what happens to the B basis vectors when
converted to C.

This is ridiculously abstract.

15.4 General Change of Basis for Rn

(c1, . . . , cn|bi)→ (In|(biC))

=⇒ (c1, . . . , cn|b1, . . . , bn)→ (In|PB→C)
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16.1 Studying One Specific Linear Transformation

Given an n× n matrix A, we want to understand TA : Rn → Rnin more depth.

Example

A =

[
2 0
0 3

]

We can understand what this means by multiplying by the basis vectors,

Ae1 =

[
2 0
0 3

] [
1
0

]
=

[
2
0

]
= 2e1

Ae2 =

[
2 0
0 3

] [
0
1

]
=

[
0
3

]
= 3e2

Therefore, we have the general expression

Ax = A(x1e1 + x2e2) = x1Ae1 + x2Ae2 = 2x1e1 + 3x2e2 =

[
2x1
3x2

]
Definition 33. Let A be an n× n matrix. An eigenvector of A is a vector v in Rn such that

1. v 6= 0

2. Av = λv for some λ ∈ R

We call any such λ an eigenvalue of A.

For A as defined above, e1 is an eigenvector with eigenvalue 2, and e2 is an eigenvector with eigenvalue 3.

Definition 34. We say that an n× n matrix A is diagonal if (A)ij = 0 for i 6= j.

An n × n matrix is diagonal if and only if all of the basis vectors are eigenvectors of A. We can show this
based on the fact that Aei is the i−th column of A, which is equal to λiei for some λi ∈ R.
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16.2 Eigenvectors Corresponding to an Eigenvalue

Given A is an n× n matrix, λ ∈ R,

Definition 35. The λ eigenspace of A is the subset of Rn given by all eigenvectors of A with eigenvalue λ
and the zero vector.

We observe that v in λ−eigenspace ⇐⇒ Av = λv ⇐⇒ (A− λIn)v = 0

which means v is in Nul(A− λIn).

We conclude that the λ−eigenspace of A is equal to the null space of A− λIn. The λ−eigenspace of A is a
subspace of something.

Observe that λ is an eigenvalue of A if and only if the λ−eigenspace 6= {0}.

Example

A =

2 0 0
0 2 0
0 0 3



We want to find the 2−eigenspace of A. This is equivalent to the null space of A− 2I3 =

0 0 0
0 0 0
0 0 1

.

This has the null space

{x1x2
0

}, which is the span of e1 and e2.

More generally, if we have A as a diagonal matrix in which Aii = λi, then the λ−eigenspace is the span of
all eis such that λi = λ.

16.3 Finding Eigenvalues/Eigenvectors of Non-Diagonal Matrices

λ is an eigenvalue of A if and only if there exists v 6= 0 such that Av = λv. This in turn is true if and only
if there exists v 6= 0 such that (A− λIn)v = 0. This implies the columns of A− λIn are linearly dependent,
which means it is not invertible. Therefore the determinant of A− λIn is 0.

Definition 36. The characteristic polynomial of A is given by
∣∣(∣∣A− xIn) where x is a variable.

Example

Let A be

A =

 1 3 3
−3 −5 −3
3 3 1





Then, the characteristic polynomial is the determinant of

A− xI3 =

1− x 3 3
−3 −5− x −3
3 3 1− x


which is

det(A− xI3) = (1− x)

∣∣∣∣−5− x −3
3 1− x

∣∣∣∣− 3

∣∣∣∣−3 −3
3 1− x

∣∣∣∣+ 3

∣∣∣∣−3 −5− x
3 3

∣∣∣∣
The characteristic polynomial comes out to be −x3 − 3x2 + 4.

We notice that the degree of the characteristic polynomial is equal to the size of the matrix. Solving for the
zeros of this polynomial, we get −(x− 1)(x+ 2)2, i.e. the eigenvalues are 1 and −2.

Definition 37. The algebraic multiplicity of λ is the number of times x − λ divides the characteristic
polynomial.

In the above example, 1 has algebraic multiplicity 1 and −2 has algebraic multiplicity 2.

Lecture 16-3



Lecture 17: 28 February Lecture 17-1

Math 54: Linear Algebra and Differential Equations Spring 2018

Lecture 17: The Characteristic Equation
Lecturer: Alexander Paulin 28 February Aditya Sengupta

17.1 Problem

Translating a matrix to a characteristic polynomial whose zeros are the eigenvalues sounds great, but in
general, solving polynomials of degree greater than 3 becomes quite difficult.

In addition to this, it is possible that the matrix has no eigenvectors/eigenvalues at all. Consider the matrix

A =

[
0 −1
1 0

]

The characteristic polynomial is then

det(A− xI2) =

∣∣∣∣−x −1
1 −x

∣∣∣∣ = x2 + 1

which has no roots in R.

We understand why this has no roots if we recognise that this is a rotation matrix, that rotates its elements
by π

2 anticlockwise about 0. No eigenvectors are possible here because it necessarily moves you off the line.

Theorem 17.1. The eigenvalues of an upper triangular matrix are just the entries of the main diagonal.

Proof. Let A be a general upper triangular matrix with diagonal elements aii, 1 ≤ i ≤ n. Then the
determinant of (A − xIn) is the product of the diagonal elements aii − x. Therefore the characteristic
polynomial is

det(A− xIn) = (a11 − x)(a22 − x) . . . (ann − x)

17.2 Warning

The section names sure are cheerful today, aren’t they?

The characteristic polynomial is not preserved by row operations. Therefore we cannot row reduce an
arbitrary matrix to upper triangular form to easily yield the characteristic polynomial. ”Life is not as simple
as you might hope.”
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Example [
1 1
1 2

]
=⇒

∣∣∣∣1− x 1
1 2− x

∣∣∣∣ = 1− 3x+ x2

whereas if we row reduced, we would have

[
1 1
0 1

]
=⇒ 1− 2x+ x2

We see that the characteristic equation is not preserved.

17.3 Basis of eigenvectors - extended application

Here we will examine discrete dynamic systems as an illustration of the utility of eigenvectors. A discrete
dynamic system is any system whcih changes at discrete time intervals.

1. The state of the system can be described at each time k using a vector xk in Rn.

2. Each time transition is governed by a fixed n× n matrix A, that is

Axk = xk+1

We are interested in finding the long term behaviour of a system like this, e.g. the population of owls and
rats measured annually. Let the vector representing this be

xk =

[
ok
rk

]
and let the transformation matrix be

A =

[
−1 3
−3
2

7
2

]

Given the starting point x0 =

[
3
2

]
. To predict long-range behaviour without doing a lot of computation, we

find the eigenvalues of A.

We find that the characteristic equation is

det(A− xI2) =
1

2
(2x− 1)(x− 2)

therefore the eigenvalues are { 12 , 2}.

The null space of A− 1
2I2 is Nul

([−3
2 3
−3
2 3

])



which we can see is the span of

[
2
1

]
, if we go through a single step of row reduction.

Similarly, the null space of A− 2I2 is

Nul
([−3 3
−3
2

3
2

])

which is the span of

[
1
1

]
.

Therefore the basis of eigenvalues is {
[
2
1

]
,

[
1
1

]
}.

We know that

x0 =

[
3
2

]
=

[
2
1

]
+

[
1
1

]
and we can calculate

x1 = A

[
3
2

]
= A

([2
1

]
+

[
1
1

])
=

1

2

[
2
1

]
+ 2

[
1
1

]

x2 =
1

2
· 1

2

[
2
1

]
+ 2 · 2

[
1
1

]
(which we can calculate by applying A to x1 as calculated above).

In general,

xk = Ak
[
3
2

]
=

1

2k

[
2
1

]
+ 2k

[
1
1

]
”Good luck doing that by multiplying matrices repeatedly.”

In the limit as k →∞, the 1
2k

term drops out and therefore

xk ≈
[
2k

2k

]

17.4 Follow up questions

1. Is there x0 such that x0 = x1 = . . . ?

The answer turns out to be no, as that would require that x0 = Ax0 which would require an eigenvector
with eigenvalue 1.

2. What property of x0 guarantees that xk → 0 as k →∞?
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18.1 Basis consisting of eigenvectors of a matrix

Suppose we have a basis {b1, . . . , bn}. This corresponds to a matrix in which the columns are the basis
vectors. This matrix is necessarily invertible. This means

Pei = bi

by construction. But because the matrix is invertible, we can also say

ei = P−1bi

Theorem 18.1. {b1, . . . , bn} is a basis of Rn consisting of eigenvectors of A if and only if the matrix P−1AP
is diagonal, i.e. any element off the left diagonal is zero.

Proof. Suppose there exists a basis consisting of eigenvectors. This is characterised by

Abi = λibi∀i

Then,

(P−1AP )ei = P−1Abi = λiP
−1bi = λiei

This means ei is an eigenvector of P−1AP with eigenvalue λi. Therefore each of the columns of P−1AP has
zero elements not along the leading diagonal, and the appropriate eigenvalues along the leading diagonal.
Therefore the matrix is diagonal and the proof is complete.

To show an if-and-only-if relationship, we prove this in the other direction too. Let P−1AP be a diagonal
matrix with elements along the leading diagonal λi and other elements zero. We multiply this matrix by the
stadnard basis vector ei, and we get:

(P−1AP )ei = λiei =⇒ APei = λiPei

Therefore

Abi = λibi

which means bi is an eigenvector of A with eigenvalue λi.
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Example

A =

[
−1 3
− 3

2
7
2

]
Solving the characteristic polynomial gives us eigenvalues 1

2 and 2, which gives us the basis vectors

{
[
2
1

]
,

[
1
1

]
}

which means something that I couldn’t get because he moved to the next page.

Definition 38. n×n matrices A and B are similar if there exists an invertible matrix P such that P−1AP =
B ⇐⇒ A = PBP−1.

We can conclude that there exists a basis of Rn consisting of eigenvectors of A if and only if A is similar to
a diagonal matrix. We say that A is diagonalizable. We shouldn’t say it because that’s a horrible word, but
we say it.

This gives us the following useful consequence:

A = PBP−1

where B is a diagonal matrix. Then,

Ak = PBP−1PBP−1 . . . PBP−1

which can cancel to get

Ak = PBkP−1

As B is diagonal, Bk is just the matrix we get by raising every element of B to the k − th power.

18.2 Is every square matrix diagonalizable?

No.

1. There may be no real eigenvalues or eigenvectors.

We can develop the theory of complex vector spaces, but it’s beyond our scope right now.

2. The dimension of the eigenspaces may not be big enough.

A =

[
0 1
0 0

]
This has 0 as its only eigenvalue. Then the null space of A − λI2 is just the null space of A. A is

already in RREF, so the null space is the span of {
[
1
0

]
}. This is one dimensional, but we need two

linearly independent eigenvectors.



Theorem 18.2. Let A be an n× n matrix with distinct real eigenvalues λ1, . . . , λp.

1. dim(λi eigenspace) ≤ algebraic multiplicity of λi.

Therefore the sum of the dimension of the λi eigenspace for 1 ≤ i ≤ n is n, the degree of the charac-
teristic polynomial.

2. A diagonalizable ⇐⇒ dim(λi eigenspace) = algebraic multiplicity of λi for all i.

3. If A is diagonalizable and βi is a basis of the λi eigenspace, then β = B1

⋃
B2 · · ·

⋃
Bp is a basis of

Rn.

18.3 Important Consequence

If A has exactly n distinct real eigenvalues λ1, . . . , λn, then A is diagonalizable.

Justification:

dim(λi eigenspace)) ≥ 1

=⇒ dim(λ1 eigenspace) + · · ·+ dim(λn eigenspace) ≥ n

but we know this is also ≤ n from the first property. Therefore it is equal to n, which means it is diagonal-
izable.
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Let B and C be bases of vector spaces V and W respectively, such that dimV = n and dimW = m. Recal
that we can use a coordinate system to translate between the abstract V and the concrete Rn. This relation
is one-to-one, onto, and linear. Therefore

V ⇐⇒ Rn =⇒ x ⇐⇒ xB =

λ1...
λn

 , x = λ1b1 + · · ·+ λnbn

.

and

W ⇐⇒ Rm =⇒ x ⇐⇒ xC =

µ1

...
µm

 , x = µ1c1 + · · ·+ µncm

.

Therefore, we know we can translate between Rn and V , between V and W , and between V and Rm. This
means that we can define a transformation between Rn and Rm. Call this transformation TBC . This takes
the vector from xB to x to T (x) to T (x)C .

TBC : Rn → Rm is linear. This means there exists an m× n matrix ABC such that

TBC((x)B) = (T (x))C = ABCxB

To work out what ABC is, we need xB to be the bis, that is, the basis vectors. Recall that (biβ) = ei.

The i− th column of ABC is ABCei = ABC(biβ) = (T (bi)C).

Definition 39. The matrix of T : V →W with respect to the bases B and C is ABC = {T (b1)C , . . . , T (bn)C}

This matrix has the key property that ABCxB = (T (x)C)∀x ∈ B.

Example

V = Rn,W = Rm, β = εn, C = εm, T : Rn → Rm linear.

Then, the standard matrix we’re looking for is

Aεn,εm :=
(

(T (e1)εm , T (en)εm)
)

= (T (e1), . . . , T (en))

which is the standard matrix of T .
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Example

V = W = P2(R), β = C = {1, x, x2}

(a0 + a1x+ a2x
2)β =

a0a1
a2


This is a transformation between P2(R) and R3.

Let the linear transformation be p(x)→ p′(x). Then the transformation matrix is

ABB = {(T (1))β , T (x)β , T (x2)β}

=

0 1 0
0 0 2
0 0 0


which is the derivatives of each of the basis elements in B coordinates.

Example

one of the main reasons we’re doing this

T : R2 → R2

x→
[
−1 3
−3
2

7
2

]
x

Recall that we found the basis of eigenvectors for this matrix, which translates to

B = C = {
[
2
1

]
,

[
1
1

]
}

with eigenvalues 1
2 and 2 respectively.

Then,

ABB =
(
T (

[
2
1

]
)B , T (

[
1
1

]
)B

)
=
(

(
1

2

[
2
1

]
)B , (2

[
1
1

]
)B

)

= (
1

2
e1, 2e2) =

[
1
2 0
0 2

]



19.1 A Really Awesome Fact For Us

Take a general case in which A is an n× n matrix, B ⊂ Rn is a basis. Then ABB is diagonal if and only if
B is a basis of Rn consisting of eigenvectors.

If V = Rn, W = Rm and T = TA for An×n, can we find a more direct way to determine ABC?

Recall that vεn = v, and PB→εn = (b1, . . . , bn). Therefore,

PB→εn(xB) = xεn = x

Then, we can invert the transformation between B and εn to get

xB = (PB→εn)−1x

Therefore P−1B→εn = Pεn→B . This lets us write down the first transformation in our chain from Rn → Rm as
a matrix multiplication, i.e.

xB → PB→εn(xB)→ APB→εn(xB)→ Pεm→CAPB→εn(xB)

Conclusion:

ABC = Pεm→CAPB→εn

= (PC→εm)−1A(b1, . . . , bn)

= (c1, . . . , cm)−1A(b1, . . . , bn)

Lecture 19-3



Lecture 20: 7 March Lecture 20-1

Math 54: Linear Algebra and Differential Equations Spring 2018

Lecture 20: Examples of using abstract linear transformations
Lecturer: Alexander Paulin 7 March Aditya Sengupta

20.1 Recall

Given T : V → W , we cannot make an associated matrix based on this alone. We need to define a basis in
V and another in W . So, let B = {bi}, 1 ≤ i ≤ n be a basis for V and let C = {ci}, 1 ≤ i ≤ m be a basis for
V . Then we can define the transformation based on what happens to the basis vectors in the domain:

ABC =
(

(T (bi))C

)
, 1 ≤ i ≤ n

This has the key property that

(
T (x)C

)
= ABCxB

20.1.1 Special Cases

1. A - m× n matrix, T = TA

=⇒ ABC = (c1, . . . , cm)−1A(b1, . . . , bn)

2. A - n× n matrix, T = TA, B = C,P = (b1, . . . , bn)

=⇒ ABB = P−1AP

3. A - n× n matrix, B = C, then

ABB diagonal ⇐⇒ B basis of eigenvectors

20.1.2 Important Future Goal

In general, we want to be able to find bases B and C such that ABC is as simple as possible.

Definition 40. A and M are similar if and only if there exists P invertible such that P−1AP = M .

20.2 Examples

1. T : V →W linear
B = {b1, b2, b3}, C = {c1, c2, c3, c4}

T (b1) = c1 − 2c2, T (b2) = c1 + c2 + c3 + c4, T (b3) = c1 + 2c3
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Find ABC . Is T one to one? What is its rank?

Answer:

A =


1 1 1
−2 1 0
0 1 2
0 1 0


T is not one-to-one as that requires a pivot in every column. So we row reduce to get

ARREF =


1 1 2
0 3 2
0 0 4

3
0 0 0


or something. (recheck)

Therefore there is a pivot in every column, so T is one-to-one. The rank of T is 3.

2. T : P2(R)→ R2

p(x)→
[
p(0)
p(1)

]

Find ABC when

(a)

B = {1, x, x2}, C = {
[
1
0

]
,

[
0
1

]
}

Answer

A = [(T (b1))C(T (b2))C(T (b3))C ]

=

[
T

1
0
0


C

T

0
1
0


C

T

0
0
1


C

]

= [

[
1
1

]
C

[
0
1

]
C

[
0
1

]
C

]

=

[
1 0 0
1 1 1

]



(b)

B = {1, x+ 1, x2 − 1}, C = {
[
1
1

]
,

[
1
0

]
}

Answer

ABC = [(T (b1))C(T (b2))C(T (b3))C ]

= [T (1)CT (x+ 1)CT (x2 − 1)C ]

= [

[
1
1

]
C

[
1
2

]
C

[
−1
0

]
C

]

=

[
1 2 0
0 −1 −1

]
3. We have to think about this. (The horror.) 1 1 1

2 −1 0
−1 0 0


and T = TA : R3 → R3.

Find bases B and C such that

ABC = I3

Lecture 20-3
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Math 54: Linear Algebra and Differential Equations Spring 2018

Lecture 21: Inner Products, Lengths and Orthogonality
Lecturer: Alexander Paulin March 9 Aditya Sengupta

21.1 Lengths and Angles

We want to introduce the familiar concepts of lengths and angles into the theory of vector spaces, because
we know how to deal with those.

We know what the length of a vector is in Rn. For example, in R2, we can represent the length of a vector[
u1
u2

]
as ||u||. We can also find an angle between two vectors, and the distance between two vectors ||u− v||.

From Pythagoras’ theorem, we know that ||u|| =
√
u21 + u22. This tells us that the distance between two

vectors u and v is

||u− v|| =
√

(u1 − v1)2 + (u2 − v2)2

Trigonometry tells us

||u− v||2 = ||u||2 + ||v||2 − 2||u|| · ||v|| cos θ

This gives us the result

u1v1 + u2v2 = ||u||||v|| cos θ

which gives us a relation between side lengths and the angle θ.

21.2 Basic formulas that hold in R3

Definition 41. Given u =

u1. . .
un

, v =

v1. . .
vn

, in Rn, the scalar product is the number

u · v =

n∑
i=1

uivi (21.1)

We can think about a vector in Rn as an n × 1 matrix, which we can switch to a 1 × n matrix. Then, the
inner product (which is the same as the dot product) can be expressed as a matrix multiplication:

u · v = u1v1 + · · ·+ unvn = (u1 . . . un) ·

v1. . .
vn

 = uT v
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In R2 or R3, we know the following:

1. length of u is equal to
√
u · u.

2. u · v = (length of u)×(length of v)× cos θ

21.3 Properties of Standard Inner Product on Rn

1. u · v = v · u

2. (u+ v) · w = u · w + v · w

3. (λu) · w = λ(u · w)

4. u · u ≥ 0

5. u · u = 0 ⇐⇒ u = 0

21.4 Super Obvious Definitions

Definition 42. Given u ∈ Rn, ||u|| := √u · u is the length (norm) of u.

Definition 43. u is called a unit vector if ||u|| = 1

For example, {e1, . . . , en} ⊂ Rn are all unit vectors.

We can infer that

||λu|| =
√

(λu) · (λu) = |λ| · ||u||

We can construct a unit vector in any direction by normalising it: for any u such that ||u|| 6= 0, we know
that

u

||u||

is a unit vector.

For example, if u =


1
2
0
−1

, we can see that its magnitude is 6, therefore the normalised unit vector is


1/
√

6

2/
√

6
0

−1/
√

6


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21.5 Distance

Given u, v in Rn, dist(u, v) = ||u− v||.

For example, u =


1
2
0
−1

 , v =


−1
0
0
3

. Then the distance is

dist(u, v) =
√

(1− (−1))2 + 22 + 02 + (−1− 3)2 =
√

24

21.6 Orthogonality

Given u, v ∈ Rn, we say that u, v are orthogonal if and only if u · v = 0. In R2 and R3, this implies that
cos θ = 0 =⇒ θ = π

2

This gives us a useful property. For orthogonal vectors u and v,

||u+ v||2 = u · u+ u · v + v · u+ v · v = ||u||2 + ||v||2

This is a generalisation of Pythagoras’ Theorem.

21.7 More definitions yayyy

Given W ⊂ Rn, we define

W⊥ := {u ∈ Rns.t.u · w = 0∀w ∈W}

For example, if W is a line which is a subspace of R2, W⊥ is the line at 90 degrees to it.

21.7.1 Properties of W⊥

1. W⊥ is a subspace.

2. If W = Span(v1 . . . vp), u ∈W⊥ ⇐⇒ u · vi = 0∀i

Theorem 21.1. Let A be an m× n matrix. Then

(Col(A))⊥ = Nul(AT )

(Nul(A))⊥ = Col(AT )

Proof. A = (a1 . . . an) =⇒ AT =

a1
T

...
an

T





u ∈ (Col(A))⊥ ⇐⇒ ai · u = 0 ∀i ⇐⇒ ai
Tu = 0 ∀i ⇐⇒ ATu = 0 ⇐⇒ u ∈ Nul(AT )

Therefore,
(Col(A))⊥ = Nul(AT )

Lecture 21-4
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Math 54: Linear Algebra and Differential Equations Spring 2018

Lecture 22: Orthogonal Sets and Matrices
Lecturer: Alexander Paulin 12 March Aditya Sengupta

22.1 Definition of orthogonal and orthonormal sets

Definition 44. {u1, . . . , up} ⊆ Rn is an orthogonal set ⇐⇒ ui · uj = 0 if i 6= j.

Definition 45. {u1, . . . , up} ⊆ Rn is an orthonormal set ⇐⇒ it is orthonormal and ||ui|| = 1∀i.

Any subset of the standard basis {e1, . . . , en} ⊂ Rn is an orthonormal set, for example.

Theorem 22.1. Let {u1, . . . , up} ⊆ Rn be an orthogonal set of nonzero vectors.

v = λ1u1 + · · ·+ λpup =⇒ λi =
v · ui
ui · ui

Proof.

v = λ1u1 + · · ·+ λpup

=⇒ v · ui = λ1(u1 · ui) + · · ·+ λi(ui · ui) + λp(up · ui)

= λi(ui · ui)

∴ λi =
v · ui
ui · ui

22.2 A pretty serious consequence

Lemma 22.2. Any orthogonal set of nonzero vectors is automatically linearly independent.

Proof.

λ1u1 + · · ·+ λpup = 0 =⇒ λi =
0 · ui
ui · ui

= 0



Lecture 22-2 Lecture 22: 12 March

Example

Determine

[
1
2

]
β

where β =
{[ 3
−1

]
,

[
1
3

]}
.

Observe that the vectors in the basis of β are orthogonal, but not orthonormal.

[
1
2

]
= λ1

[
3
−1

]
+ λ2

[
1
3

]
⇐⇒

[
1
2

]
β

=

[
λ1
λ2

]

Then we can find the λs using the above method:

λ1 =

[
1
2

]
·
[

3
−1

]
[

3
−1

]
·
[

3
−1

] =
1

10

λ2 =

[
1
2

]
·
[
1
3

]
[
1
3

]
·
[
1
3

] =
7

10

Therefore

[
1
2

]
β

=

[
1/10
7/10

]
.

Visualization

Definition 46. {u1, . . . , un} is an orthogonal basis ⇐⇒ it is an orthogonal set and it is a basis.

omg what a shock

bet you can’t guess what an orthonormal basis is

Definition 47. {u1, . . . , un} is an orthonormal basis ⇐⇒ it is an orthonormal set and it is a basis.
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For instance, in the above example,
{[ 3
−1

]
,

[
1
3

]}
is an orthogonal basis, and it can be scaled by

√
10 to

make it orthonormal. The standard basis for a subset of Rn is orthonormal.

22.3 Something Incredibly Neat

Let A = {a1, . . . , an}, where ai are vectors in Rm, so A is an m× n matrix. Then,

AT =

a1
T

...
an

T


This is an n×m matrix, which can be multiplied by the original matrix. This gives us a matrix,

ATA =


a1
Ta1 a1

Ta2 . . . a1
Tan

a2
Ta1 a2

Ta2 . . . a2
Tan

...
...

...
...

an
Ta1 an

Ta2 . . . an
Tan


By definition, this is equal to


a1 · a1 a1 · a2 . . . a1 · an
a2 · a1 a2 · a2 . . . a2 · an

...
...

...
...

an · a1 an · a2 . . . an · an


This gives us the following:

U = (u1, . . . , un) - m× n matrix.

1. the set of the columns of U is an orthogonal set if and only if ui · uj = 0∀i 6= j, which in turn is true

if and only if UTU is diagonal.

2. the set of the columns of U is an orthonormal set if and only if UTU = In.

22.4 I don’t know how to write in red in LATEXsend help pls

If m 6= n, U is not square, therefore UUT 6= Im.

3. Let the set of the columns of U be an orthonormal set, and take x, y ∈ Rn, then

(Ux) · (Uy) = (Ux)T (Uy) = xTUTUy = xT y = x · y

That is, multiplication by U preserves the standard inner product.



4.
(Ux) · (Ux) = x · x =⇒ ||Ux||Rm = ||x||Rn

This means the underlying linear transformation Tu : Rn → Rm, x→ Ux preserves the standard inner
product, lengths, distances, and orthogonality.

5. If U is a square matrix, with dimensions n×n, then its columns form an orthonormal basis if and only
if UTU = In, therefore UT = U−1.

Lecture 22-4
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Math 54: Linear Algebra and Differential Equations Spring 2018

Lecture 23: π Day (Orthogonal Projection)
Lecturer: Alexander Paulin 14 March Aditya Sengupta

23.1 Minimum distance between a point and W

Let ŷ be a point in W such that y − ŷ is orthogonal to every w ∈ W . Then the minimum distance to y is

||y − ŷ||. Therefore y − ŷ ∈W⊥. So we want to find ŷ ∈W such that y − ŷ ∈W⊥.

Let {u1, . . . , up} be an orthogonal basis for W . We want to find λ1, . . . , λp such that

1. ŷ = λ1u1 + · · ·+ λpup

2. (y − ŷ) · ui = 0, ∀i

Then,

(y − λ1u1 − · · · − λpup) · ui = y · ui − λ1(u1 · ui)− · · · − λi(ui · ui)− · · · − λp(up · ui)

By orthogonality, this is

y · ui − λi(ui · ui) = 0

∴ λi =
y · ui
ui · ui

Definition 48. If W ⊂ Rn is a subspace with orthogonal basis {u1, . . . , up}, the orthogonal projection of y
onto W is the vector

projW (y) :=

p∑
i=1

y · ui
ui · ui

ui

23.2 Important Facts

1. Given W ⊂ Rn we can always find an orthogonal basis for W .

2. projW (y) is independent of our choice of orthogonal basis.

3. There is one and only one way to write y = z1 + z2 where z1 ∈W , z2 ∈W⊥.

We can visually see that z1 = projW (y) and z2 = proj⊥W (y).

4. The projection operation (Rn →W , y → projW (y)) is linear and onto.

5. ||y − projW (y)|| ≤ ||y − w||∀w ∈W .



23.3 omg numbers what a weird idea

y =

1
2
3

, u1 =

 1
−1
1

 , u2 =

−1
0
1

. Let W be the span of u1 and u2.

We can calculate projW (y) =
y·u1

u1·u1
u1 +

y·u2

u2·u2
u2 = 2

3

 1
−1
1

+ 2
2

−1
0
1

 =

−1/3
−2/3
5/3


Then the minimum distance is ∣∣∣∣∣

∣∣∣∣∣
1

2
3

−
−1/3
−2/3
5/3

 ∣∣∣∣∣
∣∣∣∣∣ = 7/3

(maybe)

Observation

If u1, . . . , up is an orthonormal basis of W , the projection formula becomes simpler:

projW (y) =

p∑
i=1

(y · ui)ui

Let U = (u1, . . . , up). Then projW (y) = U

(u1 · y...
up · y

) = U

u1
T y
...

up
T y

 = UUT y.

Lecture 23-2



Lecture 24: 16 March Lecture 24-1

Math 54: Linear Algebra and Differential Equations Spring 2018

Lecture 24: The Gram-Schmidt Process
Lecturer: Alexander Paulin 16 March Aditya Sengupta

24.1 Aim

Given W ⊂ Rn, find {v1, . . . , vp}, an orthogonal basis for W .

The algorithm to construct this basis is called the Gram-Schmidt Process.

24.2 Example

Take W = R2, W = span(

[
1
1

]
,

[
2
−1

]
) = x1, x2.

We can take

[
1
1

]
as the first vector in the orthogonal basis. Then, by construction, we can say that

projW⊥1 (

[
2
−1

]
) = x2 − ProjW1(x2) is perpendicular to x1 and the two form an orthogonal basis.

In this case, this is

x2 −
x2 · v1
v1 · v1

v1 =

[
2
−1

]
− 1

2

[
1
1

]
=

[
3/2
−3/2

]

We note that Span(x1) = Span(v1), and that Span(x1, x2) = Span(v1, v2) = W .
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24.3 Generalising

In general, we want to build {v1, . . . , vp} starting from {x1, . . . , xp}. We start with v1 = x1, construct vk
using v1, . . . , vk−1 and xk.

1. Let Wk−1 = Span(v1, . . . , vk−1).

2. Let vk := ProjW⊥k−1
(xk) = xk −

∑k−1
i=1

xk·vi
vi·vi

24.4 Facts

1. {x1, . . . , xp} basis for W =⇒ {v1, . . . , vp} basis for W

2. The span of the x vectors and that of the v vectors are equal.

3. To apply the Gram-Schmidt process, we must start with a linearly independent set. If xk is in the
span of the first k − 1x−vectors, then the projection on Wk−1 of xk is zero, therefore we have a zero
vector in the basis and we cannot continue the process.

Theorem 24.1. Any subspace W ⊂ Rn has an orthogonal basis.

Proof. Choose any basis, and apply the Gram-Schmidt process. By construction, an orthogonal basis exists.

Remark 24.2. Once we have an orthogonal basis, we can scale each vector to get an orthonormal basis.

24.5 Interesting Consequence

Suppose we carry out the GS process on some basis A, to get an orthonormal basis Q. The two have the
same span, therefore we can write

xk = λ1ku1 + · · ·+ λkkuk + 0uk+1 + · · ·+ 0up

which we can put into a matrix:

R =



λ11 λ12 λ13 . . . λ1p

0 λ22 λ23 . . .
...

... 0 λ33
...

...
... 0

...
...

...
...

...
...

0 0 0 . . . λpp


Then observe that Qrk = λ1ku1 + · · ·+ λkkuk + 0uk+1 + · · ·+ 0up = xk.

So,



QR = (Qr1Qr2 . . . Qrp) = (x1x2 . . . xp) = A

Remark 24.3. The columns of Q being an orthonormal set implies QTQ = Ip

A = QR = QTA = QTQR = R

In conclusion, given An×p (L.I.) we can find Qn×p with orthonormal columns and Rp×p upper triangular
such that A = QR.

Lecture 24-3
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Math 54: Linear Algebra and Differential Equations Spring 2018

Lecture 25: Least Squares Solutions
Lecturer: Alexander Paulin 19 March Aditya Sengupta

Definition 49. A least-squares solution to the system Ax = b, where A is an m× n matrix and b ∈ Rm, is
a vector x̂ ∈ Rn such that

‖ b−Ax̂ ‖≤‖ b−Ax ‖ ∀x ∈ Rn

Remark 25.1. If Ax = b consistent, choose x̂ such that Ax̂ = b, i.e. we choose an actual solution. This
reduces the least-squares error to zero.

Recall:

1. W ⊂ Rn subspace, b̂ ∈W and b ∈ Rm, then

||b− b̂|| ≤ ||b− w||∀w ∈W ⇐⇒ b̂ = projW (b) ⇐⇒ b− b̂ ∈W⊥

2. Col(A) := {Ax such that x ∈ Rn}

Therefore,

||b−Ax̂|| ≤ ||b−Ax||

for all x ∈ Rn. Both of these vectors are in Col(A).

This means Ax̂ = ProjCol(A)b, which is true if and only if b−Ax̂ ∈ (Col(A))⊥.

25.1 Concreteness

Let A = (a1, . . . , an). This implies Col(A) = Span(a1, . . . , an).

This means, for a vector to be in (Col(A))⊥, it has to be orthogonal to each basis vector. Therefore

ai · (b−Ax̂) = 0∀i

∴ ai
T (b−Ax̂) = 0

which is true if and only if

AT (b−Ax̂) = 0

This gives us

(ATA)x̂ = AT b



Lecture 25-2 Lecture 25: 19 March

Remark 25.2. This also follows from the fact that

(Col(A))⊥ = Nul(AT )

25.2 Conclusion

x̂ is a least-squares solution to Ax = b if and only if x̂ is a solution to (ATA)x = AT b.

25.3 Example

Let A =

−1 2
2 −3
−1 3

 and b =

4
1
2

. Find the least-squares solution.

We find the normal equations,

([
−1 2 −1
2 −3 3

]
·

−1 2
2 −3
−1 3

)x̂ =

[
−1 2 −1
2 −3 3

]
·

4
1
2


[

6 −11
−11 22

]
x̂ =

[
−4
11

]
Then, we can solve this by row reduction, but because the A matrix is invertible, we could also multiply by
its inverse:

x̂ =

[
2 1
1 6

11

]
·
[

4
−11

]
=

[
3
2

]
(double check calculation here)

Therefore, x̂ =

[
3
2

]
is a least squares solution to Ax = b.

Remark 25.3. Ax = b has a unique least squares solution if and only if Ax̂ = b has a unique solution. This
in turn is true if and only if the columns of A are linearly independent, which means ATA is invertible.

In this case x̂ = (ATA)−1AT b.

Recall from the Gram-Schmidt process that Am×n = Qm×nRn×n, where Q is orthonormal and R is upper
triangular. Therefore we can say

AT = RTQT =⇒ ATA = RTQTQR = RTR

which implies

x̂ = (ATA)−1AT b = (RTR)−1RTQT b = R−1(RT )−1RTQT b = R−1QT b



Example

A =


1 3 5
1 1 0
1 1 2
1 3 3

 , b =


3
5
7
−3


We apply the Gram-Schmidt process and express A as the product of matrices Q and R:

A =


1/2 1/2 1/2
1/2 −1/2 −1/2
1/2 −1/2 1/2
1/2 1/2 −1/2


2 4 5

0 2 3
0 0 2


Then, to find x̂, we find QT b:

QT b =


1/2 1/2 1/2
1/2 −1/2 −1/2
1/2 −1/2 1/2
1/2 1/2 −1/2




3
5
7
−3

 =

 6
−6
4


Then, x̂ = R−1QT b implies that x̂ is the solution to the system Rx̂ = QT b. So we row reduce the following
system:

2 4 5 6
0 2 3 −6
0 0 2 4



which yields x̂ =

10
−6
2

.

Lecture 25-3
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26.1 Extending the Standard Inner Product

Recall that the standard inner product on Rn is a function that, to each pair of vectors u, v ∈ Rn, assigns a
real number u · v.

Useful Properties:

1. u · v = v · u

2. (u+ v) · w = u · w + v · w

3. (λu) · v = λ(u · v)

4. u · u ≥ 0, and u · u = 0 ⇐⇒ u = 0.

If a function satisfies these properties, it is a valid inner product. More concretely, we can define an inner
product as follows:

Definition 50. Let V be a vector space. An inner product on V is a function that, to each pair of vectors
u, v ∈ V , assigns a real number 〈u, v〉 such that

1. 〈u, v〉 = 〈v, u〉

2. 〈(u+ v), w〉 = 〈u,w〉+ 〈v, w〉

3. 〈(λu), v〉 = λ 〈u, v〉

4. 〈u, u〉 ≥ 0, and 〈u, u〉 = 0 ⇐⇒ u = 0.

We refer to any vector space that is equipped with some inner product as an inner product space.

So far, we’ve been working mostly with Rn equipped with the standard inner product, but we can extend
all of the familiar terminology to any inner product space. The length, or norm, of a vector v in any inner
product space is ||v|| =

√
〈u, u〉. The distance between two vectors u and v is ||u − v||, where length is

defined as above. u and v are orthogonal if their inner product is zero.

All of the concepts based on these in Rn, such as orthogonal complements, projections, and the Gram-Schmidt
process, turn out to work in any inner product space with the above definitions.

26.2 Examples of Other Inner Products

26.2.1 Polynomials

Let V = Pn(R), and let t0, t1, . . . , tn be distinct, fixed real numbers. Then, we can define
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〈p, q〉 = p(t0)q(t0) + p(t1)q(t1) + · · ·+ p(tn)q(tn)

We can see this is an inner product. It can easily be shown that it is commutative, distributive, and supports
scalar multiplication. For the fourth property, we consider

〈p, p〉 = (p(t0))
2

+ (p(t1))
2

+ · · ·+ (p(tn))
2

These are all positive numbers, therefore the inner product of a polynomial with itself is greater than 0,
as required. The inner product is only equal to zero if each component is zero, i.e. p(t0) = p(t1) = · · · =
p(tn) = 0. Since p ∈ Pn(R), if it has n+ 1 distinct zeroes then it must be the zero polynomial.

26.2.2 Nonstandard Inner Products on Rn

Using the first three properties of inner products, we can find 〈u, v〉 for any u and v if we know 〈ei, ej〉 for
all i, j. For example,

〈[
2
3

]
,

[
1
1

]〉
=
〈
2e1 + 3e2, e1 + e2

〉
= 2

〈
e1, e1

〉
+ 2

〈
e1, e2

〉
+ 3

〈
e2, e1

〉
+ 2

〈
e1, e1

〉
An inner product can therefore be expressed in terms of matrix multiplication. Let

A =


〈
e1, e1

〉
. . .

〈
e1, en

〉
...〈

en, e1
〉

. . .
〈
en, en

〉


A is symmetric because inner products are always commutative. Then, we can write

〈u, v〉 = uTAv

where, for the standard inner product, A is the identity matrix.

The above equation defines an inner product if and only if A = AT and the eigenvalues of A are strictly
positive.

26.2.3 Inner Product on Functions

Let V = C[a, b], the space of functions that are continuous on the interval [a, b]. Then, we can define

〈f(x), g(x)〉 :=

∫ b

a

f(x)g(x)dx

26.3 Using Nonstandard Inner Products

If W = Span { 1, x2 } ⊂ C[−1, 1], find the projection of x3 onto W.



We first need to apply Gram-Schmidt to the basis for W , to make it orthogonal. We use the above integral
definition of an inner product to do this.

v1 = 1

v2 = x2 −
∫ 1

−1 x
2 · 1dx∫ 1

−1 1 · 1dx
1 = x2 − 1

3

Then, we can calculate the projection:

projW (x3) =

∫ 1

−1 x
3 · 1dx∫ 1

−1 x
3 · 1dx

−
∫ 1

−1 x
3(x2 − 1/3)dx∫ 1

−1 (x2 − 1/3)
2
dx

=
90

56

(
x2 − 1

3

)
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27.1 Symmetric Matrices

Let A be an n× n matrix. We say that A is symmetric if and only if A = AT . That is, Aij = Aji∀i, j ≤ n.

For example, the 2× 2 matrix

[
2 1
1 3

]
is symmetric. But the 3× 3 matrix

2 1 2
1 3 3
2 4 −1

 is not symmetric.

Any diagonal matrix, in which the nondiagonal elements are all zero, is automatically symmetric, which is
easy to see considering that Aij = 0∀i 6= j and Aii = λi is the definition of a diagonal matrix.

27.2 Properties of Symmetric Matrices

Definition 51. Let A be an n× n matrix. We say that A is orthogonally diagonalizable if and only if there
exists an orthonormal basis of Rn consisting of eigenvectors of A.

Example

A diagonal matrix,

λ1 0 0

. . .
...

...
0 0 λn

, is orthogonally diagonalizable with an orthonormal basis of eigenvectors

{e1, . . . , en}, which is the standard basis.

Recall that {u1, . . . , un} ⊂ Rn is an orthonormal basis if and only if P = (u1, . . . , un) is invertible with
P−1 = PT . P is an orthogonal matrix.

We can observe that A is orthogonally diagonalizable if and only if there exists P , an orthogonal basis, such
that PTAP is diagonal.

Theorem 27.1. If A is orthogonally diagonalizable, then A is symmetric.

Proof. Let {u1, . . . , un} ⊂ Rn be an orthonormal basis such that Aui = λiui for some λi ∈ R This implies

that P−1AP =

λ1 0 0

. . .
...

...
0 0 λn

, which further implies that

A = P

λ1 0 0

. . .
...

...
0 0 λn

P−1 = P

λ1 0 0

. . .
...

...
0 0 λn

PT
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Therefore, we take the transpose. Using the identity (CB)T = BTCT :

AT = (PT )T

λ1 0 0

. . .
...

...
0 0 λn


T

PT = P

λ1 0 0

. . .
...

...
0 0 λn

PT = A

27.3 Spectral Theorem for Symmetric Matrices

Theorem 27.2. A being symmetric implies A is orthogonally diagonalizable.

That’s so weird.

As consequences of this, A being symmetric implies the following:

1. All zeros of det(A− xIn) are real.

2. Eigenvectors from different eigenspaces are orthogonal

3. The dimension of the λ eigenspace is the algebraic multiplicity of λ for all eigenvalues

27.4 Orthogonally Diagonalizing a Symmetric Matrix

1. Calculate det(A− xIn) and find all zeroes λ1, . . . , λp

2. Row reduce and find a basis for each of the eigenspaces Nul(A− λiIn)

3. Apply Gram-Schmidt to each λi eigenspace basis, normalize and take the union.

By construction, all of the resultant eigenvectors are orthonormal.

Example

A =

1 1 1
1 1 1
1 1 1



Step 1:

The characteristic polynomial is−x2(x−3), which can be found by taking the determinant

∣∣∣∣∣∣
1− x 1 1

1 1− x 1
1 1 1− x

∣∣∣∣∣∣.
So we can easily see that the eigenvalues are 0 and 3.



Step 2:

We row reduce A− 0I3 to find the null space of the 0− eigenspace.

1 1 1
1 1 1
1 1 1

 =⇒

1 1 1
0 0 0
0 0 0

 =⇒ Nul(A− 0I3) = Span
(−1

1
0

 ,
−1

0
1

)

which we can see by taking x2 and x3 as free variables.

We row reduce A− 3I3 to find the null space of the 3− eigenspace.

−2 1 1
1 −2 1
1 1 −2

 =⇒
[
1 0 −1
0 1 −1 0 0 0

]
=⇒ x1 = x3, x2 = x3

which means Nul(A− 3I3) = Span
(1

1
1

)
Of course, we can’t have nice things, so we have to do Gram-Schmidt on the first basis, and normalise the
second.

Step 3:

The basis for 0 − eigenspace after applying Gram-Schmidt is
{−1

1
0

 ,
−1/2
−1/2

1

}, which we can normalize

and take the union with the normalized 3− eigenspace to get the final answer:

P =

1/
√

3 −1/
√

2 −1/
√

6

1/
√

3 1/
√

2 −1/
√

6

1/
√

3 0 2/
√

6



and this gives us PTAP =

3 0 0
0 0 0
0 0 0

.

Lecture 27-3
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Given an m × n matrix A, we want to find orthonormal bases B ⊂ Rn and C ⊂ Rm such that AB,C is as
simple as possible.

To do this, look at the matrix ATA. This is an n× n matrix, making it square. Take its transpose:

(ATA)T = AT (AT )T = ATA

Therefore, ATA is symmetric, which means it is orthogonally diagonalizable by the Spectral Theorem.

This allows us to choose a basis B = {v1, . . . , vn} ⊂ Rn, an orthonormal basis such that each vi is an
eigenvector, that is,

ATAvi = λivi

for some λi ∈ R.

Left multiply this above expression by vi
T :

vi
TATAvi = vi

Tλivi =⇒ (Avi)
TAvi = λivi

T vi

We know that xT y = x · y, and that ||vi|| = 1 as they are elements of an orthonormal basis. Therefore,

(Avi) · (Avi) = λi =⇒ ||Avi||2 = λi

This guarantees that λi ≥ 0∀i. So we can reorder the eigenvalues, and assume λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

Definition 52. The singular values of a matrix A are the numbers

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

where σi :=
√
λi.

By construction, ||Avi|| = σi.

Theorem 28.1. Assume σ1, . . . , σr 6= 0 and σr+1 = · · · = σn = 0. Then, Rank(A) = r and {Av1, . . . , Avr}
is an orthogonal basis for Col(A).

Proof. We know that {v1, . . . , vn} ⊂ Rn is a basis, which means that {Av1, . . . , Avn} spans Col(A).

We also know that ||Avi|| = σi =⇒ Avi = 0 ⇐⇒ σi = 0.

Therefore, Avr+1 = · · · = Avn = 0 because the corresponding singular values are zero.
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This means they can be removed from the basis with no impact. Therefore, {Av1, . . . , Avr} spans Col(A),
so it is a basis.

Now, to prove that it is an orthogonal basis, we take a general inner product on all nonequal elements (i 6= j)

(Avi) · (Avj) = vi
TATAvj = vi

Tλjvj = λj(vi · vj) = 0

Therefore, all basis elements are perpendicular to one another.

We can easily show that the rank of this matrix is r, because r is the size of the orthogonal basis constructed
above.

Example

Let A =

[√
2 −1/

√
2 0√

2 1/
√

2 0

]
. Multiply it by its transpose to get the symmetric matrix

ATA =

4 0 0
0 1 0
0 0 0


Choose the standard basis (v1 = e1 etc). The eigenvalues of ATA are clearly 4, 1, 0, because

ATAv1 = 4 · v1, ATAv2 = 1 · v2, ATAv3 = 0 · v3

Therefore, the singular values are the square roots of these, 2, 1, 0. This means {Av1, Av2} form an orthogonal
basis for Col(A), taking only the nonzero singular values. Therefore

{[√
2√
2

]
,

[
−1/
√

2

1/
√

2

]}
is an orthogonal basis for Col(A).

Significance

A =

[√
2 −1/

√
2 0√

2 1/
√

2 0

]

The above matrix represents a linear transformation TA : R3 → R2. Geometrically, this represents a mapping
between a hollow sphere of radius 1 and a solid ellipse whose dimensions are given by the singular values.

In general, if we want to maximize ||Ax|| where ||x|| = 1, this turns out to be the maximum singular value,
which because of the reordering above is σ1. This implies

Max{||Ax||, where||x|| ≤ d} = dσ1

and similarly



Min{||Ax||, where||x|| = 1} = σn

Lecture 28-3
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Definition 53. Let ui = 1
σi
Avi for all nonzero σi, 1 ≤ i ≤ r.

This gives us the following:

1. {u1, . . . , ur} is an orthonormal basis for Col(A).

2. Avi = σiui for 0 ≤ i ≤ r

We can use this to extend {u1, . . . , ur} to an orthonormal basis for all Rm as follows:

1. Find a basis for (Col(A))⊥ = Nul(AT )

2. Apply Gram-Schmidt and normalize to get an orthonormal basis for (Col(A))⊥. This has dimension
m− r, so we consider it to consist of elements {ur+1, . . . , um}

3. Take the union of these two to get an orthonormal basis for Rm.

29.1 Recap

In general, an m × n matrix A represents a linear transformmation from Rn to Rm. Using the above
procedure, we can make orthonormal bases for Rn (which turns out to be Col(AT )

⋃
Nul(A)) and Rm

(which is Col(A)
⋃
Nul(AT ))

Each vi gets transformed to σiui if 1 ≤ i ≤ r, and 0 otherwise. This lets us write the change-of-bases
transformation matrix AB,C explicitly as:

AB,C =
(

(Av1)C . . . (Avr)C(Avr+1)C . . . (Avn)C

)

= {(σ1u1)C , . . . , (σrur)C , (0)C0, . . . , 0}

which is something that I can’t easily typeset: diagonal with elements AB,Cii = σi for 1 ≤ i ≤ r, and every
other element equal to 0.

As a result, if U = (u1, . . . , um) and V = (v1, . . . , vn) are orthogonal bases for Rm and Rn respectively, then

U−1AV = ABC

(which is the above described diagonal-or-zero matrix, referred to as ASV )

Therefore,



A = UASV V
T = UΣV T

This is the singular value decomposition of a matrix.

29.2 Overview of finding SVD

1. Orthogonally diagonalize ATA, which yields an orthonormal basis V , ATAvi = λivi

2. Reorder and take square roots so that σ1 ≥ σ2 ≥ · · · ≥ σr ≥ σr+1 ≥ · · · ≥ σn ≥ 0, and σi =
√
λi.

3. Define ui = 1
σi
Avi for 1 ≤ i ≤ r

4. Find an orthonormal basis for (Col(A))⊥ = Nul(AT ){ur+1, . . . , um}, and take a union with the above-
defined uis to get an orthonormal basis for Rm.

5. U = (u1, . . . , um), V = (v1, . . . , vn), Σ =


σ1 0 0
0 . . . 0
...

...
...

0 σr 0
0 . . . 0


A = UΣV T

29.3 This is amazing. Why?

Image Processing

Imagine we have a grayscale image, with resolution 512×512 pixels. We can encode this image as a 512×512
matrix, where each entry represents the brightness of the corresponding pixel.

Then, we can decompose it into A = UΣV T . Since A is a square matrix, Σ will be a diagonal matrix whose
entries are the singular values,

Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
...

...
0 0 . . . σ512


In general, the columns are linearly independent, since not every image is completely black or completely
white. So, for any 1 ≤ k ≤ 512, let Σk be the following:

Σk =


σ1 . . . 0
. . . σk . . .
...

...
...

0 0 0


Lecture 29-2
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k ≤ Rank(A) =⇒ Rank(Ak) = k

Ak is the best possible rank-k approximation to A. (add pic of compression)
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Definition 54. A differential equation is an equation in an unknown function y, and its derivatives y′, y′′, . . .

Differential equations are of enormous importance to applied mathematics, such as all of physics. The general
form of a linear second-order constant coefficient differential equation is as follows:

ay′′ + by′ + cy = f(t)

where a, b, c are constants and a 6= 0. The above is an equality of functions, i.e. this equation is true for all
values of y we could come up with.

Our aim is to find a general solution to this. To do this, we first look at the homogeneous case where
ay′′ + by′ + cy = 0.

We observe the following:

1. The zero function is a solution

2. y1, y2 solutions =⇒ y1 + y2 solution

3. y1 solution, λ real =⇒ λy1 solution

Therefore, the solutions to ay′′ + by′ + cy = 0 are a subspace of all twice differentiable functions.

Theorem 30.1. Fix any t0 in R. Then, the transformation between the subspace of all solutions to ay′′ +
by′ + cy = 0 and R2, characterised by

y(t)→
[
y(t0)
y′(t0)

]
is a one-to-one, onto, linear transformation.

As a consequence of this, the solution subspace defined above is 2-dimensional. This means we need to find
two linearly independent solutions to ay′′ + by′ + cy = 0.

Finding two linearly independent solutions, in general, is tougher than it seems. Analytically solving it
requires integrals that are either difficult or provably impossible.

”Provably, everyone is screwed.” - Paulin 2018

So let’s guess. Try y(t) = ert. Then, the derivatives are

y′(t) = rert, y′′(t) = r2ert

Therefore,



ay′′ + by′ + cy = (ar2 + br + c)ert = 0

Therefore, y(t) = ert is a solution to the homogeneous case if and only if ar2 + br + c = 0. Call this the
auxiliary equation, and call the polynomial ar2 + br + c the auxiliary polynomial. We now have three cases:

1. Two distinct real solutions r1, r2 (b2 − 4ac > 0)

This gives us the two linearly independent solutions we were looking for, {er1t, er2t}, which in turn
gives us a general solution of C1e

r1t + C2e
r2t.

2. One repeated real root r1 (b2 − 4ac = 0)

Consider y(t) = ter1t. This implies that y′ = er1t + r1te
r1t and y′′ = 2r1e

r1t + r21te
r1t. Therefore,

ay′′ + by′ + cy = a(2r1e
r1t + r21 + r21te

r1t) + b(er1t + r1te
r1t) + c(ter1t)

= (2ar1 + b)er1t + (ar21 + br1 + c)ter1t

2ar1+b = 0 because the discriminant of the auxiliary polynomial is 0, and ar21+br1+c = 0 because that
is the original equation. Therefore ter1t is a solution, so our linearly independent set is {er1t, ter1t}.

3. Two complex conjugate non-real solutions α± iβ (b2 − 4ac < 0)

This means our proposed solution is the complex-valued function y(t) = e(α+iβ)t. This is a bit prob-
lematic because we only want real-valued solutions. So we can do this:

e(α+iβ)t = eαteiβt = eαt
(

cos(βt) + i sin(βt)
)

From this, we get our general solution as C1e
αt cos(βt) + C2e

αt sin(βt).

Example

y′′ + y = 0 =⇒ r2 + 1 = 0 =⇒ r = ±i

This corresponds to α = 0, β = 1.

This means our general solution is C1 cos t+ C2 sin t.

Lecture 30-2
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31.1 Non-Homogeneous Second-Order ODEs

This is represented by

ay′′ + by′ + cy = f(t)

where f(t) is not the zero function. To solve this, we fix yp, a particular solution to the above. That is,

ay′′p + by′p + cyp = f(t)

Let y be any other solution, i.e. ay′′ + by′ + cy = f(t).

Then, subtracting these:

(ay′′ + by′ + cy)− (ay′′p + by′p + cyp) = f(t)− f(t) = 0

∴ a(y − yp)′′ + b(y − yp)′ + c(y − yp) = 0

That is, yh := y− yp is a solution to the homogeneous linear system. It follows that y = yp + yh. So we can
conclude that:

1. A general solution to ay′′ + by′ + cy = f(t) is yp + yh, where yp is a particular solution and yh is a
general solution to the case f(t) = 0.

2. yh(t0) = 0, y′h(t0) = 0 =⇒ yh = zero function, so y = yp.

Our problem now is that finding particular solutions for a general f(t) is really hard. We can deal with this
using the method of undetermined coefficients.

For f(t) = Pm(t)ert, where Pm is a polynomial of degree m, we try the following:

yp(t) = ts(A0 +A1t+ · · ·+Amt
m)ert

If r is not a solution to the auxiliary equation, set s = 0. If r is a simple (not repeated) solution to the
auxiliary equation, set s = 1. If r is a repeated solution to the auxiliary equation, set s = 2.



31.2 It Only Gets Worse

What about if we have a complex r?

To find a particular solution to

ay′′ + by′ + cy = Pm(t)eαt cos(βt)

(or the same with sine), we try the solution

yp(t) = ts(A0 +A1t+ · · ·+Amt
m)eαt cos(βt) + ts(B0 +B1t+ · · ·+Bmt

m)eαt sin(βt)

yikes.
If α+ iβ is not a solution to the auxiliary equation, set s = 0. If α+ iβ is a solution to the auxiliary equation,
set s = 1.

This has 2(m + 1) unknowns. We want a general method to find suitable sets of A0, . . . , Am, B0, . . . , Bm,
which we ultimately do by solving linear systems.

Examples

Find general solutions to the following:

1. y′′ − 2y′ + y = 0

Auxiliary equation: r2 − 2r + 1 = 0 =⇒ r = 1

So the solution is of the form C1e
t + C2te

t.

2. y′′ − 2y′ + y = t2 − 5t+ 5

y = yp + yh. yh is given above, so to find yp we set s = 2, so

yp = (A0 +A1t+A2t
2)

We take derivatives,

y′p = A1 + 2A2t

y′′p = 2A2

and we compute the left side of the DE:

y′′p−2y′p+yp = 2A2−2A1−4A2t+A0+A1t+A2t
2 = A2t

2+(A1−4A2)t+(A0−2A1+2A2) = t2−5t+5

which is three linear equation in three unknowns.

Note that r here is not the same r as in the homogeneous case.
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32.1 Dealing with Slightly More Complicated Functions

For this, we introduce the superposition principle. This is the idea that if we have

ay′′1 + by′1 + cy1 = f1(t)

and

ay′′2 + by′2 + cy2 = f2(t)

then we can add them to find that y1 + y2 is a solution to

ay′′ + by′ + cy = f1(t) + f2(t)

This allows us to present a general overview of finding the solution to this DE:

1. Find a general solution to the homogeneous case

2. Break up f(t) into the sum of Pm(t)ekt, Pm(t)ekt cos(lt), Pm(t)ekt sin(lt)

3. Find a particular solution for each piece using the method of undetermined coefficients.

4. Apply the Superposition Principle: add all of these solutions to get a total particular solution.

5. Given initial conditions, calculate y(t0) and y′(t0), and solve for C1 and C2.

32.2 Motivating Example

Let two tanks A and B consist of salty water. They are connected by two tubes and fresh water is pumped
into tank A at the rate 30L/min.

Let x(t) represent the mass of salt in tank A, and let y(t) represent the mass in tank B. Both tanks have a
capacity of 10L, the flow rate into tank B from tank A is 40L/min, the flow rate into tank A from tank B
is 10L/min, and the rate of outflow is 30L/min. Let the initial concentrations of salt in A and B be x0 and
y0 kg.

x′(t) = input rate - output rate =
10y(t)

10
− 40

10
x(t) = −4x(t) + y(t)

y′(t) = 4x(t)− y(t)− 3y(t) = 4x(t)− 4y(t)



32.2.1 Approach One

y′ = 4x− 4y =⇒ 4x = y′ + 4y

y′′ = 4x′ − 4y′ = 4(−4x+ y)− 4y′ = 4(−y′ − 4y + y)− 4y′ = −8y′ − 12y

Therefore y′′ + 8y′ + 12y = 0. This has the solution c1e
−2t + c2e

−6t. We take one derivative,

y′(t) = −2c1e
−2t − 6c2e

−6t

Then, we can find x(t):

x(t) =
1

4
y′(t) + y(t) =

1

2
c2e
−2t − 1

2
c2e
−6t

Plugging in the initial conditions stated above by substituting t = 0, we get

x(t) =
1

2

2x0 + y0
2

e−2t − 1

2

y0 − 2x0
2

e−6t

y(t) =
2x0 + y0

2
e−2t +

y0 − 2x0
2

e−6t

There we go, done, walk away, never think about this again.

32.2.2 Approach Two

Let’s use linear algebra.

We know that x′(t) = −4x(t) + y(t) and y′(t) = 4x(t)− 4y(t)

This could be written in matrix notation as

[
x′(t)
y′(t)

]
=

[
−4 1
4 −4

] [
x(t)
y(t)

]

Imagine v is an eigenvector for this coefficient matrix. Consider

[
x(t)
y(t)

]
= eλtv =

[
eλtv1
eλtv2

]
Then,

[
x′(t)
y′(t)

]
= λeλtv = eλtAv = Aeλtv = A

[
x(t)
y(t)

]
so we’ve found that eλtv is a solution!
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33.1 The Matrix Method for Solving Linear Systems of ODEs

Last time, we found out that eλtv was a solution to the given system of linear ordinary differential equations,
where v was an eigenvector of the coefficient matrix. So let’s diagonalize the coefficient matrix:

A =

[
−4 1
4 −4

]

det(A− xI2) = (−4− x)(−4− x)− 4 = (x+ 2)(x+ 6)

Therefore the eigenvalues are -2 and -6. Then, we find the null space of the eigenspaces:

Nul(A+ 2I2) = Nul

[
−2 1
4 −2

]
= Span

([1
2

])

Nul(A+ 6I2) = Nul

[
2 1
4 2

]
= Span

([
1
−2

])

Therefore, e−2t
[
1
2

]
and e−6t

[
1
−2

]
are solutions. This implies any linear combination of these two is a

solution, i.e.

d1e
−2t
[
1
2

]
+ d2e

−6t
[

1
−2

]
is a solution for any d1, d2

Therefore, at t = 0, we can apply the constraint x0 = x(0) and the same with y to get:

x0 = d1 + d2, y0 = 2d1 − 2d2

Row reduction tells us that

d1 =
2x0 + y0

4
, d2 =

2x0 − y0
4

Therefore, we can conclude that

[
x(t)
y(t)

]
=

[
2x0+y0

4
e−2t + 2x0−y0

4
e−6t

2x0+y0
2

e−2t − 2x0−y0
2

e−6t

]
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33.2 Notation

v(t) =

v1(t)
...

vn(t)



A(t) =

a11(t) a12(t) . . . a1n(t)
...

am1(t) . . . amn(t)


where each element is a real-valued function.

Then, v : R→ Rn, t→ v(t) is a vector valued function, and A : R→ m×n matrix, t→ A(t). We can define,
say, differentiation, by differentiating each of the elements of a v matrix.

Definition 55. A linear system of first-order differential equations in n functions x1(t), . . . , xn(t) is

x′1(t) = a11(t)x1(t) + a12(t)x2(t) + · · ·+ a1n(t)xn(t) + f1(t)

x′2(t) = a21(t)x1(t) + a22x2(t) + · · ·+ a2n(t)xn(t) + f2(t)

...

x′m(t) = am1(t)x1(t) + · · ·+ · · ·+ amn(t)xn(t) + fm(t)

33.3 Cool Example

Let A(t) and f(t) be defined as follows:

A(t) =


0 1 0 . . . 0
0 0 1 . . . 0
0 . . . 0 0 1

−p0(t) −p1(t) . . . . . . −pn−1(t)



f(t) =


0
...
0
g(t)


Then, for the system x′(t) = A(t)x(t) + f(t), we can say the following:

x′1(t) = x2(t), x′2(t) = x3(t), . . . , x′n−1(t) = xn(t)



x′n(t) = −p0(t)x1(t)− p1(t)x2(t)− · · · − pn−1(t)xn(t) + g(t)

From the first statement, we can see that xi(t) = x
(i−1)
1 (t). Therefore the second statement can be changed

into a linear n−th order differential equation. So, solving this system is the same as solving

y(n)(t) + Pn−1(t)y(n−1)(t) + · · ·+ P0(t)y(t) = g(t)

Lecture 33-3



Lecture 34: 18 April Lecture 34-1

Math 54: Linear Algebra and Differential Equations Spring 2018

Lecture 34: Linear Systems of Differential Equations, III
Lecturer: Alexander Paulin 18 April Aditya Sengupta

Theorem 34.1. If A(t) and f(t) =

f1(t)
...

fn(t)

 are continuous on an open interval I, containing some t0, then

for any choice of x0, a vector in Rn, there exists a unique xt on I such that

1. x′(t) = A(t)x(t) + f(t)

2. x(t0) = x0

34.1 Homogeneous Case

Let f(t) = 0 for all t. Then, the following are true:

1. 0(t) is a solution to x′(t) = Ax(t).

2. x(t), y(t) being solutions =⇒ x(t) + y(t) is a solution.

3. x(t) being a solution implies λx(t) is a solution.

This means the solutions to x′(t) = Ax(t) form a vector space. Therefore, in order to find the complete set
of solutions, we need to find n linearly independent solutions, where n is the dimension of the solution space.
In other words, if there exists a one-one, onto, linear transformation T : solution space → Rn, x(t)→ x(t0),
we need to find n L.I. solutions.

To check whether a solution set is linearly independent, we introduce the Wronskian.

Definition 56. For n Rn valued functions {x1, . . . , xn }, the Wronskian of the set is

W
[
x1, . . . , xn

]
(t) = det

(
x1(t), . . . , xn(t)

)
The Wronskian of such an x−matrix is

W [x1, . . . , xn] = det(x1(t)x2(t) . . . xn(t))

Theorem 34.2. If x1, . . . , xn are solutions to x′(t) = A(t)x(t), then

{x1, . . . , xn}L.D. ⇐⇒ W [x1, . . . , xn](t0) = 0

for some t0 in I.



Proof. If the set of x−vectors is L.D., then we can find c1, . . . , cn such that

c1x1 + · · ·+ cnxn = 0(t)

for all t.

Therefore, {x1(t), . . . , xn(t)} ⊂ Rn is linearly dependent for all t in I.

This means the Wronskian is 0 for all t in I. (Invertible Matrix Theorem).

To prove the other direction, assume there exists a t0 in I such that W [x1, . . . , xn](t0) = 0.

Therefore, {x1(t0), . . . , xn(t0)} is linearly dependent, so there exist c1, . . . , cn not all zero, such that

c1x1(t0) + · · ·+ cnxn(t0) = 0(t0)

By the uniqueness of initial conditions,

c1x1(t) + · · ·+ cnxn(t) = 0(t)∀t ∈ I

34.2 Conclusion

If {x1, . . . , xn} are solutions to x′(t) = A(t)x(t), then the xis are L.I if and only if the Wronskian is nonzero
on I, and if the Wronskian is nonzero on I, then x(t) = λ1x1(t) + · · · + λnxn(t) is a general solution to
x′(t) = A(t)x(t).

In this case, we call {x1, . . . , xn} a fundamental solution set.

To go back to the original example,

x′(t) =

[
−4 1
4 −4

]
x(t)

x1(t) =

[
e−2t

2e−2t

]
, x2(t) =

[
e−6t

e−2t

]
The Wronskian is

W = det

[
e−2t e−6t

2e−2t −2e−6t

]
6= 0
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35.1 Real Eigenvalues

Let x and A be defined as follows:

x =

x1(t)
...

xn(t)



A =

a11 a12 . . . a1n
...
an1 an2 . . . ann


where each aij is a constant real number. We want to find the general solution to

x′(t) = Ax(t), t ∈ R

We observe that if v =

v1(t)
...

vn(t)

 is an eigenvector of A with eigenvalue λ, then x(t) = eλtv is a solution:

x′(t) =

λe
λtv1
...

λeλtvn

 = eλtλv = eλtAv = Ax(t)

Theorem 35.1. If { v1, . . . , vn } ⊂ Rn is a basis of eigenvectors of A with eigenvectors λ1, . . . , λn, then

x1(t) = eλ1tv1, x2(t) = eλ2tv2, . . . , xn(t) = eλntvn

is a fundamental solution set.

Proof. A set is an FSS if and only if Wronskian is nonzero for all times, i.e.

W [x1, . . . , xn](t) 6= 0∀t ∈ (−∞,∞)

W (t) = det(eλ1tv1, . . . , e
λntvn)
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= eλ1teλ2t . . . eλntdet(v1 . . . vn)

which is nonzero for all times because the exponential function is never zero, and the determinant is that of
a basis for Rn, i.e. all the columns are linearly independent, making the determinant nonzero.

Therefore, if A is diagonalizable, we can completely solve x′(t) = Ax(t).

Example

x′(t) =

[
2 1
1 2

]
x(t)

This coefficient matrix has eigenvalues λ = 1, 3. Therefore we find the λ−eigenspaces:

A− I =

[
1 1
1 1

]
=⇒ Nul(A− I) = Span {

[
1
−1

]
}

A− 3I =

[
−1 1
1 −1

]
=⇒ Nul(A− 3I) = Span {

[
1
1

]
}

This gives us the two linearly independent solutions

x1(t) = et
[

1
−1

]
, x2(t) = e3t

[
1
1

]
which form a fundamental solution set.

35.2 Non-Real Eigenvalues

We run into a problem with this approach when the characteristic equation has non-real roots. For example,

A =

[
0 −1
1 0

]
=⇒ det(A− xI2) = x2 + 1 = 0

This gives us x = ±i. This actually still works, i.e. x(t) = eit
[
i
1

]
is a solution:

x′(t) = ieit
[
i
1

]
= eiti

[
i
1

]
= eitA

[
i
1

]
= A

(
eit
[
i
1

])
= Ax(t)

However, we want to find real solutions. To do this, we can employ the same methods of linear algebra,
which still work for complex numbers. For example, finding a null space works the same way:



Nul(A− iI2) = Nul

[
−i −1
1 −i

]
[
−i −1
1 −i

]
→
[

1 −i
−i −1

]
→
[
1 −i
0 0

]

Therefore Nul(A− iI2) = Span {
[
i
1

]
}

To find real solutions, we can do the following:

eit = (cos t+ i sin t)

([
0
1

]
+ i

[
1
0

])
=

(
cos t

[
0
1

]
− sin t

[
1
0

])
+ i

(
cos t

[
1
0

]
+ sin t

[
0
1

])
This gives us the fundamental solution set we want:

x1(t) = cos t

[
0
1

]
− sin t

[
1
0

]
=

[
− sin t
cos t

]
, x2(t) = cos t

[
1
0

]
+ sin t

[
0
1

]
=

[
cos t
sin t

]
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36.1 Complex Constant-Coefficient Linear Systems

In general, we have an n × n matrix A, with non-real eigenvalue α + iβ and an eigenvector a + ib, and we
want to solve the linear system of differential equations associated with this. We get

x1(t) = eαt cos(βt)a− eαt sin(βt)b

x2(t) = eαt sin(βt)a+ eαt cos(βt)b

These are real solutions to the system x′(t) = Ax(t).

Example with Initial Conditions

x′(t) =

[
0 −1
1 0

]
x(t), x(0) =

[
1
1

]
From before, the following is a fundamental solution set:

{[
− sin t
cos t

]
,

[
cos t
sin t

]}
Therefore, x(t) is a linear combination of these. Applying the initial condition gives us

x(0) =

[
C2

C1

]
=

[
1
1

]
Therefore

x(t) =

[
cos t− sin t
cos t+ sin t

]

36.2 Fourier Series

Recall that Taylor series look like this:

f(x) ≈ f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n



Under nice circumstances,

f(x) = lim
n→∞

∞∑
k=0

f (k)(a)

k!
(x− a)k

Fourier series attempt to achieve the same goal of approximating functions well, but instead of using the
function’s derivatives, it does this using sine and cosine functions of increasing frequency. Conventionally,
we let f be piecewise continuous on [-L, L].

Let a function g be 2L−periodic if and only if g(x) = g(x+2L) for all L. For example, sin
(
mπn
L

)
, cos

(
mπn
L

)
are 2L−periodic. This can be easily verified with sine and cosine addition laws.

Here, m is the frequency, or the number of complete oscillations over [-L, L].

Recall that the vector space V = { f : [−L,L]→ R,piecewise-continuous } comes with the natural inner
product

〈f, g〉 =

∫ L

−L
f(x)g(x)dx

Theorem 36.1.

{ cos

(
π0x

L

)
, sin

(πx
L

)
, cos

(πx
L

)
, sin

(
2πx

L

)
, . . . }

is an orthogonal set.
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Proof. sin
(
mπx
L

)
is odd, and cos

(
mπx
L

)
is even. Therefore their product is odd.

〈sin
(mπx

L

)
cos
(mπx

L

)
〉 =

∫ L

−L
sin
(mπx

L

)
cos
(mπx

L

)
dx = 0

To calculate this for different sines and cosines:

〈
sin
(mπx

L

)
sin
(nπx
L

)〉
=

∫ L

−L
sin
(mπx

L

)
sin
(nπx
L

)
dx

Using integration by parts twice, we can show this is 0 for m 6= n. If m = n 6= 0, this integral evaluates to
L. Similar logic applies for cosine, with the exception that the integral is 2L for m = n = 0.

Therefore, because the inner product is 0 for all nonequal functions, the set is orthogonal.

Let

f(x) =
a0
2

+

k∑
m=1

(
am cos

(mπx
L

)
+ bm sin

(mπx
L

))

For example, f(x) = 5
2 + 6 cos

(
πx
L

)
−4 sin

(
πx
L

)
+ sin

(
2πx
L

)
. We want to determine the ams and bms directly.

To do this, we consider the inner product of f(x) and cos
(
nπx
L

)
:

〈
a0
2

+

k∑
m=1

(
am cos

(mπx
L

)
+ bm sin

(mπx
L

))
, cos

(nπx
L

)〉

By the above theorem, every component of this except the cos
(
nπx
L

)
becomes zero. Formally, we have

a0
2

〈
cos

(
0πx

L

)
, cos

(nπx
L

)〉
+

k∑
m=1

am

〈
cos
(mπx

L

)
, cos

(nπx
L

)〉
+

k∑
m=1

bm

〈
sin
(mπx

L

)
, cos

(nπx
L

)〉

which splits into the piecewise result

=


a0
2 · 2L n = 0

anL n 6= 0, n ≤ k
0 n > k
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Similarly,

〈
f(x), sin

(nπx
L

)〉
=

{
bnL 0 < n ≤ k
0 n > k

Conclusion

If f(x) = a0
2 +

∑k
m=1

(
am cos

(
mπx
L

)
+ bm sin

(
mπx
L

))
, then

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, 0 ≤ n ≤ k

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx, 1 ≤ n ≤ k

Remark 37.1. This is similar to expressing a function f(x) = c0 + c1x+ · · ·+ cnx
n, in which cn = f(n)(0)

n! .

We are now ready to define a Fourier series.

Definition 57. Let f be a piecewise continuous function on [−L,L]. The Fourier series of f is the infinite
series

a0
2

+

∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
where

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, 0 ≤ n ≤ k, n = 0, 1, 2, . . .

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx, 1 ≤ n ≤ k, n = 1, 2, . . .

Remark 37.2. We have proven that if f(x) is a trigonometric sum as above, then the Fourier series is a
finite sum and is equal to f(x) on [−L,L].

_
\_( ") )_/

_

Example

Compute the Fourier series of |x| on the interval [−1, 1].

Because |x| is even, |x| sin (nπx) is odd. Therefore,

∫ 1

−1
f(x) sin (nπx) dx = 0



so all the bns are zero.

|x| cos (nπx) is even, therefore

∫ 1

−1
|x| cos (nπx) dx = 2

∫ 1

0

x cos (nπx) dx

We can calculate each of the ans this way.

a0 = 2

∫ 1

0

xdx = x2
∣∣∣1
0

= 1

an = 2

∫ 1

0

x cos (nπx) dx =
1

nπ
x sin (nπx)

∣∣∣1
0
−
∫ 1

0

1

nπ
sin (nπx) dx

The first part of the evaluation goes to 0, because sin pi = sin 0 = 0, and the second part becomes

an =
2

n2π2
((−1)n − 1)

Therefore the Fourier series is

|x| = 1

2
+

∞∑
n=1

2

n2π2
((−1)n − 1) cos (nπx)
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Theorem 38.1. If f and f ′ are piecewise continuous on [−L,L] then for any x in (−L,L), the Fourier
series of the function is equal to

1

2

(
lim
h→0+

f(x+ h) + lim
h→0−

f(x+ h)

)
By this, if f is continuous at x, the function is exactly equal to its own Fourier series. On the endpoints, i.e.
x = ±L, the series converges to 1

2 (f(L−) + f(−L+)) where f(x−) and f(x+) are defined as in the limits
above.

As a consequence of this, if f is continuous on [−L,L] and f(−L) = f(L), then the Fourier series converges
to f(x) for all x in [−L,L].

Also, if y is a continuous 2L−periodic function on (−∞,∞), then the Fourier series to converges to f(x) for
all x ∈ R

Example

f(x) =

{
1 0 ≤ x ≤ 1

,−2 −1 ≤ x < 0

We want to know what the Fourier series converges to at x = 0 and x = 5
2 .

At x = 0, the Fourier series converges to

1

2

(
f(0+) + f(0−)

)
=
−1

2

and at x = 5
2 , the Fourier series converges to 1.

38.1 Calculus on Fourier Series

We can integrate and differentiate Fourier series term by term.

F ′(x) =

∞∑
n=1

(
−an

nπ

L
sin
(nπx
L

)
+ bn

nπ

L
cos
(nπx
L

))
and similarly, an integral becomes

∫
F (x)dx = C +

a0
2
x+

∞∑
n=1

(
L

nπ
an sin

(nπx
L

)
− L

nπ
bn cos

(nπx
L

))
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38.2 Fourier Sine and Cosine Series

If f is even on its symmetric domain, then bn = 0 for all n. Similarly, if f is odd, then an = 0 for all n.
That is, the Fourier series of an even function only has cosine terms, and that of an odd function only has
sine terms.

Let f be piecewise continuous on the closed interval [0, L]. Then, we define

fe(x) =

{
f(x) 0 ≤ x ≤ L
f(−x) −L ≤ x ≤ 0

fo(x) =

{
f(x) 0 ≤ x ≤ L
−f(−x) −L ≤ x ≤ 0

By construction, these are respectively even and odd. Then,

Definition 58. The Fourier cosine series of f on [0, L] is the Fourier series of fe on [−L,L]:

a0
2

+

∞∑
n=1

an cos
(nπx
L

)

an =
1

L

∫ L

−L
fe(x) cos

(nπx
L

)
dx =

2

L

∫ L

0

f(x) cos
(nπx
L

)
dx

Definition 59. The Fourier sine series of f on [0, L] is the Fourier series of fo on [−L,L]:

a0
2

+

∞∑
n=1

bn sin
(nπx
L

)

bn =
1

L

∫ L

−L
fo(x) sin

(nπx
L

)
dx =

2

L

∫ L

0

f(x) sin
(nπx
L

)
dx


