
MSE 45: Properties of Materials Fall 2018

Lecture 2: Atomic Structure

Lecturer: Lane Martin August 24 Aditya Sengupta

2.1 Motivation

Material properties are dictated by their atomic structure; both the types of atoms and the arrangement of
atoms or molecules. Other factors that a↵ect this are defects and impurities, or grain size. All of these can
change material prioerties. The structure of materials depends heavily on the processing conditions.

Multiple length scales are critical in engineering. The structures at di↵erent scales a↵ect di↵erent kinds of
properties (e.g. tensile strength and Young’s modulus are determined at the atomic level, while ductility is
determined at the scale of micrometers or millimeters - confirm.) Mechanical (strength, ductility), electrical
(resistivity), thermal (heat conduction) and optical (transmittance) properties can all be influenced by atomic
structure.

Using the wrong materials, or processing them incorrectly, has led to a number of disasters. Excessive stress,
corrosive environments, incorrect structures from improper alloying or heat treatment, or embrittlement can
all be catastrophic problems with materials in engineering. Concorde, WTC, Columbia, WW2 Liberty Ships.

2.2 Atomic Structure

2.2.1 Bohr model of the atom

Electrons are assumed to revolve around a nucleus (of protons and neutrons) in discrete orbitals, and the
position of an electron is entirely determined by its orbital. This is slightly wrong, as it does not account for
the particle-wave duality of electrons. The quantum mechanical model better explains the states available
to each electron in an orbital. The quantum mechanical model provides a wavefunction for the position
of an electron; rather than assuming an electron will definitely be at a certain place, it gives a continuous
probability distribution of its location.

2.2.2 QM Model

Electrons behave like particles in that they scatter o↵ objects and have momentum (p = hk/2⇡), but they
behave like waves in that they are spread out in space, they can interfere with each other to form standing
waves, and their energy and momentum depend on their wavelength. Electrons are best described by energy
waves with a specific amplitude and wavelength, which may be found by solving Schrodinger’s equation.
The solutions are categorized as quantum numbers: n, l, m, and spin.

Lecture 2-1



Lecture 2: August 24 Lecture 2-2

2.2.3 Quantum Numbers

2.2.3.1 n

The allowed values of n are 1, 2, 3 and so on. It is roughly associated with the electron’s energy, and indicates
how far from the nucleus the electron is (what electron shell is it in)

2.2.3.2 l

This is the angular momentum, and it has allowed values 0 to (n - 1). It is related to the shape and angular
momentum of the electron in its orbit. l is usually represented as a letter (s = shape -¿ 1, p = principal -¿
3, d = di↵use -¿ 5, f = fundamental -¿ 7), each corresponding to a number of energy states

2.2.3.3 m

This is the magnetic quantum number. It can take on 2l + 1 distinct values, from �l to +l inclusive. This
describes the spatial orientation of the electron, and directly represents the number of energy states for each
subshell. It describes how the angular momentum splits under an applied magnetic field (verify).

2.2.3.4 ms

This is the spin of the electron, which can be �1

2

or 1

2

.

The Pauli Exclusion Principle states that no two electrons can have the same four quantum numbers.

2.2.4 Electron Properties

Electrons have discrete energy states (are quantized) and tend to apply the lowest available energy states.
The first few electrons in an atom have the following properties:

n l m ms

1 0 0 1/2
1 0 0 -1/2
2 0 0 1/2
2 0 0 -1/2

For degenerate levels such as 2p, each orbital is filled with one electron before electrons are paired up.

We can fully specify the electron configuration of an element by writing the n and l of each one with
a superscript indicating how many electrons have these property. For example, S has a configuration of
1s22s22p63s23p4.

Electrons are filled up in an order to maximize the total spin, in the order indicated by the arrows here:
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2.3 The Periodic Table

The periodic table is arranged according to the order of electrons in the outermost shell. The alkaline metals
have one electron in the s-orbital (Li, Na, K, Rb) and they have shared properties such as high reactivity
because of it. Alkaline earth metals have two s electrons; chalcogens have a filled s orbital and four p
electrons; halogens have five p electrons, and those with a partially-filled d orbital are the transition metals.

Noble gases have stable electronic configurations, with complete s and p subshells. Therefore, they tend to
be inert. Elements without stable configurations can gain or lose an electron to obtain a stable state.

The properties that determine how easy it is to do this are the ionization potential or ionization energy,
the energy required to take an electron out to vacuum (by convention, positive), and the electron a�nity,
the energy required to place an electron in an atom from vacuum (by convention, negative). The atom’s
electronegativity is a measure of how likely an atom is to take or give up an electron, and it is defined simply
as

� =
IP + EA

2
(2.1)

When two atoms are brought together, the one with the higher � will have a higher electron density around
its nucleus. A larger �� means a more ionic bond.

As a result of this, some trends emerge on the periodic table: the ionization energy increases moving left to
right, and decreases top to bottom.

Lecture 2-4



Lecture 2: August 24 Lecture 2-5

2.4 Factors that a↵ect bonding

Bonding is a↵ected by the relative energies of the valence electrons and the lowest available states (based on
IP, EA, and �), the number of valence electrons, and the symmetry of the valence orbitals.
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Lecture 3: Interatomic Bonding

Lecturer: Lane Martin August 27 Aditya Sengupta

3.1 Ionic Bonding

Elements on the left of the periodic table tend to give up electrons (low electronegativity), and on the right
they tend to acquire electrons (high electronegativity). An ionic bond is a transfer of electrons between two
atoms of these types. A large di↵erence in electronegativity is required. For example, Na can bond with Cl
this way; Na gives up one electron and Cl accepts it.

The electric energy between these two is:

EA =
z
1

z
2

e2

4⇡"
0

r
(3.1)

Since z
1

= 1 (Na) and z
2

= �1 (Cl), this is negative:

EA = � e2

4⇡"
0

r
= �A

r
(3.2)

Atoms do not collapse on themselves as a result of this, as there is also a repulsive term proportional to
1/rn.

We want to create an energy balance of attractive and repulsive terms to create a stable system.



Lecture 3: August 27 Lecture 3-2

3.2 Covalent Bonding

This involves electrons being shared. The system’s energy is lowered overall by creating a bond in which
both atoms have a completely filled shell rather than a half-filled shell.

3.2.1 Hybridization

Sometimes the electrons being shared will not come from the same subshell; in this case, in order to make
the molecule symmetric and reduce total energy overall, the shared electrons will join hybridized orbitals.
An electron from an s subshell and one from a p orbital will hybridize to form an sp orbital. One s and
three p can make an sp3 orbital.
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3.3 Metallic Bonding

This is the primary bond for metals and their alloys. It usually takes place when the atoms have a large
atomic radius and small ionization potential. Since ionization energy increases moving to the right on the
periodic table, low-IP atoms are more likely to be metals. In this bond, metals attract electrons from a śeaóf
valence electrons and bond with them.

3.4 Ionicity

All the properties of materials are largely determined by the nature of bonding (type, and strength) between
the constituent atoms.

Most bonds between types of atoms are not entirely ionic, entirely covalent, or entirely metallic. This formula
lets you calculate the ionic character of a bond:

%ioniccharacter = 1� e�0.25(�
A

��
B

)

2

(3.3)

If %IC is close to 1, the material is likely to be an ionic ceramic, a complex salt, etc. If it is closer to 0,
it may be a transition metal, alloy, or alkali metal. This is a spectrum, moving from ionic to covalent to
metallic. Generally, a larger electronegativity di↵erence makes the bond more ionic.

3.5 Secondary Bonds

3.5.1 Van der Waals Bonds

These arise from dipole-dipole interaction: a secondary bond between molecules with permanent dipole
moments. For example, in hydrogen chloride, weaker secondary bonds are created by the dipole moment.

3.5.2 Dipole/induced-dipole interactions

This is a secondary bond between molecules, in which if a momentary dipole arises due to the probability
distribution of electrons, it can induce a dipole in a neighbouring species, creating a temporary bond.

(remember definitions of IP, EA, e-, etc)

3.6 Properties from Bonding Curve

Melting temperature can be inferred from the bond curve; the lower the equilibrium point, the more di�cult
it is to break the bond, and therefore the higher the melting temperature. Tm is larger if E

0

is larger.

The sharper the curve is, the higher the elastic modulus. Elastic modulus/Young’s modulus determines how
much the material can be stretched before it cannot return to equilibrium; if the curvature is large, the
elastic modulus is large.



The thermal expansion coe�cient is related to how asymmetric the bonding curve is; heat makes the atoms
oscillate, so if it is symmetric it will be less likely to expand. If it is asymmetric, it will expand much farther
with the same amount of input heat energy.

3.7 Preview of Next Lectures

• Define terminology: lattice, basic atoms, crystal structure, unit cell

• Describe hard-sphere packing

The energy of a system is minimized by a close-packed crystal structure of atoms or molecules. Crystal
structures are characterized by high density and regular spacing.

Some structures have little global structure. They have complex structures, rapid cooling, and no periodic
packing. These are called amorphous.
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Lecture 4: Crystal Structures
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4.1 Unit Cells

A unit cell is the basic structural unit of a crystal structure. Its geometry and atomic positions define the
crystal structure. A unit cell is the smallest component; when repeated and translated, it eventually forms
the whole crystal. More than one unit cell can be chosen for a given crystal, but by convention, we choose
the one with the highest symmetry.

A space lattice is an infnite array of mathematical points. Each point has identical surroundings to all the
others. This is an ideal, not a physical, concept. To create a crystal structure, we apply a basis or motif
to the lattice. Therefore the periodic arrangement of atoms in a crystal can be described completely by a
lattice and an atom decoration on that lattice.

Lattice points do not necessarily always lie at the center of atoms. Polonium is the only element with a
simple cubic structure, in which the atoms and the lattice points do line up, but every other element is more
complicated.

To define unit cells, we need some way of describing 3D space. We set unit vectors ~a,~b,~c. These are not
necessarily mutually perpendicular; by convention, the angle between ~a and ~b is �, between ~b and ~c is ↵, and
between ~c and ~a is �.

This gives us 7 crystal classes:

Crystal System Axial Relationships Interaxial Angles
Cubic a = b = c ↵ = � = � = 90o

Hexagonal a = b 6= c ↵ = � = 90o, � = 120o

Tetragonal a = b 6= c ↵ = � = � = 90o

Trigonal/Rhombohedral a = b = c ↵ = � = � 6= 90o

Orthorhombic a 6= b 6= c ↵ = � = � = 90o

Monoclinic a 6= b 6= c ↵ = � = 90o 6= �
Triclinic a 6= b 6= c ↵ 6= � 6= � 6= 90o

There are several types of unit cells: primitive cells contain only one point, face-centered cells contain atoms
centered on all the faces of the cell, body-centered cells contain an atom at the body center, and end-centered
cells contain atoms on the sides or ends of the cell. Combining these with the 7 crystal classes gives us 14
Bravais lattices. Combining these 14 with all possible symmetry elements, e.g. rotations, translations,
mirrors, glides gives us 230 space groups.

4.2 Analyzing Crystal Structures

Atoms can be shared between unit cells. For example, a vertex atom is on the corner of 8 unit cells, so it
counts as 1

8

of an atom for each of those unit cell.
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• Edge atoms are shared between 4 unit cells ! 1/4 atom per cell

• Face atoms are shared between 2 unit cells ! 1/2 atom per cell

• Body atoms are not shared ! 1 atom per cell

The coordination number is the number of nearest neighbors any atom in the crystal structure. What we
usually want to know about the crystal structure of a material falls into one of these categories:

• basic structural parameters

• atoms per unit cell

• volume per cell

• atomic packing factor

• closed-packed direction

• linear densities in certain directions

• planar density of a given plane

Generally, we want to relate the cube side length a to the packing of ideal spherical atoms of radius R.

4.2.1 Atomic Packing Factor

This is defined as

APF =
Vol. of atoms in unit cell

Vol. of unit cell
(4.1)

This is some ratio of used to total space. It is independent of atomic radius. For example, APF for the
simple cubic structure is 0.52. We can do much better than this. For example, in three dimensions, we can
layer atoms so that one layer fits into the free space left by the one below it.

4.2.2 Body-Centered Cubic Crystal Structure

This has a close-packed structure of atoms at the corners as well as one at the center. The length along
a diagonal is 4R, which is

p
2a when projected onto the diagonal of a square. Geometry tells us that the

relation between a and R is

a =
4Rp
3

(4.2)

From this, we can find the volume of the unit cell in terms of R:



Vunitcell = a3 =
64R3

3
p
3

(4.3)

APF =
8/3⇡R3

64R3/(3
p
3)

= 0.68 (4.4)

The coordination number is 8; each center atom has 8 neighbours at the corners.

4.2.3 Face-Centered Cubic Crystal Structure

As above, we can find a relationship between a and R when we have atoms on each face:

a = 2
p
2R (4.5)

The coordination number here is 12, as there are 4 neighbors in each of 3 planes. We can repeat the volume
ratio calculation and get 0.74 for APF here.
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Lecture 5: Crystal Structures and Coordinate Systems
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5.1 Hexagonal Close-Packed Crystal Structure

This is similar to FCC, with the di↵erence being that HCP repeats the first layer’s structure in the third
layer, instead of a third unique layer type as in FCC. Both have the same packing factor, as all atoms are
packed as densely as possible.

5.2 Point Coordinates

To define a point in a unit cell, we can use a slight variation on Cartesian coordinates, in which x, y, and
z are expressed as fractions of the magnitude of unit vectors. This is done because the directions are not
necessarily orthogonal.

To define a vector, we start at the origin, and determine the length of the vector projection in each of the
3 axes in units or fractions of a, b, and c. We reduce these to the smallest integer values. These are then
denoted as three values enclosed in square brackets. Negative directions are indicated with bars over the
number.

Families are defined by the modes of symmetry available to a specific geometry, e.g. the cubic family is
characterized by complete rotational symmetry (at 90 degree rotations).

5.3 Lattice planes

Lattice planes are important for determining crystal structure via di↵raction (measuring d between parallel
lattice planes), for plastic deformation (occurs because of atoms slipping past each other in a crystal) and
to quantify transport properties. Therefore, it is important that we know how to designate planes. To do
this, we do the following:

1. Take the reciprocals of the lengths at which the plane intersects each plane.

2. Find the LCM that converts all reciprocals to integers.

3. Enclose the new triple in parentheses to form the Miller Index of the plane.

If the plane passes through the origin, either construct a parallel plane translated, or choose another origin
at the corner of the adjacent unit cell. Now, the plane either intersects or is parallel to each axis.

5.4 Densities in Materials

1. Crystal density: units of mass per volume (g/cm3)



2. Linear density: number of atoms per unit length (cm�1)

3. Planar density: number of atoms in a unit plane (cm�2)
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Lecture 6: Crystalline Solids
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(implement guest lec)

6.1 Densities in Materials

Density can refer to the crystal density (3D) of a material, which has units of mass per volume, the linear
density (number of atoms per unit length) or the planar density (atoms per unit area).

The linear density is defined as the number of atoms centered on a direction vector divided by the length of
the direction vector. For example, the density of an FCC crystal along [1 1 0] is 1

2R ; along [1 1 0], there are
2 atoms along a length of 4R. Only atoms that are fully bisected by the given vector maybe included.

The planar density is defined as the number of atoms centered on a given plane, divided by the area of the
plane. For example, the planar density on the (1 1 0) plane of an FCC crystal is 1

4

p
2R2 , as there are 2

complete atoms in the plane (1/4 of 4 corner atoms and 1/2 of 2 side atoms), over an area of 2
p
2R⇥ 4R

6.2 X-Ray Di↵raction to Determine Crystal Structure

The ways light interacts with a crystal can tell us about its structure. In some cases, light can strike the first
layer of atoms, or the second, or it may pass through undi↵racted. The governing law here is n� = 2d sin ✓,
where � and d are of comparable lengths. Since the atomic spacing is on the order of angstroms, light is too
large to show all the information that it is possible to gain with this methods. Therefore we can use x-rays
to do this instead.

To measure di↵raction e↵ects, we send x-rays in at an incident angle 2✓, and measure the resulting intensity.

6.3 Crystal Structure and Planar Distances

Let h, k, l be the Miller indices of the planes of atoms that scatter. Then, di↵erent conditions on these indices
can yield constructive interference (reflections) or destructive interference (none).

Bravais Constructive Destructive
BCC h + k + l = Even h + k + l = Odd
FCC (h, k, l) all odd/all even (h, k, l) not all odd/all even
HCP h + 2k 6= 3n, n 2 N, l odd Not that



6.4 Ionic Crystals

An ionic crystal is one with significant ionic character. They consist of an anion (negative) and cation
(positive), in which the cation is usually smaller due to anions having larger electron clouds.

Most ionic crystals can be considered to be close-packed structures of anions, with cations in the interstitial
sites. The interstitial sites can have various shapes based on the method of packing. For example, in FCC,
interstitial sites have eight edges surrounding them, so they are octahedral sites.

In HCP, there are six octahedral sites, and twelve tetrahedral sites. (Look at slides again for this) Rock salt
places its cations in the octahedral sites.

6.5 Charge Neutrality

The net charge in ionic crystals must be 0. For example, if Ca2+ combines with F�, the resulting formula
must be CaF

2

. They fall into a stable configuration when anions surrounding a cation are all in contact
with the cation.

The coordination number of an ionic crystal scales with r
cation

r
anion

.
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Lecture 7: Ionic Crystals

Lecturer: Lane Martin 7 September Aditya Sengupta

7.1 Coulombic Interaction

In ionic solids, all the atoms are point charges which have interactions according to Coulomb’s law:

EC =
Z
1

Z
2

e2

4⇡"
0

r
(7.1)

In an ionic solid, we can model an individual atom’s Coulombic interactions with its nearest neighbours:

E = �6e2

r
+

12e2

2r
� 8e2p

3r
+ . . . E = �M

e2

r
(7.2)

M is a constant, the same for each di↵erent crystal structure type.

If all terms are attractive, the crystal cannot be in equilibrium. Therefore we modify the formula:

E = �M
e2

r
+B

e2

rn
(7.3)

At an equilibrium distance r
0

, energy is at a minimum. We get

U = �MNAZ1

Z
2

e2

4⇡"
0

r
0

✓
1� 1

n

◆
(7.4)

n here is the Born exponent, which describes the repulsion that prevents core electron interpenetration. It
is equal to the average of the n for the cation and anion, which correspond to noble gases; He = 5, Ne =
7, Ar = 9,Kr = 10, Xe = 12.

U is the molar lattice energy.

7.2 Crystal Types

Given the radii of the cation and anion of a crystal, and the ratio of cations to anions (from the formula) we
can predict the coordination number of the crystal. From this, we can infer the unit cell type.

For example, NaCl has a radius ratio of 0.564, which yields a coordination number of 6. This tells us that
NaCl has this structure:



We can extend this to make cool structures!
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Lecture 8: Defects

Lecturer: Lane Martin September 10 Aditya Sengupta

Defects can disrupt the long-range structure of a system, creating things like silicon glass by filling the
interstitial sites of silicon dioxide with sodium. The change between crystalline and non-crystalline SiO

2

,
however, does not significantly change the electrical characteristics. Long-range order is not what determines
electrical resistivity and band gap.

Allotropes are di↵erent structures for the same substance. They are usually seen in elemental solids such
as carbon. Carbon can form diamond (a variant of zinc blende, with covalent bonding) or graphite (more
stable at STP, better electrical conductivity, also with covalent bonding, and layers of hexagonally arranged
carbon atoms with each atom bond), which are allotropes. Carbon nanotubes are one of these, in which
carbon sheets are “rolled up” to make long structures with great material strength.

8.1 Defects

Defects come in several flavours:

• Zero dimensional (point defects) such as vacancies, interstitial atoms

• One dimensional (linear defects) such as imperfections in stacking layers

• Two dimensional (planar defects) such as surfaces, grain boundaries

• Three dimensional (volume defects) such as second phases, voids.

Defects can be di�cult to study because they can be so small; zero-dimensional defects can be the size
of an angstrom. However, they are probably the most important part of MSE. By introducing defects or
impurities, mechanical properties (structural strength) can be improved such as with metal alloys, electrical
properties (metal conductivity through defects, semiconductor conductivity through doping) changed, and
so can optical properties.

8.1.1 Point Defects

These are mostly vacancies, the absence of atoms from lattice sites. They cause missing bonds, so it costs
energy to create them. They form when the required activation energy is less than the ambient energy due
to room temperature:

Ns = Ne�
Q

s

kT (8.1)

where Ns is the number of vacancies, N is the total number of lattice sites, and Qs is the activation energy.
kT is the inverse of the energy derivative of the natural log of the number of microstates available to the
system, or the temperature scaled by the Boltzmann constant if you’re being boring.



A point defect can also be an extra atom placed in between lattice sites, which is referred to as a self-
interstitial. Self-interstitials are usually not as probable as vacancies, because the activation energy is higher;
a self-interstitial causes a lattice to bend su�ciently to include another atom of the same type as the lattice.

Because ambient conditions provide some activation energy for defects, perfect crystals to create are impos-
sible at STP.
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Lecture 9: Point Defects
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Calculate the equilibrium number of vacancies for a cubic centimeter of copper at 1000oC.

Regular unit conversion using mass and Avogadro’s number tells us N = 7.963⇥ 1022. Then,

Nv = Nexp

✓
�Qv

kT

◆
= 2.1834⇥ 1019 (9.1)

If this specimen is cooled to 300K, Nv = 6.11568⇥ 107 (same procedure). Rapid cooling will create almost
the same change.

Increasing T auses the surfaces of atoms to grow, because the equilibrium vacancy concentration increaess
via atom motion from the crystal to the surface.

Point defects are also possible in ionic solids, as long as charge neutrality is maintained. If an an anion
vacancy is created, a cation must also be removed to maintain electronic neutrality, A Frenkel defect is a
cation vacancy with a cation interstitial (not necessarily adjacent), and a Schottky defect is a cation vacancy
with an anion vacancy.

In the limit of a small number of impurities, we can consider them to be point defects. When there is a large
number, consider them a solution: a homogeneous distribution of impurities (a solute) within the crystal
structure of the host (a solvent). If an impurity B is added to a host A, we either have a solid solution
of B in A (which can be either a substitutional alloy, where B fills the A vacancies, or an interstitial alloy,
where B is an interstitial to A) or a solid solution plus particles of a new phase, which can lead to a di↵erent
composition altogether.

The solubility of a substitutional solution depends on:

1. Atomic size factor (better solubility if atomic radii are within 15%)

2. Crystal structure (host and impurity atoms should have the same crystal structure)

3. Electronegativity (di↵erence should be small - otherwise, intermetallic compounds rather than solu-
tions)

4. Valence (same valence is preferred)

Observing these through experimentation led to the Hume-Rothery Rules for Mixing (empirical guidelines,
not a strict set of rules)

1. If the size di↵erence of atoms r
solute

�r
solvent

r
solvent

> 0.15, lattice distortions (local lattice strain) are too big,
solid solution is not favoured. But still possible.

2. For appreciable solubility, the crystal structure of metals must be the same.

3. The more electropositive one element is and the more electronegative the other, the more likely inter-
metallic compounds are; low �E favours a solid solution.



4. A metal will dissolve another metal of higher valence more than one of lower valence. “Higher in lower
alright, lower in higher, it’s a fight”.

The composition of A in B is usually specified either by a weight percentage, or an atomic percentage:

wt% =
mA

mA +mB
⇥ 100% (9.2)

at% =
nA

nA + nB
⇥ 100% (9.3)

Kroger-Vink notation representations of point defects can be useful for bookkeeping (although not too
necessary for the course). A negative charge is 0, a positive charge is ., V is a vacancy, e is an electron, h is
a hole. The species of interest is written, with the site it’s occupying as a right-side subscript. A vacancy in
Na corresponds to NaNa ! V 0

Na + 1h., for example.

9.1 Line Defects

These are things like dislocations (linear defects around which atoms are misaligned).
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Lecture 10: Linear and Planar Defects
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10.1 Linear Defects

10.1.1 Line/Edge dislocation

An edge dislocation is the presence of an additional partial plane of atoms along (conventionally) the end of
a line that characterizes that dislocation (the dislocation line). It is denoted by ?, or the flipped version of
it, pointing to the extra half-plane.

10.1.2 Screw dislocation

This occurs when there is a shear between two layers: the bottom layer is pulled away from the structure,
and the top layer is pushed in towards the structure. The shift is one atomic distance.

10.1.3 Mixed Edge/Screw Dislocation

This is a mixture of the two.

10.2 Burgers Vector, Imaging Defects

The Burgers vector is a way of characterizing a defect. If the vector is perpendicular to the structure, it is
an edge dislocation; if it is parallel, it is a screw dislocation; if in between, it is a mixture. The magnitude
indicates the degree of deformation. When going around in a loop around the defect (e.g. up, left, down,
and right the same number of atoms along the lattice), the displacement between the end point and the start
point after going in an apparent loop is the Burgers vector. The Burgers vector has a magnitude given by

a

2
|uvw| (10.1)

where a is the lattice parameter, and |uvw| represents the slip direction which is also the close-packing
direction.
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We can observe dislocations by direct imaging. They can actually improve mechanical properties by a
process known as “work hardening”, essentially adding a deformation to increase the resistance to future
deformations.

10.3 Planar Defects

Any surface of a material is a defect, because surface atoms are in higher energy states than internal atoms.
This is because they lack some of the bonds due to nearest neighbours not being present, therefore there
is some latent energy on the surface. This surface energy can be tapped so that the materials are used as
catalysts. A catalyst increases the rate of a chemical reaction without being consumed. Active sites on
catalysts are normally surface defects.

10.3.1 Grain Boundaries

These are 2D defects that separate small grains. In a single crystal, the periodic arrangement of atoms is
perfect, but a mismatch in the faces leads to a grain boundary. The higher the angle of the grain boundary,
the greater the defect. A small angle grain boundary (e.g. a tilt boundary) can be considered to be an array
of edge dislocations. An array of screw dislocations leads to a twist boundary (0 or parallel misalignment).



A twin boundary is a special misalignment in which atoms on one side of the boundary mirror those on
the other side. Mechanical twins are produced by shear force (in BCC and HCP), and annealing twins are
produced by heat treatment (in FCC).

10.3.2 E↵ects of Grain Boundaries

Grain boundaries change mechanical properties (make fractures likely, interrupt the movement of disloca-
tions), electrical properties (good place to scatter or inhibit the motion of electrons). They are also sites for
atom di↵usion. Grain boundaries can be directly imaged.

Another fault in materials can be due to a deviation in the stacking sequence of atomic planes. This can
convert an FCC to an HCP structure, which may alter the material’s properties. Stacking faults look almost
exactly like twins under an electron microscope.
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Math is coming. (Yay)

Di↵usion is the transport of mass or materials by atomic motion. This can occur in gases and liquids via
Brownian motion (not being covered), and in solids via vacancy di↵usion or interstitial di↵usion.

An example of a process using di↵usion is case hardening, in which carbon atoms are di↵used into iron
atoms at the surface. This results in a case that is hard to deform (carbon atoms prevent plane shearing)
and hard to crack (the surface is in compression). Another process that uses di↵usion is doping, which is
used in semiconductors; rich layers of P on the surface of silicon, when heated, causes doped semiconductor
regions.

Di↵usion is bidirectional; one material di↵using into a second one means the same will happen in reverse.
This creates a concentration gradient, in which atoms move from high to low concentration. Self-di↵usion,
in which atoms within one material exchange positions, is also possible.

How does this motion happen? For di↵usion to occur, the adjacent site needs to be empty (a vacancy
or interstitial), and there must be su�cient available energy for bonds to be broken and lattice distortion
overcome. This leads to two major mechanisms, in which atoms adjacent to a vacancy move into it (va-
cancy di↵usion) or in which small atoms that were interstitial impurities change interstitial sites (interstitial
di↵usion). This is faster than vacancy di↵usion; generally, smaller species can di↵use faster.

11.1 Di↵usion Model

We are interested in mathematically modelling di↵usion flux. Over an area A, over a time t, if a net M
atoms pass through then the flux is M

At . In general,

J =
1

A

dM

dt
(11.1)

Flux can be measured for vacancies, host atoms, and impurity atoms. Di↵usion can be modelled in general
as bidirectional outward flux, which follows a concentration gradient; atoms flow from higher to lower
concentrations. This gives us Fick’s first law.

Jx = �D
dC

dx
(11.2)
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12.1 Chapter 1

Definitions of materials science, materials engineering. Materials tetrahedron - performance, structure,
processing in engineering, structure, properties, processing in science.

Three major classes of materials - metals, ceramics, polymers. Mostly we’re discussing metals and ceramics.
Should know what it is that defines a material to be a metal vs a ceramic, at an atomic structure level. If
we stack things together, why will we get a metal, etc.

There are six important properties of solid materials - mechanical, electrical, magnetic, thermal, optical, and
chemical deterioriation.

12.2 Chapter 2

We looked at the strcture of the atom, and the trends in IP, EA, c, etc. We also looked at the types of
bonding - ionic, covalent, metallic, secondary. What are the implications for the properties if a certain type
of bond is used?

Quick recap of Bohr vs QM model of the atom. What are the di↵erences? Characterizing electrons via
quantum numbers - n (orbital), l (angular momentum), m (magnetic), m

s

(spin). Pauli exclusion. Can use
that to fill the shells of real atoms. Order in which they’re added is along diagonals; 3p then 4s, 3d then 4p
then 5s, etc. Stable electronic configurations have complete s and p subshells, and are usually inert.

Electronegativity is a measure of how likely an atom is to take up or give up an electron. (IP+EA)/2. Based
on that, understand the trends in the periodic table.

Ionic bonding, typically between + and - ions. Electron transfer, large electronegativity di↵erence. Coulom-
bic interaction based. Use that to characterize system energy, get �A/r+B/rn. Gives you a bonding curve,
from which lots of information can be extracted.

Covalent bonding - sharing of electrons, incomplete transfer of electrons. Happens when electronegativies
are the same or comparable.

Metallic bonding - metal ion cores pair with a sea of valence electrons. Primary bonds for metals and their
alloys. Large R and small electronegativity.

Every bond is somewhere between ionic and metallic (covalent in the middle). Percent ionic character =
1� exp(0.25(�a � �b)2) (� are electronegativities).
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12.3 Chapter 3

Metal and Ceramic Structures. How do macroscopic properties and microscopic properties relate? Lattice,
basis, crystal structure, unit cell, coordination number. Describe hard sphere packing, define densities in
di↵erent dimensions.

The unit cell - smallest component of the crystal that can be stacked together (with only translational
motion) to reproduce a whole crystal.

Crystal structure built from an infinite array of mathematical points (a lattice) decorated by a basis/motif.
This describes the periodic arrangement of atoms in a crystal. To do this we can define a unit cell geometri-
cally, with parameters a, b, c,↵,�, �. In general there aren’t any relationships between these. We can come
up with 7 crystal classes based on similarities/di↵erences between these parameters. Know the seven. 14
Bravais lattices based on the types of unit cell each one can have - primitive, body-centered, face-centered,
side-centered.

Use these unit cells for analysis - can relate lattice constants to radii. Atoms per unit cell, volume, APF,
densities, close-packed directions. We know how to do all of these. It’s all geometry. Put down the standard
a = kR equations for BCC, FCC, etc.

BCC - a = 4R/sqrt(3). At/u = 2, coord number = 8, APF = 0.68 FCC - a = 2sqrt(2)R. At/u = 4, coord
number = 12, APF = 0.74, stacking ABCABC...

Draw out the close-packing layers with top-down view if stuck.

Di↵erence between HCP and FCC. Know that HCP exists and how it relates to FCC, but probably not
much about HCP.

How to define point coordinates? How far along each unit vector (vector corresponding to each lattice
parameter).

Crystallographic direction - start at origin, determine length of projection in each of 3 axes, reduce to lowest
integers, enclose in square brackets. Negative with bar.

Planes - take reciprocal of intersection points, find LCM to convert all to integers. Find out how to
draw/understand a plane from Miller indices, how to make a Miller index from a drawing.

Densities - can make them on multiple dimensions.

How do we find out about crystal structure? Di↵raction. Bragg’s law, diagram. Unless otherwise specified,
n = 1. Remember 2 theta.

In the second part of the structure chapter, we started to deal with crystal structures consisting of multiple
possible atoms. Should know where tetrahedral and octahedral voids are. Cation/anion radius ratio gives a
likely coordination number. Table is given on the exam.

In ionic solids, we can add up all the Coulombic interactions and get a Madelung constant.

12.4 Chapter 4

Defects - can happen in each dimension (0, 3).

Vacancies - missing atoms from lattice sites. There are Nv = Nexp(�Q/kT ) of them. Alloys are also
interstitial defects - either mix Cu substitutionally in Ni, or C in the interstitials of Fe.



H-R Guides for Mixing.

What’s a Burgers vector
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Di↵usion is a process by which atoms of one type are transported through another type of material. This
can take the form of interdi↵usion, vacancy di↵usion, or interstitial di↵usion in solids, and Brownian motion
in liquids or gases. Di↵usion is important for the creation of various kinds of materials, such as steel; iron
is hardened by di↵using carbon atoms into it at its surface. This leads to improved mechanical properties.
The carbon atoms take up interstitial sites on the surface of iron. This makes the creation of dislocations
by applying a shear on the surface-level planes more di�cult, as the carbon atoms lock them in place (C
interstitials between the layers of Fe make relative motion di�cult). The additional carbon interstitials
also place the surface in compression, which makes it less brittle. Di↵usion is also used in the creation of
semiconductors. To create an n-type semiconductor, Si is doped with P (an element with a higher number
of valence electrons - specifically, it is pentavalent - that can give a free electron to the surface) in order to
increase conductivity in specific regions. This is done by placing the phosphorus on the surface of the silicon,
and heating it to cause di↵usion at a measurable rate.

Consider atoms going through a plane. There is a net number of atoms going through it per unit time, which
is a net flux.

Flux can be measured for vacancies, host atoms, and impurity atoms. The net flow of atoms is caused by a
system wanting to increase its own entropy. It is governed by Fick’s first law. Assume a dilute intersitial solid
solution, with parent atoms (A) in a cubic lattice and solute atoms (B) in the interstices without distortion.
Assue the solution is su�ciently dilute that every interstitial atom is surrounded by 6 vacant interstitial sites.
The concentration of B atoms varies in one dimension (x) and B atoms can di↵use throughout the material
to make concentration uniform throughout. Di↵usion can then be modelled as a set of random processes.

13.1 Mathematical Model

Consider atoms going through a plane. There is a net number of atoms going through it per unit time, which
is a net flux. Specifically, if we have nR atoms moving from left to right and nL atoms moving from right to
left, each with mass ma, we can say the flux is the mass flow per unit area and unit time:

J =
(nR � nL)ma

At
(13.1)

We can make this into a di↵erential expression in the total net mass flow over a small time period:

J =
1

A

dM

dt
(13.2)

J has units of kg/m2s.

Net flux is caused by a di↵erence in the concentration profile; specifically, it follows the negative of the
concentration gradient, Jx / �dC

dx . We can put in a proportionality constant to get Fick’s first law:
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Jx = �D
dC

dx
(13.3)

Flux can be measured for vacancies, host atoms, and impurity atoms. The net flow of atoms is caused by a
system wanting to increase its own entropy.

Assume a dilute interstitial solid solution, with parent atoms (A) in a cubic lattice and solute atoms (B)
in the interstices without distortion. Assue the solution is su�ciently dilute that every interstitial atom
is surrounded by 6 vacant interstitial sites. The concentration of B atoms varies in one dimension (x,
without loss of generality) and B atoms can di↵use throughout the material to make concentration uniform
throughout. Di↵usion can then be modelled as a set of random processes.

At plane 1, let there be n
1

B atoms per m2, and at plane 2, let there be n
2

B atoms per m2. Flux from 1
to 2 in one second is given by an expression linear in ni. Since the net flux is from left to right, we can say

JB =
1

6
�B(n1

� n
2

) (13.4)

(13.5)

(rest of the derivation to be added later; it’s supposed to be in the lecture notes but i t i s n ’ t)

The di↵usion coe�cient can be found using the usual Arrhenius equation.

13.2 Types: Interdi↵usion and Self-Di↵usion

13.2.1 Interdi↵usion

In interdi↵usion, atoms of one type di↵use into the bulk of the other element present, and the reverse also
happens at the same time. Based on this phenomenon, we can say that atoms tend to move from regions of
high concentration to those of low concentration.

13.2.2 Self-Di↵usion

In self-di↵usion, atoms of one type exchange positions within a crystal. If we note the positions of specific
atoms at a certain time, and observe those atoms at later times, they may have changed position. For atoms
to migrate within an elemental solid, there must be a vacant site available, and there must be su�cient
available energy to break the bonds holding the atom in place and to resist lattice distortions. There are
two major mechanisms by which this can happen: vacancy di↵usion and interstitial di↵usion.

13.2.2.1 Vacancy Di↵usion

This occurs when an atom is adjacent to a vacant lattice site and moves into it. Vacancy di↵usion requires
first that the moving atom breaks its bonds with its surrounding atoms. Then, it must overcome the lattice
distortions due to the vacancy, “pushing back” the surrounding atoms that have moved towards the vacant
space to compensate for the absence of an atom. After this, the atom can move into the vacant site.



13.2.2.2 Interstitial Di↵usion

This occurs when an interstitial atom moves from one interstitial site to another. This mostly occurs with
smaller atoms that can be impurities in a larger crystal structure, such as carbon, hydrogen, and oxygen.
Interstitial di↵usion is faster than vacancy di↵usion for this reason; having smaller atoms move is faster.
Additionally, there are many more interstitial sites available than vacancies in a crystal.
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Smaller things di↵use into larger things even at moderately higher temperatures.

14.1 Example of using Fick’s first law

By di↵using H
2

through a palladium sheet, it can be purified. Compute the number of kilograms of hydrogen
that pass per hour through a 6mm thick sheet of palladium with an area of 0.25m2 at 600oC.

Assume D = 1.7⇥ 10�8m2/s, CH = 2.0kg/m3, CL = 0.4kg/m3, and that steady state conditions have been
achieved.

J = �D
@C

@x
= �d

�C

�x
(14.1)

M ��DAt
�C

�x
(14.2)

Numbers tell us that M = 4.1⇥ 10�3

kg
h .

14.2 Steady-State Di↵usion

Fick’s first law holds in the case of steady-state di↵usion, where the concentration profile is time-invariant
(more specifically, where dC

dt = 0). At steady-state, we can therefore say that the rate of di↵usion in one
direction is exactly equal and opposite that in the other direction. If there is a net flux in one direction (e.g.
atoms entering the region in the +x direction), there must be an equal and opposite flux as well (e.g. atoms
exiting the region in the +x direction). We can therefore apply Fick’s first law to this situation:

Jx = �D

✓
dC

dx

◆
(14.3)

Jx,left = Jx,right (14.4)

)
✓
dC

dx

◆

left

=

✓
dC

dx

◆

right

(14.5)

In the limit where the size of the region in the x direction goes to 0, we know that the concentration gradient
to its left and right must be equal. Therefore, the concentration gradient does not vary with position:
d
dx

dC
dx = 0.

This linearity in the steady-state case allows us to simplify problems involving di↵usion. Let there be two
elements at concentrations C

1

and C
2

, at positions x
1

and x
2

. Because of the constant slope, we can easily
find dC

dx :
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dC

dx
⇡ �C

�x
=

C
2

� C
1

x
2

� x
1

(14.6)

from which we can find the rate of di↵usion based on the di↵usion constant, which comes out of the Arrhenius

equation D = D
0

e�
Q

d

k

B

T . This tells us the rate of di↵usion is dependent on temperature exponentially.

The rate of di↵usion is also dependent on crystal structures; atoms can more easily di↵use through more
open structures, even if the more closed structures are at higher temperatures.

14.3 Example Problems: Steady-State Di↵usion

14.3.1 Example 1

If butyl rubber gloves, 0.04cm thick, are used to handle methylene chloride (di↵usion coe�cient of these two
is 110⇥ 10�8cm2/s) with surface concentrations C

1

= 0.44g/cm3 and C
2

= 0.02g/cm3, find the steady-state
rate of di↵usion of methylene chloride into butyl rubber.

J = �D
dC

dx
= �110⇥ 10�8cm2/s⇥ 0.02g/cm3 � 0.44g/cm3

0.04cm
= 1.16⇥ 10�5

g

cm2s
(14.7)

14.3.2 Example 2

At 300o C, the di↵usion coe�cient and activation energy for Cu in Si are 7.8⇥10�11m2/s, and 41.5kJ/mol
respectively. What is the di↵usion coe�cient at 350o C?

D(T ) = D
0

e�
Q

d

k

B

T (14.8)

lnD(T ) = lnD
0

� Qd

R

1

T
(14.9)

(14.10)

We can substitute in two di↵erent temperatures T
1

and T
2

to this relation,

lnD
2

= lnD
0

� Qd

R

1

T
2

(14.11)

lnD
1

= lnD
0

� Qd

R

1

T
1

(14.12)

) ln
D

2

D
1

=
Qd

R

✓
1

T
1

� 1

T
2

◆
(14.13)

We can exponentiate both sides and therefore find D
2

in terms of D
1

,
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D
2

= D
1

e
Q

d

R

⇣
1
T1

� 1
T2

⌘

(14.14)

Substitute in the known values of D
1

, Qd, R, T
1

, T
2

(while changing the temperatures to Kelvin) to get

D
2

= 15.7⇥ 10�11m2/s (14.15)

14.4 Life is Complicated

Fick’s first law is a linear approximation that does not necessarily hold. It works in the case of steady-state
di↵usion, where the relative concentrations of the elements stay the same even after di↵usion. This does not
really work, since we don’t have infinite quantities of everything with which to maintain a steady state. We
can look at transient di↵usion by considering concentration as a function of x and t, which gives us Fick’s
second law:

dC

dt
= D

@2C

@x2

(14.16)

We can get this by taking the first derivative of Fick’s first law with respect to x:

dJ

dx
= � d

dx

✓
D

dc

dx

◆
(14.17)

Also, applying conservation of mass:

�dC

dt
= �Jr � Ji

dx
=

dJ

dx
(14.18)

This tells us that the fluxes to the left and right are directly related to the change in concentration over
time. Substituting this into the x derivative of Fick’s law from above, we get

dC

dt
= D

d2C

dx2

(14.19)

This is a partial di↵erential equation, which means boundary conditions are required to solve it. (Fun fact:
this is exactly the same setup as the heat equation, where the first derivative of a quantity in time is directly
proportional to its second derivative in space.) For example, consider the case of copper di↵using into a bar
of aluminium (assumed to be a semi-infinite solid). We know that at t

0

, C = C
0

inside the bar of aluminium.
At t > t

0

, C(x = 0) = Cs (some known concentration of copper), and C(x = 1) = C
0

(an infinite-length
bar will have no copper di↵usion at an infinite distance away from the copper source).



Solutions exist only when the boundary conditions are physically meaningful. Generally, if we assume these
boundary conditions are that a solid is semi-infinite has its surface concentration held constant at C

0

and
has some other species di↵use into it at concentration Cs, we can make a generalized solution to the partial
di↵erential equation defined by Fick’s second law:

C(x, t)� C
0

Cs � C
0

= 1� erf

✓
x

2
p
Dt

◆
(14.20)

Solutions to the transient equation are usually of the form of error functions erf(z) = 2p
⇡

R z

0

e�y2

dy. In

general, this function is not integrable, but using numerical approximation methods we know standard values
of this integral, which can be looked up in a table.

Suppose it is desired that a specific concentration C
1

is achieved in an alloy at a specific x; then, we can
apply the solution derived above:

�C
1

� C
0

Cs � C
0

= 1� erf

✓
x

2
p
Dt

◆
= const (14.21)

x

2
p
Dt

= const (14.22)
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Cx � C
0

Cs � C
0

= 1� erf

✓
x

2
p
Dt

◆
(15.1)

For a concentration drop of 0.3�0.1
0.9�0.1 = 0.25, we can look up the value in the erf table for 0.75, and get

x

2
p
Dt

= 0.814 =) t = 1.13⇥ 105s (15.2)

for a given D that characterizes the system (and was likely given in the problem).

15.1 Example Problems: Transient Di↵usion

15.1.1 Example 1

Copper di↵uses into a bar of aluminium. 10 hours at 600o C gives a certain desired C(x). How many hours
would it take to get the same C(x) if the process were carried out at 500o C? D

500

= 4.8 ⇥ 10�14m2/s,
D

600

= 5.3⇥ 10�13m2/.

We know that

C(x, t)� C
0

Cs � C
0

= 1� erf

✓
x

2
p
Dt

◆
(15.3)

Since the left hand side remains the same, because the only starting condition that changes is the temperature,
we can set the right hand sides equal for the two cases:

1� erf

✓
x

2
p
D

500

t
500

◆
= 1� erf

✓
x

2
p
D

600

t
600

◆
) D

500

t
500

= D
600

t
600

(15.4)

t
500

=
5.3⇥ 10�13

4.8⇥ 10�14

⇥ 10h = 110.4h (15.5)

15.1.2 Example 2

During a steel carburization process at 1000oC, there is a drop in carbon concentration from 0.5 at% to 0.4
at% between 1 mm and 2 mm from the surface (�-Fe at 1000oC).



Estimate the flux of carbon atoms at the surface given: Do = 2.3 ⇥ 10 � 5m2/s for C di↵usion in �-Fe,
Qd = 148kJ/mol, ⇢��Fe = 7.63g/cm3, and AFe = 55.85g/mol. If we start with C

o

= 0.2 wt% and
C

s

= 1.0 wt%, how long does it take to reach 0.6 wt% at 0.75 mm from the surface for di↵erent processing
temperatures?

15.2 Coulombic Interactions

Inter-ionic attractions and repulsions a↵ect di↵usion. Smaller cations will usually di↵use faster, but analogous
to charge neutrality required for defect formation, each ion will need a counter charge to move with it. This
can take the form of a vacancy, impurity, a free electron or a hole. Weaker bonds are better for faster
di↵usion.

15.3 Phase Diagrams

A phase is a homogeneous portion of a system that has uniform physical and chemical characteristics. Phase
diagrams are plots of various quantities (pressure/temperature, temperature/concentration, etc) over which
areas on the graph represent various phases. Most phase diagrams in this class will stay at constant pressure.
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We can determine phase composition in a 2-phase region by noting where the tie line (hold temperature
constant, vary composition) intersects the liquidus and solidus lines, i.e. where the line crosses the phase
boundaries. We can then read o↵ the compositions at the boundaries. The tie line, in general, connects the
phases that are in equilibrium with each other. It can also be called an isotherm.

To determine the phase amount in the 2-phase regions, we can find a mass percentage from an atomic
percentage as we’ve been doing before. Let the starting concentrations in the liquid phase be Co, let the
liquidus line/tie line concentration be Cl, and let the same quantity at the solidus line be Cs. Then the mass
fraction of the liquid phase is

Wl =
Cs � Co

Co � Cl
(16.1)

and for the solid phase

Ws =
Co � Cl

Cs � Co
(16.2)

This tells us that Wl (ratio) of the mass at this intermediate composition is liquid, and Ws is solid.

We can analyze the impact of these partial phases on the microstructures. In equilibrium cooling, the
material is cooled very slowly so that phase equilibrium can be maintained during the cooling process. At
high temperatures, the material starts as a homogeneous liquid, then the liquidus line is reached. The ↵
phase begins to nucleate, and we have a partial phase as determined by the composition and mass fraction.
The cooling curve here follows the tie line, being briefly almost completely flat. After a certain point, the
solidus line is reached and the cooling curve returns to the usual expected value.

However, in real life, we don’t cool at equilibrium because that is painfully slow. We want to cool a sample
at a high rate relative to the rate of di↵usion. When we do this, we get a cored structure, where the Cs

changes as we solidify; initially, there is a high concentration at the center, and as the radius around which
solidification is occurring increases, the concentration reduces. Although on average (by conservation of
mass) the composition is the same either way, the distribution of the smaller element (say Ni) will change,
with the first ↵ to solidify having a greater concentration than the average, and the last ↵ to solidify having
a lower concentration than the average.

The eutectic point is where the two liquidus lines corresponding to the ↵ and � phases meet. The eutectic
is an invariant point. The eutectic reaction goes from a liquid at high temperatures to the two solids ↵ and
�, or vice versa.
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On the eutectic phase diagram, suppose we go through a temperature transition (cooling). We go from a
liquid to a homogeneous mixture of ↵ and �, which has a lamellar or layered structure.

17.1 Real Life Is Sad

There are two types of phase transformations: congruent ones, in which there is no change in composition
upon transformation, and incongruent ones, in which at least one of the phases goes through a composition
change. Intermediate or intermetallic compounds are an example of an incongruent phase transformation,
consisting of discrete metal compounds rather than solutions; they have a distinct chemical formula. Their
phase diagram can be considered to be two simpler phase diagrams put together.

Sometimes, intermediate solid solutions have phase diagrams that don’t mix as well, making intermediate
phases. These translate to intermediate regions on a phase diagram.
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These intermediate phases can be classified into two major types of reactions; eutectoid and peritectic.
Eutectoid reactions are characterized by one solid phase turning into two other solid phases upon cooling
(this is reversible), and peritectic reactions have one solid phase transforming into a liquid and di↵erent solid
phases upon heating (this is reversible too).

Ceramics can also have phase diagrams, which can be simple, or incredibly complicated. In general, they
have three axes, represented as a sort of vector field or a colour map along the three sides of an equilateral
triangle.

17.2 Gibbs phase rule

P + F = C +N (17.1)

The number of phases present plus the degree of freedom (number of externally controllable parameters: T,
P, C) is equal to the number of components plus the number of non-compositional variables (temperature
and pressure).

Consider a Cu-Ag phase diagram. This gives us C = 2, N = 1 as temperature is the only external variable,
P = 2 as there are two phases present. Therefore the degree of freedom is 1. When only one phase is present,
the degree of freedom is 2. The degree of freedom is the number of variables required to fully define a system.
At the maximum degrees of freedom, such as at a eutectic point, everything about the system needs to be
defined.

This is a good point to point out the di↵erence between a eutectoid point and a eutectic point. A eutectic
point is a minima, in terms of concentration, of the temperature of the liquid phase; moving to the left or
to the right at this point would move the material into either of two solid phases. A eutectoid point is ne
at which the material undergoes a eutectoid transition, that is, one in which one solid phase transitions into
two or more solid phases.

The Gibbs phase rule can be very simply applied. Consider this example (from homework):
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C is the number of components; in this case, only H
2

O is present, so C = 1. There are two non-compositional
variables (pressure and temperature), so N = 2. Therefore P + F = 3.

At point A, P = 1 due to one phase being present, so F = 2. At point B, P = 2 due to two phases being
present, so F = 1. At point C, P = 3 due to three phases being present, so F = 0.

(To do: add something motivating the Gibbs phase rule. Why is it important that there is a degree of
freedom at a point)

17.3 The Iron-Carbon System

Iron has three distinct solid phases based on its temperature:

The ↵ phase of iron or of an iron-carbon mixture with concentration less than that of Fe
3

C is referred to as
ferrite, and the � phase is called austenite.
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The FCC � phase has the highest carbon concentration without having an Fe
3

C component, at 2.14% as
can be read o↵ the graph (at that concentration and around 1100oC). This is a higher concentration than
the BCC ↵ phase, at only 0.022% wt C. This makes sense because of FCC’s closer packing, meaning more
interstitial sites for carbon atoms. (citation needed).

At the eutectoid point, the following reaction takes place:

�(0.76wt%C) =↵ ↵(0.022wt%C) + Fe
3

C(6.7wt%C) (17.2)

This changes the � phase to a lamellar structure, consisting of austenite surrounding ↵ phase ferrite strands;
this is the characteristic structure of pearlite. The layered structure forms for the same reason as the eutectic
structure (which may be why they’re named similarly).

17.3.1 Hypoeutectoid Alloys

Below the eutectoid composition, proeutectoid ferrite is eventually formed along with the eutectoid structure.
At the start, � Fe is present at high temperature; as this is cooled at a composition less than the eutectic
point, the iron passes through the left side of the point, with a phase composition of ↵ + �. Here, the ↵
phase nucleates at the boundaries of the � phase. As the temperature is reduced, the eutectoid isotherm
is crossed, forcing the rest of the � phase into the eutectoid structure. Therefore the final result is some
fraction pearlite and some fraction proeutectoid ferrite (the nucleated ↵ phase at the boundaries).



17.3.2 Hypereutectoid Alloys

Above the eutectoid composition, proeutectoid cementite is eventually formed along with the eutectoid
structure. This comes from the same logic as the hypoeutectoid case, with cementite (Fe

3

C) forming at the
boundaries of the � phase.

In both cases, the ratio of the proeutectoid component to the eutectoid can be found using the tie line.

Lecture 17-5
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By adding di↵erent alloying elements, the eutectoid temperature can be dramatically increased or decreased.
The composition at which the eutectoid is can also change based on the concentration of alloying elements.
This is useful processing information that can be used to control the microstructure.

18.1 Phase Transformations

Transformations on a phase diagram are not instantaneous.

Phase transformations have two steps: nucleation, in which nuclei or seeds act on templates on which crystals
grow, and growth, in which the nucleated species grow until a new equilibrium is attained in the system.
For the nucleus to form, the rate of addition of atoms to the nucleus must be faster than the rate of loss.
The driving force to nucleate increases as we increase �T , so there are two major paradigms for nucle-
ation: supercooling at eutectoid/eutectic transformations, and superheating at peritectic transformations.
Small supercooling corresponds to a slow nucleation rate, few nuclei, and large crystals; large supercooling
corresponds to a rapid nucleation rate, many nuclei, and small crystals.

Kinetics is the study of reaction rates of free transformations. To determine this, we measure the degree of
transformation as a function of time. That’d be nice, if we knew what the degree of transformation was.
There are many ways to find this, such as via X-ray di↵raction, measurements of electrical conductivity, or
measurements of the propagation of sound waves.

Nucleation comes in two types: homogeneous, in which nuclei form in the bulk of liquid metal (although
this requires considerable supercooling between 80 and 300 degrees C), and heterogeneous, which is much
easier, in which nuclei form on the mold wall or impurities in the liquid phase. This only requires slight
supercooling, between 0.1 and 10 degrees C.

In solid state reactions, the factor hindering nucleation is the surface energy, which grows proportional to
r2. Once the new surface has been grown, nucleation is energetically favourable because bulk energy takes
over.

Net energy �G is

�G =
4

3
⇡r3�Gv + 4⇡r2� (18.1)

(18.2)

Take an r derivative to find a critical radius,
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4

3
⇡(�Gv)3r

2 + 4⇡�(2r) = 0 (18.3)

rc = � 2�

�Gv
(18.4)

�G(rc) =
16⇡�3

3(�Gv)2
(18.5)

This tells us how the nuclei will change size. Define �GT = �GS + �GV , (surface and volume free
energy changes). Graphing the surface and volume energy changes, as well as the total energy changes,
demonstrates that a phase transformation is energetically favourable after this critical radius, that is, after
the energy barrier of the material has been overcome:

We can rewrite the total energy in terms of the heat of fusion (energy released upon solidification),

�Gv =
�Hf (Tm � T )

Tm
(18.6)

With this definition, we can find the critical radius,

rc = � 2�

�Hf

✓
Tm

Tm � T

◆
(18.7)

and therefore the energy barrier in terms of heat of fusion,



�G⇤ =
16⇡�3

3�H2

f

✓
Tm

Tm � T

◆
2

(18.8)

As temperature decreases, both rc and �G⇤ become smaller, which makes a phase transformation more
energetically favourable. Liquid instability is present at lower temperatures for this reason.

Di↵usion is also a significant e↵ect; faster di↵usion between phases leads to more collisions between atoms.
The frequency of atoms sticking together is directly related to di↵usion. This manifests itself in that its
frequency is proportional to the Arrhenius expression, as usual. Combining the liquid instability and the
e↵ects of di↵usion,

dN

dt
= Kn ⇤ vd = K

✓
exp

✓
��G⇤

kT

◆
exp

✓
�Qd

kT

◆◆
(18.9)
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Tip from the iClicker questions: If a pearlite structure were slowly heated to just below the eutectoid
temperature for 100 hours, the microconstituents would coarsen.

19.1 Phase Transformation Rates

n⇤ / exp

✓
��G⇤

kT

◆
(19.1)

vd / exp

✓
�Qd

kT

◆
(19.2)

These are the separate expressions for liquid instability and di↵usion rate that we combined last time into
a rate of nucleation. Now we can look at the growth phase.

In growth, nuclei increase in size. Halfway through growth, a maximum rate is reached, after which the
amount unconverted is less so the rate slows down. This is described by the Avrami equation,

y = 1� exp(�ktn) (19.3)

Typically, we characterize this by the maximum rate, which is achieved this average point.

The rate of growth has temperature dependence, which follows (you guessed it) the Arrhenius equation. We
can use this curve, combined with the nucleation curve, to characterize the overall rate of a transformation.

An initial rapid temperature change (quick cooling) followed by an isothermal process can be characterized
by an isothermal transformation diagram, which is a concentration/time graph. These allow us to make
TTT (Time-Temperature-Transformation) plots; these are graphs of temperature over time, on which the
di↵erent curves characterize transformations from 0% to 100% completion. We get these by flipping the
isothermal transformation diagram (swapping the axes, then vertically flipping it).



For example, consider pearlite formation. For this to happen, ↵ and cementite have to both be nucleated.
To do this, an Fe- and C-rich region must be created. (something more here? I had a point but it’s only
in what he said, not the slides.) If the initial quenching goes to a higher temperature, the microstructure is
coarser, and if it goes to a lower temperature, the microstructure is finer. The lower the temperature we go
to, the faster nucleation happens.

Other steel microstructures - we can get microstructures that don’t exist in equilibrium. Bainite is needles
or plates consisting of cementite and ferrite that are much finer than the already-fine pearlite. Martensite
is formed when steel is quenched rapidly enough to prevent carbon di↵usion, and makes a body-centered
tetragonal structure. To make martensite, quenching has to be so fast that carbon di↵usion is not appreciable.
This transformation happens roughly at the speed of sound. Spheroidite is formed when pearlite or bainite
structures are heated below the eutectoid temperature for an extended period of time.

19.2 Examples

Consider an iron-carbon alloy of eutectoid composition that starts at 760o C. Specify the nature of the final
microstructure (micro-constituents and approximate percentages) given the following heat treatments:

(add in the slide)

1. Rapidly cool to 350o C, hold for 104s, quench to room temperature. In this case, we get pure bainite.

2. Rapidly cool to 250o C, hold for 102s, quench to room temperature. In this case, we get pure martensite.

3. Rapidly cool to 650o C, hold for 20s, cool to 400o C, hold for 103s quench to room temperature. In
this case, we get 50% bainite and 50% pearlite, because the pearlite transformed in the first step is not
changed by the A-B transformation.

TTT diagrams at di↵erent compositions are a thing. We can move to a hypereutectoid composition, which
provides new curves on our temperature/time plot.

We also have to keep in mind that cooling from one temperature to another that is not room temperature (i.e.
cooling that is not quenching) is rarely discrete. We need to describe a continuous cooling transformation.
A whole bunch of curves are shifting and changing in space.

Lecture 19-2
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20.1 Continuous Cooling

We can draw transformation curves for systems, which are straightforward at constant temperatures. At
nonconstant temperatures, the slope is a bit sharper. We can draw di↵erent TTT curves for this nonconstant
temperature, the curves are shifted down and to the right. This is now a continuous cooling transformation
(CCT) diagram. We can read microstructures o↵ the CCT diagram in the same way as the TTT one.
Usually, no bainite is formed in continuous cooling.

Martensite is the most resistant to deformation by surface indentation among martensite, spheroidite, coarse
and fine pearlite. This is because martensite has a finer cementite microstructure, which makes it more
di�cult to move defects around.

20.2 Mechanical Behaviour Under Phase Transitions

In a regime with pearlite and ferrite (more carbon content on the x-axis), there is an increase in the tensile
strength, yield strength, and Brinell hardness, due to an increased amount of cementite. The ductility
decreases with this increase in strength. The processing also a↵ects properties; a fast quench leads to high
strength but low ductility, and a slow quench has the reverse. With increased percent Fe

3

C, the Rockwell
hardness goes up and levels o↵, but the tensile and yield strengths can drop fast.
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There are general trends in steels, that are much better described in the slides than I can do:

Shape-memory alloys are an example of a phase transformation in action. Following deformation, these
materials have the ability to return to their pre-deformed size and shape upon application of heat. They can
recover significant deformations in this way, just by heating it up and having it undergo a phase transfor-
mation. An application of these is for stents, devices to open up arteries. These cannot be inserted directly
into the artery easily, so they are compressed and inserted, whereupon body heat drives it through a phase
transformation which lets it pop open.

20.3 Phase Transformations, Summary

Know:

• Kinetics of solid-state reactions (what is the Avrami equation, what are nucleation and growth, how
do surface and volume energies a↵ect nucleation, how do we characterize reaction rates)

• Isothermal transformations

• TTT plots and relations to reaction rates (what is the composition of a sample that undergoes a specific
set of temperature transitions over specific times)

• Microstructures of Fe-C systems under di↵erent cooling conditions (all the di↵erent constituents - fine
and coarse pearlite, bainite, spheroidite, martensite)

• CCT plots (see TTT)



• E↵ects of processing on mechanical properties (e.g. fine pearlite has the best strength and worst
ductility)

• Phase transformations in polymers - how are they di↵erent from metals

20.4 Mechanical Properties of Materials

These are important because if you neglect them people die, or worse, get sued.

Stress � is pressure due to an applied load. The application of stress causes strain ", the response of a
material due to stress such as physical deformation.

� =
F

A
(20.1)

" =
li � lo
l
0

=
�l

lo
(20.2)

A material can be in four di↵erent types of stress: tension, when it undergoes outward axial forces (is
pulled); compression, when it undergoes inward axial forces (is pushed); shear, when it undergoes transverse
linear forces; and torsion, when it is twisted. Materials do not have the same response to both tension and
compression in general, even though it may seem from the bonding curve that its response would be symmetric
in the direction of axial force. This is due to extrinsic defects; if a crack is present in the material, applying
tension makes the crack grow, and applying compression does not act on the crack. Cables are placed under
simple tension, drive shafts are placed under simple torsion, and bridges undergo simple compression. More
complicated states of stress include biaxial tension, such as a pressurized tank, or hydrostatic compression,
such as an object underwater.

We can define engineering stress and engineering strain, which are the idealized stress and strain using the
above formulas. These are di↵erent from true stress and true strain, which take into account the time-
varying physical shape and size of a material sample. In compression, everything works the same, except
with opposite signs; by convention, stress and strain are negative in compression. In shear, the pure shear
stress is ⌧ = F

A
o

and the pure shear strain is � = tan ✓ where ✓ is an angular deformation.

Stress-strain curves for a system can be derived using tensile test machines, which use load cells to apply
specific values of stress and measure the corresponding strain. Typical tensile specimens are structured like
dog bones, in which the middle section has a smaller diameter. This creates a greater value of stress over
the region of interest.

When stress is first applied, the material first responds elastically, like stretching a spring (which is an
intermolecular bond). This could be linear or nonlinear, but it is necessarily reversible.

Lecture 20-3
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Linear elastic deformation obeys Hooke’s law,

� = E" (21.1)

which indicates direct proportionality between stress and strain, with proportionality constant E, the elastic
modulus. The slope of the stress-strain plot, which is determined by the elastic modulus, depends on the
bond strength of the material; weaker bonds correspond to smaller elastic moduli.

Ceramics have more elastic than plastic behaviour. Neither glass nor alumina undergo plastic deformation.
(Elastic porosity?) In general, the Young’s modulus (elastic modulus) for ceramics is higher than that
for metals, which in turn is higher than for polymers. Other than the elastic moduli, materials have an
elastic shear modulus G with the direct proportionality stress-strain relationship ⌧ = G�, which comes from
putting the material in torsion, and an elastic bulk modulus K which comes from placing the material under
pressure. There is direct proportionality between pressure and the change in volume, P = �K�V

V0
. For

isotropic materials, relationships can be drawn between these and the elastic modulus:

G =
E

2(1 + ⌫)
(21.2)

K =
E

3(1� 2⌫)
(21.3)

where ⌫ is the Poisson ratio, describing the relationship between width and axial strain:

⌫ = ��w/w

�l/l
= �"L

"
(21.4)

This has a negative sign because a positive axial strain corresponds with a negative width strain to roughly
conserve volume, and vice versa. Metals have ⌫ ⇡ 0.33, ceramics have ⌫ ⇡ 0.25, and polymers have ⌫ ⇡ 0.4.
The Poisson ratio as a whole has a range �1  ⌫  1

2

.

In three dimensions, stress has three components, which can be decomposed into one component �
1

along the
loading and two components �

2

,�
3

perpendicular to it. Therefore the total linear strain in the x direction
due to an applied stress with those three components is

"
1

=
1

E
(�

1

� ⌫(�
2

+ �
3

)) (21.5)

In a uniaxial tensile test, �
1

= �
2

= 0, therefore we get the simple relationships "
3

= �3
E and "

1

= "
2

= �⌫"
3

.

For a material under hydrostatic pressure, the stress from all directions is equal, so



P =
�
1

+ �
2

+ �
3

3
=

�tr

3
(21.6)

"
1

=
1

E
((1 + ⌫)�

1

+ 3⌫P ) (21.7)

For volumetric strain,

�V

V
= "

1

+ "
2

+ "
3

= (1� 2⌫)
�
3

E
= 3(1� 2⌫)

P

E
(21.8)

which can be used to calculate the bulk modulus:

K =
E

3(2⌫ � 1)
(21.9)

(I think lecture notes are o↵ by a minus sign)

21.1 Plastic Deformation

Plastic deformation occurs after the elastic region of deformation, when a force large enough to cause planes
of atoms to shear is applied. This ensures that even after unloading, the material will not revert to its
earlier state. This is a permanent deformation, with atoms breaking bonds to form new ones. In metals,
this typically happens at around 0.5% strain.

Plastic behaviour can be modelled as linear elastic with some specific o↵set for the plastic deformation:

(left out the bit about tensile testing machines, not important I think)

The yield strength of the material is the strength required to produce a very slight yet specified amount of
plastic deformation. To find it, we use the strain o↵set method; starting from a strain of 0.002, draw a line
parallel to the elastic region. The point at which the line and the stress-strain curve intersect is the yield
strength �y

Lecture 21-2
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Most materials are not volume-conserving.

The yield point phenomenon occurs when the elastic-plastic transition is abrupt. To analyze this, no o↵set
method is required. The lower yield point is taken as �y, the averaged stress over the lower part of the
plastic regime (since this is less sensitive to testing methods). The jagged curve that is averaged at the
lower yield point occurs when the solute binds dislocations and dislocations proceed to unbind. The yield
strength follows the same trend as Young’s modulus, with ceramics greater than metals which are greater
than polymers.

22.1 Ultimate Tensile Strength

This is the maximum possible engineering stress in tension. In metals, this occurs when necking starts (where
the cross-sectional area decreases causing stress buildup); in ceramics, this is when crack propagation starts.
In polymers, this occurs when polymer backbones are aligned and are about to break.

Past the UTS point, the material is not becoming weaker; rather, necking causes a smaller cross-sectional
area. But because of the engineering stress being independent of the change in geometry, the stress seems
to go down, even though the actual area by now is less. We can introduce true stress and true strain to fill
in this gap,

�T =
F

Ai
(22.1)

✏T = ln
li
l
0

(22.2)

Before necking, engineering and true stress are related as follows:

�T = �(1 + ✏) (22.3)

✏T = ln(1 + ✏) (22.4)

These are derived as follows. For true stress as a function of engineering stress:

�
true

=
P

Ai
=

P

V
li =

P

A
0

li
l
0

= �e

✓
1 +

�li
l
0

◆
= �e (1 + ✏e) (22.5)

and true strain as a function of engineering strain:
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✏
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�li
l

=

Z l
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l
(22.6)

✏
true

= ln l | lfl0 = ln
lf
l
0

= ln

✓
1 +

�l

l
0

◆
= ln(1 + ✏e) (22.7)

Note that this derivation assumes conservation of volume.

An example problem and solution that I was too lazy to transcribe is shown here:



22.2 Ductility

Ductility is a measure of the degree of plastic deformation that has been sustained at the fracture point.
Ductile materials can tolerate large plastic deformations, and brittle ones cannot. Ductility can be measured
by a percentage elongation or a percentage reduction in area; these are given by the following expressions:

%EL =
lf � l

0

l
0

⇥ 100%%A =
A

0

�Af

A
0

⇥ 100% (22.8)

Since crystal slip does not change material volume, these two are usually comparable. Typically materials
are considered brittle if %EL < 5% and ductile if %EL > 5%.

Most metals are ductile at room temperature, but can become brittle at lower temperatures. This is because
the dislocations cannot easily move at lower temperature.

22.3 Resilience and Toughness

Resilience is the capacity of the material to absorb energy when deformed elastically and recover all of it
when unloaded. It is approximated as the area under the elastic stress-strain curve,

Ur =

Z "
y

0

�d" =

Z "
y

0

E"d" = E
"2y
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y

2E
(22.9)

Toughness is the energy to break a unit volume of material, or absorb energy to fracture. It is the approximate
area under the stress-strain curve:

UT =

Z "
f

0

�d" (22.10)

Materials undergo elastic recovery after plastic deformation, which can be exploited to increase their yield
strength. This is called work hardening, strain hardening, or cold working a material.
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Studying how to increase the strength of materials requires knowledge of several di↵erent aspects of materials
science. Dislocations are especially important to strengthening, as they cause rows of applied forces which
potentially strengthen a material all at once.

Slip is defined as plastic deformation induced in a material by the motion of dislocations, and the slip plane
is the crystallographic plane on which the dislocation line traverses. Based on these definitions, we can say
that a dislocation moves along a slip plane in a slip direction perpendicular to the dislocation line. The slip
direction is the same as the direction of the Burgers vector.

23.1 Dislocation Interaction

Dislocations move much more easily in metals than in ceramics. This is because metals do not have directional
bonding, whereas covalent and ionic ceramics are directionally specific. Metals have close-packed directions
along which slip takes place, with a higher dislocation density. By contrast, the dislocation density is much
less in ceramics.

The presence of dislocations puts strain on the lattice. Edge dislocations create tensile and compressive
stresses on the lattice; an increased density just above the dislocation point creates compressive stress, and
the decreased density creates tensile stress just below the dislocation point. Screw dislocations cause pure
shear strain.

Edge dislocations can interact, which creates stress fields that add like electric charges: like ones (in terms
of orientation) repel, and opposite ones attract. Like dislocations repelling means if two dislocation atoms
oriented the same way are adjacent to one another, they create a greater net compressive force in the direction
of both dislocations and a greater net tensile force in the other direction; between the dislocation atoms,
there is a repulsion due to these similarly oriented forces. If oppositely oriented dislocations combine, the
compressive and tensile forces destructively add in both positions, creating a perfect crystal. There is no
net strain from the missing half row of atoms. Dislocations can pile up, creating a “tra�c jam”, when up
against an obstacle such as a grain boundary or twin. This creates a greater stress in the direction leading
away from the obstacle.

Edge dislocations can interact at an angle; at small angles, the similarly oriented like dislocation atoms still
repel one another. However, with di↵erent slip planes and an angle greater than 45 degrees, like dislocations
start to attract. The final configuration that is stable in a collection of similarly oriented dislocation atoms is a
low-angle grain boundary. Similarly, when dislocation atoms have opposite orientation, the unlike dislocation
atoms still attract one another. At angles greater than 45 degrees, however, opposites end up repelling.

23.2 Slip Systems

A slip system is the combination of a slip plane and a slip direction. In metals, the slip plane is the
most close-packed plane, as introducing defects pushes the lattice along the direction of close-packing. For
example, in FCC, the slip plane is (111) and the three other unique planes in that family. Although there



are 8 close-packed planes in the FCC lattice, 4 are parallel to the other 4. Flip all the minus signs in a
plane in the (111) family and the resultant plane is parallel to the original. Within each plane, there are 3
directions; one along each face whose diagonal is on the slip plane.

FCC and BCC have many more slip systems than HCP, which corresponds to the metals having HCP
structures being less ductile.

In single crystals, slip cannot be analyzed as a phenomenon arising from atomic dislocations. Instead, a
slip direction and a slip plane are specified with angles, which allows the shear stress for any arbitrary slip
system to be calculated.

Lecture 23-2
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Even with a pure tensile stress in a material, a shear component may also exist, depending on the geometry
of the crystal and the planes and slip directions. The resolved shear stress is given by

⌧R = � cos� cos� (24.1)

where � and � are the characterizing polar-coordinate angles in the crystal; � is the angle between the
applied stress and the slip direction, and � is the angle between the applied stress and the normal of the
slip plane. cos� cos� is called the Schmid factor. There are multiple slip planes and slip directions, so the
resolved shear stress can be found by taking the angles that give the maximum shear stress. This can come
out of geometry, by first projecting onto a plane that is along the slip direction that is � from the coordinate
system which gives a new area As = A

0

/ cos�. We get

⌧R =
Fs

As
=

F cos�

A
0

/ cos�
= � cos� cos� (24.2)

There are three vectors associated with a slip system: the applied stress, the normal to the slip plane, and
the direction of the actual slip. Say there’s an FCC material. The slip plane is (111) because that’s the
close-packed plane for FCC. The slip direction is the close-packed direction, which is in the h110i family -
this includes [110], [101], [011], [1̄ 1̄ 0], [1̄ 1 0], and so on. h111i is the perpendicular direction to the [111]
plane. So, for an arbitrary state of stress, the Schmid factor can be calculated by taking dot products.

Generally, one slip system is most favourably oriented. To account for this, we introduce a quantity called the
critical resolved shear stress, ⌧CRSS , which is the minimum shear stress required to initiate slip. Dislocation
motions takes place when ⌧R > ⌧CRSS . An applied stress �y is related to ⌧CRSS as follows,

�y =
⌧CRSS

(cos� cos�)
max

(24.3)

24.1 Example Problems

Determine the Schmid factor for an FCC single crystal oriented with its [100] parallel to the loading axis.

We determine that the slip plane is [111], and the slip direction is [110]. We can find angles by taking dot
products: between the slip plane and loading, the cosine of the angle is 1p

3

, and between the dislocation and

loading, the cosine of the angle is 1p
2

. So the Schmid factor is 0.409.

24.2 Deformation by Twinning, Polycrystalline Material

(TBD: deformation by twinning. Understand it and write about it)



Polycrystalline materials are in general stronger than single crystals. Grains elongate in the direction of stress,
but grain boundaries remain intact. If a roll of tantalum is machined and fired at a target, its deformation
on the impacted end can be seen. This shows the anisotropic deformation of materials. (relevance?)

24.3 Methods of Strengthening

24.3.1 Grain Size Reduction

Grain boundaries are barriers to slip. The bigger the misorientation between the two grains, the stronger
the barrier is for slip. A dislocation may easily cross a small-angle boundary, but this is not the case for
large angles. Smaller grain sizes also present more barriers to slip. Grain size may be controlled by a
solidification process and by plastic deformation followed by appropriate heat treatment. This is described
by the Hall-Petch equation:

�y = �
0

+ kyd
�1/2 (24.4)

Basically, this says that if grain size is down, strength is up. This is good for grain sizes ranging from 1mm
to 1µm, but below that, the equation says the strength should go to infinity. This does not square with
experimental data. A number of di↵erent mechanisms have been proposed for why this happens, such as
dislocation-based, di↵usion-based, grain boundary shearing-based, and two-phase based.

The pileup of dislocations at grain boundaries is a hallmark mechanism of the Hall-Petch relationship. Once
grain sizes drop below the equilibrium between dislocations, this is no longer necessarily valid.

24.3.2 Via Solid Solutions

Impurity atoms can distort the lattice and generate stresses. This stress can produce a barrier to dislocation
motion. A small impurity generates local stresses, and stresses can concentrate at dislocations. Small and
large substitutional impurities both create stress concentrations at diagonally opposite lattice points opposing
dislocation motion.

24.3.3 Strengthening via Alloying

Small impurities tend to concentrate at dislocations, to reduce the mobility of the dislocation. This helps
to increase strength. Large amounts of impurities concentrate around dislocations, on their low density site
(where tensile stress is created), to lock them into place and prevent further dislocation motion. Alloying
increases the tensile strength and yield strength of the material, but reduces the ductility, so strengthening
comes with a tradeo↵.

Lecture 24-2
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25.1 Strengthening Methods, Contd.

25.1.1 Strengthening via Precipitation

Aluminium alloys are strengthened by precipitation. Hard precipitates (small, with di↵erent phase micro-
constituents) are di�cult to shear (this can be seen in the case of ceramics in metals, such as with silicon
carbide in aluminium or iron), so they can pin dislocations in place, strengthening the material.

25.1.2 Strengthening via Strain Hardening

This is also called cold working because the material is deformed at a low temperature. For metals, this
deformation usually takes place at room temperature. The degree of cold-working is characterized by the
change in cross-sectional area of the material. Strain hardening works because dislocations entangle with
one another during cold-working, which makes further dislocation motion di�cult.

This method has the result of increasing dislocation density by orders of magnitude, from around 103mm�2

to around 109mm�2, although heat treatment brings the density down to around 106mm�2. The yield stress
increases with increasing ⇢d. Overall, with increasing cold work, yield and tensile strength both increase as
ductility reduces.

It is important to know how to manage tradeo↵s based on graphs of elongation/area reduction change with
amount of cold work along with graphs of yield and tensile strength.

25.2 Temperature Dependence of � � " Behaviour

With increasing test temperature, yield and tensile strength reduce while the amount of elongation increases.
On a microscopic level, this is because the increasing temperature helps the motion of dislocations. This
is why heating reverses the e↵ects of cold working. The e↵ects of heating (annealing) take place in three
stages: recovery, recrystallization, and grain growth.

25.2.1 Recovery

The stored strain energy due to the locking of dislocations is relieved because of the temperature increase,
because increased temperature means increased di↵usion. The dislocation density is thus reduced. Since
dislocation atoms di↵use from higher to lower concentrations, they meet and annihilate with the oppositely
oriented dislocations, creating a perfect plane out of the previous half-plane.
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25.2.2 Recrystallization

A new set of crystals or grains are formed, which have small dislocation densities and small average sizes.
They consume cold-worked or deformed crystals until no cold-worked crystals remain. This leads to a
reduction in the material’s strength and hardness, and an increase in ductility. This happens over relatively
short time-scales, in a matter of seconds.

25.2.3 Grain Growth

At times longer than a few seconds, larger grains consume small grains to reduce the grain boundary area
and therefore the energy. Grain growth is characterized by the following general equation,

d(t)n = dn
0

+K
0

te�Q/kT (25.1)

Overall, the process of annealing reduces hardness and strength in favour of ductility across all three phases,
but mostly in recrystallization. The following diagram characterizes this:

Repeatedly cold-working and annealing a material can help to maintain material properties within tolerable
ranges, making gradual changes to both parameters in one direction each at a time until an end state
is reached. (Problems on this based on ductility/cold-working and yield-or-tensile-strength/cold-working
graphs will be relevant.)



25.3 Deformation in Ceramics

Ceramics do not undergo plastic deformation as easily as metals. It is more di�cult for dislocations to move
and there are fewer of them to begin with in crystalline ceramics. In ionic ceramics, there is electronic repul-
sion between atoms that makes dislocation motion di�cult; in covalent ceramics, bonds are relatively strong,
there are a limited number of slip systems, and dislocation structures can be complicated. Noncrystalline
ceramics undergo plastic deformation by viscous flow as in liquids.

Lecture 25-3
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Failure comes in three forms: fracture, fatigue, and creep. It is important to understand all of these to
know how to mitigate them in engineering design. Failure can be mitigated through materials selection,
processing, and design safety.

26.1 Fracture

Fracture is the phenomenon of separation of a material into two or more components in response to an
imposed stress. There are two major types of fracture: ductile and brittle. While brittle fracture is relatively
quick, making a clean break all at once, ductile fracture starts with the formation of small cavities in the
material, which coalesce under further stress to form a crack that eventually propagates to separate the
material. This creates a fibrous interface between the two sections that split due to ductile failure.

The degree of ductility decreases with a reduction in temperature, to the point that it becomes more brittle
at some low temperatures. This is the ductile-to-brittle transition. In order to avoid failure, materials should
have a ductile-to-brittle transition that is not close to the ambient or operating temperatures.

Ceramics usually undergo brittle fracture, as they do not undergo appreciable plastic deformation before
fracturing; they fail catastrophically without warning, like me on this midterm. They undergo rapid crack
propagation, typically in a direction perpendicular to the applied stress. Fracture crack propagation in
ceramics comes in two types: transgranular, i.e. passing through grains, or intergranular, propagating along
grain boundaries.

Fracture due to intergranular (between grains) crack propagation normally occurs after processes that weaken
or make more brittle the grain boundaries. For most brittle materials, cracks propagate in a transgranular
(across grains) fashion, by successive breakage of atomic bonds along specific planes. This is called cleavage.

Brittle fracture surfaces are studied (this subfield is called fractography) normally using scanning electron
microscopy. This is used to study the cause of failure in engineering structures, and to study models of crack
growth. Cracks grow fast in real materials, to the point that the tensile strength of perfect materials can
be up to 100 times that of real-life materials. This is because flaws in a material cause premature failure.
Larger samples have more potential flaws, and are also more likely to have flaws of a certain critical size.

(MacGyver: arrest cracks by drilling into the wing)

26.2 Real Life is Sad

This di↵erence between real and ideal fracture strength can be described by the stress concentration factor,

Kt =
�m

�
0

= 2

r
a

⇢t
(26.1)
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where �m is the maximum stress that can be applied, �
0

is the magnitude of the applied stress, a is the
crack length, and ⇢t is the radius of curvature at the crack tip.

Large values of Kt, over around 3, promote failure. If a crack is unavoidable, its length should be minimized
and its radius of curvature maximized. This is where MacGyver comes in. Surface cracks are worse; if a
crack is present at a sharp corner, the chances of failure are increased.

Stress concentrations can be observed using photoelasticity, an experimental method where a material looks
like it does in FEA. Photoelasticity gives an accurate depiction of stress concentrations even around sharp
corners.

26.3 Gri�th’s Criteria for Fracture and Failure

1. Material failure will not occur from a crack if it is parallel to a longer crack.

2. Material failure will not occur from cracks that are parallel to applied stress.

The longest crack present in a material that has the greatest angle relative to the applied stress is the failure
mode of that material. Since fast fracture occurs when K � Kc (sequence breaking? Kc hasn’t yet been
discussed), the largest and most stressed cracks grow first.

The critical stress for crack propagation can be described mathematically,

�c =

✓
2E(�s + �p)

⇡a

◆
1/2

(26.2)

where E is the elastic modulus, �s is the specific surface energy, and �p is the plastic deformation energy.
These terms come out of the fact that for a crack to propagate, enough stress must be applied to both
overcome the surface energy and cause plastic deformation. Highly ductile materials do not have the surface
energy factor, and highly brittle materials do not have the plastic deformation factor.

26.4 Fast Fracture

Fast fracture is a term given to a phenomenon in which a flaw (such as a crack) in a material expands quickly,
and leads to catastrophic failure of the material. The stress acting on a material at fast fracture does not
have to be the material’s yield stress.

From the above expression for �c, we can get

�c
p
⇡a

0

=
p
EGc = const (26.3)

The right-hand factor is a constant because it is entirely dependent on overall material properties. This
leads to a definition of the resistance of a material to brittle fracture, its fracture toughness Kc:

Kc = Y �c
p
⇡a

0

(26.4)
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where Y is a factor covering the crack orientation and how the load is applied (factors which can be under-
stood qualitatively through Gri�th’s criteria).

For thin materials, Kc depends on the thickness; as thickness increases, the fracture toughness tends to the
so-called plane strain fracture toughness KIc (K one c):

KIc = Y �
p
⇡a (26.5)

For an infinite plate, Y = 1, and for a semi-infinite plate, Y = 1.1.

This allows us to mathematically describe the conditions for fast fracture. Fast fracture occurs when �m � �c

or K � Kc. Given that K = �
p
⇡a, we can say that fast fracture occurs either when a material containing

cracks of size a is subjected to some critical stress, or when at a fixed stress cracks grow to some critical ac.

To design against crack formation and propagation, the fact that the largest and most stressed cracks grow
first should be taken into account. There are two cases: either the maximum crack size dictates the maximum
allowable stress, or vice versa:

�design <
Kc

Y
p
⇡amax

(26.6)

amax <
1

⇡

✓
Kc

Y �design

◆
2

(26.7)

Too lazy to transcribe this next bit:



Transformation toughening can also be used to arrest crack propagation. When the stress field of a crack
is su�cient to cause a phase transformation to a di↵erent, stable, solid phase, the new phase may apply its
own compressive force that pinches the crack closed.

26.5 Fatigue

(which is how I’m feeling after typing all these up after the lectures)

Fatigue is failure under cyclic loading. By loading a material repeatedly even well below the yield point of
the material, the material can fail over time. This causes 90% of mechanical engineering failures.

The key parameters in stress are S, the stress amplitude, and �m, the mean stress. Fatigue failure involves
crack initiation (almost always on the surface), incremental crack propagation with each cycle, and final
failure after the crack reaches a critical size.

Fatigue loading could have equal tensile and compressive components, could be asymmetric with respect to
zero stress, or could just be asymmetric.

Lecture 27-4
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(to take notes for the past few lectures)

28.1 Too many [coo]Ks

The stress concentration factor KT = �
m

�0
= 2

q
a
⇢ is di↵erent from the fracture toughness Kc = Y �c

p
⇡a,

which is the total amount of energy the system can absorb before fracture, where Y is a shape prefactor; the
plane strain fracture toughness is a subclass of this for which Y = 1.

28.2 Fatigue continued

The fatigue limit is the stress level below which fatigue failure will not occur. The largest value of fluctuating
stress that will not cause failure for infinite cycles. This is not present in nonferrous metals. The fatigue
strength is the stress level at which failure will occur for some specific number of cycles; the fatigue life is
the number of cycles to cause failure at a specific stress level.

If we were able to examine the crack length at each cycle of stress, we would be able to plot a as a function of
N , and quantify da

dN . For a smaller stress, the curve moves to the right, requiring more cycles to produce an
equivalent a. The curves are roughly exponential; this relationship allows us to define the crack propagation
rate at any fixed point. More formally than “roughly exponential”, we can say

da

dN
= A(�K)m (28.1)

or

log

✓
da

dN

◆
= m log�K + logA (28.2)

With the definition of �K = Y��
p
⇡a, we can say

Nf =
1

A⇡m/2(��)m

Z a
c

a0

da

Y mam/2
(28.3)

We can predict the cycles to failure.

Fatigue life can be improved by imposing a compressive surface stress to suppress crack growth, either by
mechanical “shots” or by carburizing with a carbon-rich gas. It can also be improved by removing stress
concentrators, polishing surfaces to remove surface cracks, and/or by optimizing processing conditions to
minimize defects.



28.3 Creep

Creep is time-dependent permanent deformation due to static mechanical stress, usually at elevated temper-
atures. This is undesirable, and it limits the lifetime of materails. A creep test can be run on any materials,
by applying a constant stress at a constant temperature and measuring the deformation over time.

Creep falls into three regions in the creep strain/time curve; primary (with decreasing slope due to strain
hardening), secondary (which is steady state), and tertiary (with increasing slope up until rupture). At
steady state, we can say

"̇s = K
1

�n (28.4)

Temperature dependence is predictable,

"̇s = K
1

�nexp

✓
�Qc

RT

◆
(28.5)

Creep can be mitigated by first knowing the possible mechanisms, as each one has a characteristic stress/creep-
rate curve. These mechanisms can be vacancy di↵usion induced by stress, grain boundary di↵usion and
sliding, and dislocation motion. Creep can be solved by using single crystals (which is impractical) or at
least increasing the grain size, or by hardening the material with solid solutions or precipitation hardening.

Lecture 28-2
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29.1 Electrical Conduction

Ohm’s Law is the most basic principle of how electrical conduction works. It states that the voltage drop
between two points is equal to the current between them, multiplied by the resistance R, introduced as a
proportionality constant that turns out to be dependent on materials and dimensions.

V = IR (29.1)

The material properties can be isolated in the quantity ⇢, which is referred to as the resistivity, by the
following relation:

⇢ =
RA

l
(29.2)

where l is the path length, and A the cross-sectional area. The material’s conductivity is defined as

� =
1

⇢
=

l

RA
(29.3)

This is analogous to the flow of water in a pipe.

29.2 Electronic Structure

At a microscopic level, a material’s electronic properties are determined by its band structure. Energy exists
in discrete levels in an atom. In molecules consisting of several atoms, these energy levels split to produce a
number of molecular orbitals. In aggregate materials, with on the order of 1020 molecules, the discretization
of energy levels matters less and less until a continuous band of energy is reached in solids. Some energy
levels, however, contain no orbitals, and these are referred to as band gaps. Other than in the band gaps, in
the energy bands, energy forms a near continuum.

Electrons move from the valence band to the conduction band by absorbing energy in some form. This
can happen by photon absorption or thermal transfer. If an electron gains enough energy to overcome the
band gap, it moves to the conduction band. A material is a metal, insulator, or semiconductor based on its
bond structure and the development of its electronic band structure. This can be quantified mainly in the
band gap energy. If the gap is small, electrons can easily cross and conduction is easily allowed; these are
metals. If the gap is moderate, some electrons can cross and conduction is somewhat restricted; these are
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semiconductors. If the gap is large (greater than 3 eV), electrons cannot cross and conduction is not allowed;
these are insulators.

The Fermi energy of a system refers to the di↵erence between the highest and lowest single-particle states in
a system at 0K. There are lots of di↵erent energy states available to an electron in the valence band, some of
which will allow it to cross over into the conduction band. The Fermi level is the statistical equilibrium point
between electrons and holes. In an intrinsic semiconductor, the n-p ratio is 1:1, which gives us a Fermi level
halfway between the valence and conduction bands. n-type semiconductors have a higher Fermi level, closer
to the conduction band, and p-type semiconductors have a lower Fermi level, closer to the valence band. The
Fermi level reflects where the energy of an electron averages out, a weighted average of the possible energy
levels.

At a more advanced level, free electrons are fermions that obey Fermi-Dirac statistics, which has a probability
distribution that looks kind of like an Arrhenius relationship but not really:

f(E) =
1

e
E�E

m

kT + 1
(29.4)

and the Fermi level is the energy level at which f(E) = 1

2

. The Fermi level is, physically, the highest energy
that is occupied by electrons at 0 K.

Metals can have either overlapping band structures or partially filled band structures. Thermal energy excites
electrons from their valence states to the adjacent empty higher energy states; in overlapping structures,
there is no jump to the conduction band, whereas in partially filled structures, the first empty states are in
the valence band, and the next ones are in the conduction band after an energy gap.

Real band structures are strange and involve plots of Greek letters against energies. These Greek letters



specify a direction in momentum space. Exciting an electron with only photons lets it move in energy space,
and with thermal energy it can move in momentum space.

In metals, the presence of impurities increases the resistivity, because the presence of grain boundaries,
dislocations, impurity atoms and vacancies all work to scatter electrons and therefore impede conduction.
Resistivity also increases with temperature, and the degree of cold-working. Overall, the resistivity of a
metal sample can be broken down into

⇢ = ⇢thermal + ⇢deformation + ⇢impurity (29.5)

Given the yield strength or some physical parameter of a known binary alloy, we can find the relative
concentrations of the two components, and look up the corresponding resistivity.

Semiconductors and insulators have completely filled valence bands, and to fill the higher energy states, the
electrons must cross the band gap, as only metals have the partially filled structure.

Lecture 29-3
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30.1 Chapter 5: Di↵usion

What is it, what does it happen, how is it a↵ected by conditions, how can we exploit or stop it?

Types: inter- and self-. Interdi↵usion is one material di↵using into another and vice versa along a concen-
tration gradient. Atoms move from high to low concentration. Di↵usion of A in B and B in A don’t have to
happen at the same rate. Also, vacancy di↵usion - an atom adjacent to a vacant lattice site moves into it.
First, bonds with neighbouring atoms are broken, then slide in.

Interstitial di↵usion is also a thing, where interstitial particles migrate from one interstitial site to another.
This is mostly for small atoms that can be interstitial impurities (H, C, N, O). This is faster than vacancy
di↵usion as it’s smaller stu↵ moving.

Can describe this mathematically,

Jx = �D
dC

dx
(30.1)

The steeper the concentration profile, the greater the flux. Fick’s first law says the flux is proportional to
the concentration gradient, with di↵usion rate being time-independent. This equation describes steady-state
di↵usion.

dC

dx
⇡ C

2

� C
1

x
2

� x
1

(30.2)

Temperature dependence is described by an Arrhenius relationship,

D = D
0

exp

✓
� Qd

RT

◆
(30.3)

Should be able to look at paired systems - carbon in ↵ iron, vs iron in � iron, and tell which ones have faster
di↵usion rates. Based on packing factor and size of di↵using factor. Less open structures di↵use slower even
at higher temperatures.

In the non steady-state case, we describe di↵usion by Fick’s second law,

@C

@t
= D

@2C

@x2

(30.4)
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which has a solution given by the error function,

C(x, t)� C
0

Cs � C
0

= 1� erf

✓
x

2
p
Dt

◆
(30.5)

Di↵usion is faster for open crystal structures, lower melting T materials, materials with secondary bonding,
smaller di↵using atoms, and lower density materials, and slower for all the opposite ones.

30.2 Chapter 9: Phase Diagrams

A phase is a homogeneous portion of a system with some uniform physical and chemical characteristics.
The most common phase diagrams are pressure-temperature or temperature-concentration, should be able
to read multiple kinds. The components of a phase diagram (elements or compounds being mixed) combine
to make phases.

Equilibrium is the minimum energy state for a given T, P and composition; implicitly, we’re talking about
equilibrium phases when we draw a phase diagram. These are time independent. Assume P is atmospheric
if not given.

Some examples of phase diagrams: the binary isomorphous system, composition - Ni in Fe vs temperature.
There’s a central region in that phase diagram with L + ↵. To find the fractional parts of each phase, the
phases on the left and right, draw the tie line and see where intersections happen and apply the lever rule
(basically conservation of mass). Phase diagrams will be complicated. Yay.

Can get information on the microstructure from a phase diagram; precipitation of a solid as a liquidus line
is crossed, which happens throughout the intermediate region, and it finishes solidifying at the solidus line
to get a characteristic microstructure. If this is not done at equilibrium, i.e. if it’s done faster, we see coring:
layers of high composition at the centers of circles, moving out gives lower compositions.

Binary eutectic systems - eutectic means easily melted. Should know how to read those phase diagrams and
know what a eutectic is. Should be able to analyze microstructures in binary eutectics. We should know
what happens when a material has the eutectic composition, or what happens when it is either hypo or hyper
eutectic. Has a tendency to form lamellar or layered structures. Why isn’t it just two discrete portions for
the two parts of the mix?

Know how to find an amount of a proeutectic phase relative to the total phase in the system. Should be
able to understand position on the phase diagram and type of microstructure based on knowing whether you
have a hyper or hypo eutectic sample. Both have the same global structure, with some proeutectic smooth
portions among the lamellar eutectic.

Congruent transformations undergo no change in composition; melting is congruent along lines on the temp-
composition phase diagrams. In incongruent transformations, at least one phase undergoes a composition
change, e.g. melting along a curve on the phase diagrams.

Intermetallic compounds with a formula AxBy, not a solution, can be described by phase diagrams; put two
diagrams back to back, and consider each one to be a type of eutectic. Intermediate solid solutions are also
possible; these are solid solutions that don’t extend to pure components on the phase diagrams. There are
a lot more intermediate phases, but you can still deal with those using the tie line and the lever rule.

Other types of reactions: eutectoid and peritectic. Eutectoid is solid cooling to two solids, and peritectic is
solid heating to solid plus liquid. (Eutectic is liquid cooling to two solids)
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Pseudobinary phase diagrams, such as of ceramics, can be dealt with using the same methods, the only
di↵erence being that the composition axis is scaled di↵erently; amount of one thing to amount of another
thing.

Gibbs Phase Rule, P +F = C+N . Understand what all of them are, and what it means to have a degree of
freedom. P is the number of phases present, F is degree of freedom, C is number of components, and N = 2.
(number of non-compositional variables: for everything we’ll deal with, this is temperature and pressure).

The iron-carbon system is important. There’s a lot of stu↵ that goes on in the part of the phase diagram
we see, that goes up to 6.7% C. Can apply tie lines, lever rules, fractions of phases, etc. to the iron-carbon
system; should know what the phases are, because each one has a special name that gets confusing fast. The
basics are: the � phase, austenite, has low carbon content and is FCC (those two are related), the ↵ phase,
ferrite, has very low carbon content because it becomes cementite or an inter-phase mix of the two at higher
carbon content.

30.3 Chapter 10: Phase Transformations

Phase transformations take place in two steps, nucleation and growth. Nuclei act as templates for crystal
growth, and growth then proceeds until equilibrium is attained. The driving force to nucleate has to increase
with increasing�T . Small supercooling and large supercooling have (something I missed). Nucleation can be
homogeneous, where nuclei form in the bulk of liquid metal and require lots of supercooling, or heterogeneous,
at a surface, which is easier because only slight supercooling is required.

We can describe the net energy,

�G =
4

3
⇡r3�Gv + 4⇡r2� (30.6)

and derivatives give us the critical radius,

rc = � 2�

�Gv
(30.7)

Kinetics can be described by rewriting the energy in terms of the heat of fusion (energy released upon
solidification). Rate of nucleation is dependent upon liquid instability and di↵usion. Growth rate is described
by the Avrami equation, y = 1� exp(�ktn), and grain growth has temperature dependence described by an
Arrhenius relationship.

An overall rate of transformation can be derived from all this, which allows us to plot a TTT diagram -
Time-Temperature-Transformation. This helps us characterize the microstructure, the reaction rate to a
specific percentage, etc. Most of the time, cooling is continuous, not a jump discontinuity, so when T varies
during the transformation, we get a CCT diagram. We can use both of those to our advantage.

Overall, there are some trends in steel. The new things here are bainite and martensite, which both come
from rapid cooling/quenching.



30.4 Chapter 6: Mechanical Properties

Foundational concepts: stress and strain. How are they related, how to find them. Four kinds of stresses:
tension, compression, shear, torsion. For elastic deformation, we have Hooke’s law, which is direct propor-
tionality between stress and strain, but things aren’t nice. This comes in two forms: plastic deformation,
and the Poisson ratio, a measure of how not volume conserving a material is.

⌫ = ��w/w

�l/l
(30.8)

Metals are around 0.33, ceramics around 0.25, polymers around 0.4.

Plastic deformation can be characterized by the 0.2% strain o↵set method. Going through the stress strain
curve, the next thing after the yield point (inflexion between elastic and plastic) is the ultimate tensile
strength, where the change in the geometry of the system overcomes the stress, i.e. we see a reduction in
engineering stress. This reduction in cross-sectional area is called necking. At the end of the stress-strain
curve, we get fracture. Engineering and true stress and strain are related by �T = �(1+"), and "T = ln(1+").

Ductility can be characterized by the percentage reduction in area or increase in length; if more than 5%,
it’s generally called ductile. Resilience - amount of elastic deformation and recovery possible, toughness -
amount of energy absorbed before fracture. Ceramics are tested using a three-point bending test, flexural
strength is a thing. There is a correlation between Rockwell hardness and toughness of a material.

Keep in mind factors of safety, �work = �/FoS.

30.5 Chapter 7: Dislocation and Strengthening

Based on dislocation motion, we can characterize the compressive and tensile strain fields they induce,
causing “tra�c jams” - interactions between dislocations, having them line up, etc., to increase the strength.
These create a grain boundary in a material. Slip happens in the close-packed planes and close-packed
directions of a material. How do you end up with 12 unique slip systems for a material? In single crystals,
shear stress resolvs geometrically as described by the Schmid factor cos� cos�, by ⌧R = � cos� cos�.

We can cover a number of strengthening mechanisms, but we’re out of time. Should know about grain size
reductions, solid solutions, and a couple other things.

30.6 Chapter 8: Failure

At the far end of the stress-strain diagram, there are many kinds of failure, such as ductile and brittle.
Ductile failure has tiny flaws that lead to catastrophic failure in the end. Cracks in materials can propagate
di↵erently, within and across the grains, creating di↵erent kinds of fracture surfaces. Flaws can cause stress

inside a material, so stress can be concentrated as given by a proportionality factor Kt = 2
q

a
⇢
t

. This factor

depends on crack length and radius.

Fatigue - should know what it is, should know that even by applying less than the yield stress a material
can fail. Should know how to mitigate it. Should understand what creep is, that it has three regimes and
what’s happening in each, how it evolves with temperature, and how to mitigate that too.
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Insulators have a wide band gap, across which few electrons can be excited across it. Semiconductors have
a narrower band gap, less than 2-3 eV, but still su�cient not to excite all the electrons and cause full
conduction. There are two types of electronic charge carriers in semiconductors: free electrons, which are
excited to the conduction band, and holes, which are positive charges left behind by the vacant electron state
in the valence band. These move at di↵erent speeds under a potential, characterized by their drift velocity.

Intrinsic semiconductors are group IV materials such as silicon and germanium. Semiconductors can also be
made out of compounds, such as III-V compounds (GaAs, InSb) and II-VI compounds (CdS, ZnTe). The
wider the electronegativity di↵erence between the elements, the wider the energy gap.

In an intrinsic semiconductor such as Si, valence electrons surround atoms of silicon in a covalent manner.
When an electric field is applied, an electron-hole pair is created; the electron moves towards the positive
and the hole towards the negative end of the applied potential. The electrical conductivity is given by

� = n|e|µe + p|e|µh (31.1)

where µe is electron mobility, µh is hole mobility, n is a number of electrons per unit volume and p is a
number of holes per unit volume. In intrinsic semiconductors, n = p is guaranteed because electrons and
holes are always guaranteed to exist in pairs, but in extrinsic semiconductors, this may not be the case.

Carrier mobility characterizes how quickly an electron/hole can move through a metal or semiconductor
under an electric field. The mobility is defined as µ where vdrift = µE. It has units of cm2/(V · s).
Conductivity is proportional to mobility and to carrier concentration; conductivity could come from a small
number of highly mobile electrons, or from a large number of not very mobile electrons. Many things can
impact semiconductor mobility; essentially anything that can scatter electrons.

The above relation can be used to calculate a number of charge carriers per cubic meter. We find that
GaAs has on the order of 1024 charge carriers, while Si has only 1016. This is despite both being intrinsic
semiconductors, having the same e↵ective charge, etc. The di↵erence arises from the band gap. The band
gap for Si is 1.1eV, and for GaAs is 1.4eV. This means GaAs is a direct gap semiconductor, and Si is an
indirect gap semiconductor. This low conductivity of Si is a problem. Therefore, to make it more conductive,
Si can be doped; impurities that introduce excess electrons or holes can be added.

An n-type semiconductor is doped with a penta- or hexavalent atom such as phosphorus to make n >> p; a
p-type semiconductor is doped with a di- or trivalent atom such as boron to make p >> n. Doped systems
have much higher conductivity curves. After a “freeze-out” zone of low temperature in which electrons cannot
be excited, the extrinsic conduction becomes much higher than the intrinsic site, because imperfection sites
lower the activation energy to produce mobile electrons that can cross the gap.

The Hall e↵ect can be used to characterize a semiconductor as n- or p-type. This is done by applying a
magnetic field perpendicular to the direction of motion of a charged particle, and measuring the induced
Hall voltage. The sign of this voltage indicates which type of carrier is found. Specifically, the Hall voltage
is given by



VH =
RHIB

d
(31.2)

where RH is a material proportionality constant, related to the number of electrons by

RH =
1

n|e| =) |RH | = µ

�
(31.3)

A p-n rectifying junction, which allows the flow of electrons only in one direction, is an example of a device
that can be made using semiconductor properties. This can be placed in forward bias, in which carriers flow
through p-type and n-type regions, holes and electrons recombine at the p-n junction, and current is allowed
to flow; or in reverse bias, in which that doesn’t happen and current doesn’t flow. Another example is a
junction transistor, in which two p components are sandwiched between an n base. A MOSFET, which has
two p-type dopant regions connected by a thin channel of the same dopant, all on an n-type substrate, is
also important. Conduction can be turned on and o↵ by applying a forward or reverse voltage. The carriers
in the channel can be completely depleted by applying an external bias, forbidding conduction.
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32.1 Charge Displacement Processes

What happens to materials without a lot of mobile charges when it is placed under an electric field? These
materials are called dielectrics. When we apply an electric field to an ideal dielectric there is no long-range
charge motion, but there is local rearrangement of the charge in the system such that the dielectric acquires
a dipole moment and is said to be polarized. An electric dipole is two equal and opposite point charges
separated by a distance �x, and the dipole moment is a vector with its positive sense from negative to
positive charge, p = Q�x. A polarized material consists of individual dipolar units, whose end faces carry
surface charges +�p and ��p.

The structure of a capacitor is like this, with an E between and normal to two parallel plates, with surface
charge density � and separated by vacuum. This gives us E = �/"

0

. With a dielectric, the parallel plate
charge is partially due to a dielectric: E = (�T � �p)/"0. The total charge density �T is the magnitude
of the electric displacement vector, D = "

0

E + P . In the case of linear dielectric, P is proportional to E.
This case is fairly common and is represented by P = �E"0E, where �E is electric susceptibility, which is a
dimensionless rank-2 tensor.

This allows us to write

D = "
0

E + �E"0E = (1 + �E)"0E (32.1)

Since D is the total charge density, we can say

QT

A
= (1 + �E)"0

V

h
(32.2)

This allows us to define the capacitance of the capacitor, its ability to store electric energy, as

C =
QT

V
= (1 + �E)"0

A

h
(32.3)

which allows us to define the permittivity of a dielectric as a multiplier on the permittivity of free space,
" = (1 + �E)"0. The relative permittivity or dielectric constant of a material is "

"0
.

When we apply an electric field to a system, we have di↵erent possible responses in a material. All materials
undergo atomic polarization under an electric field, which causes a small displacement of the electrons
relative to the nucleus. This is active up to frequencies around 1015 � 1017 Hz. Ionic polarization, the
relative displacement of cations and anions, is also possible. These are optical lattice vibrations, active up to
around 1013 � 1014 Hz. Dipolar or molecular polarization is a third type. This is the reorientation of polar



molecules in an applied field. This is roughly equivalent to di↵usional exchange of atoms over a few atomic
distances. This process is relatively slow, occuring for frequencies less than 108 Hz. Finally, there is space
charge polarization, which is the transport of charge carriers until they strike a potential barrier such as a
grain or phase boundary. This only contributes to dielectric e↵ects at frequencies on the order of 102 Hz.

Connections can be made between the macroscopic properties of materials, such as the index of refraction,
and the above e↵ects. For example, for a non-magnetic dielectric, n =

p
"r. This is only valid when the

same types of polarization are present when measuring "r and n. For example, this is the case in diamond
and silicon.

There are 32 crystal classes, of which 11 possess centers of symmetry, which means they have no polar
properties. The remaining 21 show polar e↵ects when put under stress.
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A uniform application of stress on one of the 11 centrosymmetric crystal types results in a small movement
of charge symmetrically distributed about the center of symmetry. An application of electric field produces a
strain, but this strain is unchanged when the field is reversed. This tells us the e↵ect is quadratic in nature.
This is called electrostriction.

Of the remaining non-centric classes, 20 exhibit electrical polarity when subjected to a stress. This e↵ect
is linear; if the stimulus is reversed, then the response also reverses. This is called the piezoelectric e↵ect.
Piezoelectricity works in reverse too: applying voltage induces a change in the dimensions of the materials.
Piezoelectricity has applications in ultrasound and sonar.

Put another way, a piezoelectric is material that changes its polar configuration under pressure which chan-
ages the distribution of charge density on the surface, creating a potential di↵erence on the surface. If you
apply pressure, you get voltage. A ferroelectric is a piezoelectric material with an initial spontaneous dipole
moment.

Polar crystals have spontaneous polarization, which cannot be detected by charges on the surface of the
crystal, because the depolarizing field can be balanced by free charge within the crystal. 10 of the remaining
crystal classes have this characteristic, of a polar axis causing spontaneous polarization. In general, sponta-
neous polarization is temperature dependent. Its existence can be investigated using the flow of charge to
and from the surfaces under a change in temperature.

Pyroelectricity arises from this temperature dependence. It is shown by ferroelectrics. A change in polariza-
tion in a solid is accompanied by a change in surface charges, which can be detected by an induced current
in an externally connected circuit. This external circuit neutralizes the surface charges if connected for a
long enough time, because of the electrical conductivity of the material. This neutralization occurs after
t = ⇢"r"0.

The pyroelectric e↵ect can be described by the electrical displacement applied to a polar material:

D = "
0

E + Ptotal = "
0

E + (Ps + Pinduced) (33.1)

wich can be di↵erentiated with respect to temperature, assuming a temperature-invariant electric field, to
get

@D

@T
=

@Ps

@T
+ E

@✏

@T
(33.2)

which gives us

pg = p+ E
@✏

@T
(33.3)

In this equation, p, which is defined as @P
s

@T , is the pyroelectric coe�cient, and pg is the generalized pyroelectric
coe�cient.



The polarization vector is the pyroelectric coe�cient times the change in temperature. The pyroelectric
coe�cient has three components, �Pi = pi�T for i = 1, 2, 3.

The E @✏
@T component can contribute to the pyroelectric coe�cient in all dielectrics, whether or not they

are polar. Temperature coe�cients of permittivity of ferroelectric/polar materials are high, therefore their
contribution can be close to the intrinsic pyroelectric e↵ect. Since pyroelectric materials are polar and
piezoelectric, they undergo strain due to thermal expansion, resulting in additional contribution.

There is a threshold temperature above which ferroelectric materials are highly polar, called the Curie
temperature. Materials lose their permanent magnetism and have this replaced by an induced magnetism;
they go from being ferroelectric to paraelectric. This transition can be complicated; it involves going from a
low-temperature tetragonal, orthorhombic, etc. structure to a high-temperature cubic structure. A material
can undergo multiple structural transitions at multiple temperatures.

An induced electric field causes polarization in ferroelectrics in a nonlinear fashion to make a hysteresis loop,
like observed in ferromagnets. Similarly to a Carnot cycle, in which work is derived from heat as input to
a system, work can be derived through changes in polarization caused by a changing electric field. This is
called an Ericsson cycle [citation needed].

A ferroelectric can switch between two stable states by applying an electric field. In this way, a ferroelectric
has “memories”.
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34.1 Magnetic Properties - The Highlights

Magnetism comes from electronic motion and electronic spin. There are four types of responses: ferromag-
netic systems have long-range parallel alignment of the atomic moment that results in a net magnetization
even if there isn’t an external field. Ferrimagnets have two types of magnetic moment, aligned antiparallel
to one another. There is still a net magnetic moment in one direction, so it still looks like a ferromag-
net. Antiferromagnets have magnetic dipoles that are aligned antiparallel; paramagnets are weakly positive,
diamagnets are weakly negative.

Sorry, I’ve got a lab report. That’s not exactly a dramatic ending to this document. Bye!


