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6 Introduction

1.1 Overview of PDEs

A partial differential equation is an equation that defines some relationship between partial derivatives
of a multivariable function. This is in contrast to ordinary differential equations, which have only one
independent variable (and its derivatives).

We’ll cluster these independent variables together and call them all x (except sometimes we’ll separate out
one variable called t), and we’ll call the solution u.
Definition 1.1. Suppose U ⊂ Rn is an open set. A partial differential equation (PDE) of order k is an expression of
the form

F (x, u(x), Du(x), . . . , Dku(x)) = 0. (1.1)

where u : U → R is unknown and F : U × R× Rn × · · · × Rnk → R is a given function.

We say that u is a classical solution of the PDE if on substitution of u and its partial derivatives, the equation
is satisfied identically in U .

We can also consider the case where u(x) ∈ Rp, F ∈ Rq which we call a system of PDEs.

The main reason we care about PDEs is they model real-life phenomena in ways that ordinary differential
equations can’t. Here’s a bunch of examples of how that works!

Example 1.1.

1. Systemsof ordinarydifferential equations canbe cast asPDEs, for instance d
dtu = f(u, v), d

dtv =
g(u, v). Predator-prey models and SIR models are of this form.

2. The simplest possible PDE is the heat equation,

ut = D∆u.

If F : R→ R, the average value of F on [−h, h] for some small h > 0,

FAv =
1

2h

∫ h

−h
F (x)dx.

If we do a Taylor expansion,

∆F |x=0 = F ′′(0) =
12

h2
(FAv − F (0)) +O

(
h2
)
,

so the Laplacian measures a “local average deviation”. This is relevant for physical intuition
about the heat equation, as it describes a diffusion process: ∂tu > 0 if the neighbourhood is
hotter.

Analysis of Partial Differential Equations



Overview of PDEs 7

We can make this a stochastic PDE by adding a random term, ut = D∆u+ ξ. This is beyond
our scope.

3. We can make a simple PDE system from the heat equation,

ut = D1∆u+ f(u, v)

vt = D2∆v + g(u, v)

Reaction-diffusion equations have this form. Turing instabilities arise from this.

4. The transport equation:

∂tu = D∆u+ ~v ·Du+ f(u)

This tells us how the concentration of some chemical in a fluid of velocity ~v changes with
production rate f .

5. Laplace’s equation and Poisson’s equation, respectively:

∆u =
∑
i

∂2
x1x2

u = 0

∆u = f, ~E = ∇u.

Note that ∆ is always a spatial Laplacian.

6. Euler-Poisson equation:

ρ(∂tu+ (u · ∇)u) +∇(ργ) = −ρ∇φ
∆φ = ρ

∂tρ = dr(ρu).

This models a star held together by gravity, in a time-dependent region U(t).

7. The wave equation:

�u = − 1

c2
∂2
ttu+ ∆u = 0

and, closely associated, the Klein-Gordon equation: (�−m2)u = 0.
The wave equation is used for sound waves and seismic waves, for examples. The Klein-
Gordon equation models some phenomena in QFT.

8. The KdV equation, ∂tu + ∂3
xu − bu∂tu = 0, admits soliton-like solutions. This describes a

kind of wave first seen in the Edinburgh canal (Russell 1834).

Analysis of Partial Differential Equations



8 Introduction

9. Maxwell’s equations: ∇·E = ρ,∇·B = 0, ∂tE = ∇×B−J, ∂tB = −∇×E, the Schrodinger
equation, ∂tu + ∆u = V (u), and the Einstein equations in GR, Ric(g)µν = 0. One of the
postulates in SR is there’s no canonical choice of time and space. What do the ∂t, ∂x operators
mean in this context?
Stuff to google: constraint equation, Jang’s equation, Penrose inequalities.

10. The Black-Scholes equation (finance).

11. The Navier-Stokes equations (fluids).

�

In all these examples, it is not sufficient to just know the PDE.We need additional information to solve them:
the initial temperature in some domain, boundary values u|∂U , and so on. We refer to these as the data.

An important component of analysis of PDEs is understanding what data are appropriate. For example, the
positive mass theorem in GR tells us that our data cannot be compactly-supported infinitely-differentiable
functions.

Our guiding principle through this is Hadamard’s notion of well-posedness (although this is informal). We
say a PDE problem (the equation and the data) is well posed if

(a) a solution exists in some function space C∗

(b) for the given data, the solution is unique (in some function space)

(c) the solution depends continuously on the data (for the data and solution both respectively in some
function spaces.)

The third condition can especially be open to interpretation.

We want to choose a function space that is large enough that a solution exists, but small enough that it is
unique.

1.2 Multi-index notation

Earlier, we said we’d include a bunch of other variables under the single name x. This isn’t quite what we’re
used to from multivariable calculus, where we would have an expression like ∂2f

∂x∂y . If we’re combining
x, y, z, etc into just x, how do we express derivatives of mixed orders between different components of x?
The answer is a multi-index, which basically expresses the exponents like an array like you might do in
programming. These are all useful notational conveniences.

Let α = (α1, . . . , αn) ∈ Nn (starting at 0). α is called a multi-index.

We define |α| =
∑
i αi to be the order of α.

The derivative with respect to a multi-index is

Dαf(x) =
∂|α|f

∂nixi
(1.2)

Analysis of Partial Differential Equations



Classifying PDEs 9

If x = (x1, . . . , xn) ∈ Rn, then xα =
∏
i x

αi
i .

Finally, α! =
∏
i αi!.

1.3 Classifying PDEs

A PDE is linear if F is a linear function of u and its derivatives.

∑
α:|α|=k

aα(x)
∂αu

∂xα
= 0, (1.3)

For example, ∆u = 0 is a linear PDE, as it can be expanded into

n∑
i=1

d2u

dx2
i

= 0

which has the form required, where aα(x) = 1 if the multi-index α has the form (0, 0, . . . , 2, . . . , 0) and 0
otherwise.

A PDE is semilinear if higher-order derivatives appear linearly with coefficients that depend only on x

∑
|α|=k

aα(x)Dαu(x) + a0(x, u, . . . , Dk−1u) = 0. (1.4)

For a few examples:

1. ∆u = u2
x

2. �u = v

3. (�− 1)v = u∂tv

Essentially, this is anything without mixed DαuDβu terms.

A PDE is quasilinear if the highest order derivative coefficients depend linearly on lower-order derivatives
of u, i.e.

∑
|α|=k

aα(x, u(x), . . . , Dk−1u(x))
∂αu

∂xα
+ a0(x, u, . . . , Dku) = 0, (1.5)

For example, uuxx + uyy = u2
x is quasilinear. This relaxes another layer of constraints; we’re allowing mixed

terms under the constraint of linearity, but nothing like u2
xx.

If a PDE is none of these, we say it is nonlinear.

Analysis of Partial Differential Equations



10 Introduction

1.4 Real analysis, topology, and functional analysis notes

A Banach space is a complete normed vector space. That is, it’s the pairing of a vector space X and a
function ‖·‖ : X → R+ (the norm) such that ‖x‖ = 0 ⇐⇒ x = 0, the triangle inequality holds, and it obeys
the scaling property up to absolute value (‖cx‖ = |c|‖x‖), and such that Cauchy sequences inX converge to
limits in X .

U ⊂ Rn is open if and only if it is the union of a countable collection of open balls. The forward direction
follows from the union of open sets being open. The backward direction follows if we take x ∈ U ∩Qn (the
n-dimensional rationals, countable and dense in Rn) and take the union of open balls Ux (which exist by the
definition of openness) around each one.

Bounded sequences in reflexive Banach spaces (Lp and Hilbert spaces) have weakly convergent subse-
quences.

Analysis of Partial Differential Equations
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12 The Cauchy-Kovalevskaya theorem

2.1 ODE theory refresher

Most tools don’t generalize between types of PDEs, but there is one that does: the Cauchy-Kovalevskaya
Theorem. This is a generalization of the Picard-Lindelöf theorem from ODE theory.

A quick reminder of what it means to be Lipschitz: f is Lipschitz above u0 if for all x, y ∈ Br(u0),
‖f(x)− f(y)‖ ≤ K‖x− y‖. We call K the Lipschitz constant here. This bounds how fast a function can
deviate from its value at an initial point, which is a useful property to have when trying to propagate an
ODE solution through time.

Now, we can introduce our first function spaces. A function is in1 C0 (or C0(U) if its domain is U ) if it’s
continuous, and it’s Ck if it’s differentiable and its derivative is Ck−1. Infinitely differentiable functions are
said to be C∞. In practice, we’ll probably only directly deal with C0, C1, C2, C∞.

Fix U ⊂ Rn open and take some f : U → Rn. Consider the ODE

ut = f(u(t)), u(0) = u0 ∈ U (2.1)

Theorem 2.1 (Picard-Lindelöf). Suppose there exist constants r, k > 0 such that Br(u0) ⊂ U , and f is locally
Lipschitz above u0 with Lipschitz constant k. Then there exists some ε(r, k) > 0 and a unique C1 function u such
that u : (−ε, ε)→ U solves 2.1.

Proof sketch.
If u solves 2.1 then by the fundamental theorem of calculus,

u(t) = u0 +

∫ t

0

f(u(s))ds (2.2)

If u is a C0 solution to 2.2, then it solves 2.1. Then u, if it exists, is a fixed point of the following
map:

G(w(t)) = u0 +

∫ t

0

f(w(s))ds (2.3)

Here, G : S → S, where S = {w : (−ε, ε)→ Br(u0) : w ∈ C0}.
Since we care about the uniqueness of a fixed point of this map, we make use of the contraction
mapping theorem (also known as the Banach fixed-point theorem), which requires that the space
(the domain and the range, which are the same) is a complete metric space with a sup norm. In
this case, we show that’s true of S.
From this, we show that G : S → S is a contraction for small ε, that u is a fixed point by the
contraction mapping theorem, and then that u ∈ C1 by FTC.

This cannot always be a global solution; for instance, check what happens if ut = u(t)2, u(0) = 0. Also, it
may not be unique. For the example ut = u(t)1/2, u(0) = u0, you can find two solutions.

1in shorthand we just say the function isX if it is part of the function spaceX

Analysis of Partial Differential Equations



Real analyticity and majorants 13

We’ve established an existence theorem for the solutions of ODEs, so let’s start extending it. What happens
if we introduce one extra independent variable, towards making it a PDE?

If we add in dependence on some other parameter, i.e. u̇(t, λ) = f(u(t, λ)) and the initial condition
u(0, λ) = u0(λ), then if f, u0 are locally Lipschitz and continuous “as needed”, then the solution u(t, λ) is
C0 in λ.

If f is more regular, we expect u to be more regular as well. We can make this precise just by differentiating
repeatedly. Let f ∈ C∞(U) and u ∈ C1((−ε, ε)). Then, by the chain rule,

ü = Dfu× u̇ := F2(u(t), u̇(t)) (2.4)

Therefore ü exists and is C0, implying that u ∈ C2((−ε, ε)). We can repeat this process, showing that u(3)

exists and is C0, so u ∈ C3((−ε, ε)), and so on. Therefore u ∈ Ck for all k. So if f ∈ C∞(U), then so is u.

This implies that given u0 = u(0), we can determine u(k)(0) = Fk(u,Du, . . . ,Dk−1u)
∣∣
t=0

, and so we have a
formal power series solution,

u(t) =
∑
k≥0

u(k)(0)

k!
tk. (2.5)

When does this power series actually solve theODE? TheCauchy-Kovalevskaya theoremgives us an answer!

Theorem 2.2 (Cauchy-Kovalevskaya for simple ODEs). Suppose U ⊂ Rn is open, and u0 ∈ U . If f : U → R
is real analytic near u0, and u(t) is the unique solution of u̇(t) = f(u(t)), u(0) = u0 given by Picard-Lindelöf, then
u(t) is also real analytic near t = 0.

Another way of saying this is if f(u) is real analytic in a neighbourhood of u0, then the series
∑ u(k)(0)

k! tk

converges in some neighbourhood of t = 0 to the unique solution of the ODE as established by Picard-
Lindelöf.

We just introduced the term real analytic: what does that mean and why does it matter?

2.2 Real analyticity and majorants

Not all C∞ functions are well described by their Taylor series, unfortunately.

Suppose f : (−ε, ε) → R is infinitely differentiable. Then f (n)(0) exists for all n ≥ 0. We would like it if for
0 < |x| < δ for some δ,

∑ f(n)(0)
n! xn → f(x). However, this is not always the case.

Example 2.2. Let

f(x) =

{
e−

1
x x > 0

0 x ≤ 0

Analysis of Partial Differential Equations



14 The Cauchy-Kovalevskaya theorem

This is a smooth function; to either side, it’s smooth, and you can check that the derivatives at zero
all match from the left and the right. However, f (n)(0) = 0 for all n, so we have

∑ f (n)(0)

n!
xn = 0 6= f(x) for x > 0.

�

Functions that do equal their Taylor expansions are called real analytic.

Definition 2.1. Let U ⊂ Rn be open and f : U → R. We say f is real analytic near x0 ∈ U if there exist constants
r > 0 and fα ∈ R such that

f(x) =
∑
α∈Rn

fα(x− x0)α for all x such that |x− x0| < r.

Real analytic functions have important properties.

1. On a ball about x0, we can write f as a convergent power series, f =
∑
α fαx

α, whose coefficients are

fα =
Dαf(x0)

α!
(2.6)

2. f is real analytic on an open set U if it is real analytic near any point x0 ∈ U . We denote the set of real
analytic functions on U by Cω(U).

3. If f ∈ Cω(U) then f ∈ C∞(U). (My best guess: either it terminates somewhere and the high-order
derivatives are all 0, or it doesn’t and you can keep writing down the derivatives in terms of fα
indefinitely.)

4. f is real analytic near x0 if and only if f is smooth near x0 and there exist constants s, c, r > 0 such that

sup
|x−x0|≤s

|Dαf(x)| ≤ c|α|!
r|α|

.

Proving this is on Example Sheet 1.

5. If f ∈ Cω(U) and U is a connected open subset of Rn, then f is uniquely determined in U if we know
Dαf(z) ∀α ∈ Nn and some z ∈ U .

6. If a function is infinitely differentiable and has compact support, it cannot be real analytic: Cw(U) ∩
C∞c (U) = ∅.

Exercise 2.3. Show that f(x) = 1
x and f(x) =

√
x are real analytic for x ∈ R, x > 0.

In addition, we need a tool to analyze multidimensional power series. To do this, let’s look at how we do it
in a simple case.

Analysis of Partial Differential Equations
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Example 2.3. Recall that 1
1−x =

∑∞
k=0 x

k for |x| < 1. Let r > 0.

Consider

f(x) =
r

r − (x1 + · · ·+ xn)
=

1

1− x1+···+xn
r

=
∑
k≥0

(
x1 + · · ·+ xn

r

)k

This is valid provided (by the Cauchy-Schwarz inequality)

|x1 + · · ·+ xn| ≤

 n∑
j=1

x2
j

1/2

(
∑

12)1/2 = ‖x‖
√
n < r.

By the multinomial theorem,

f(x) =
∑
k≥0

1

rk

∑
|α|=k

(
|α|
α

)
xα

,
so by pattern-matching, Dαf(0) = |α|!

r|α|
. We claim that the series f(x) =

∑
α fαx

α, where fα =
Dαf(0)
α! is absolutely convergent near 0.

∑
α

|α|!
α!

|xα|
r|α|

=
∑
k≥0

(
|x1|+ · · ·+ |xn|

r

)k
<∞

�

This is useful to have as a standard reference point for multidimensional problems, similar to how we had
the one-dimensional geometric series in R.

For more complicated cases, we can use a similar idea to series tests in single-variable calculus.

Definition 2.2. Let f =
∑
α fαx

α, g =
∑
α gαx

α for fα, gα ∈ R. We say g majorizes f or g is a majorant of f if
gα ≥ |fα| for all α.

This is denoted g � f . We can extend the term to vector-valued cases, in which case g � f if gi � f i for all
i.

Lemma 2.4 (Properties of Majorants). (i) If g � f and g converges for |x| < r, then so does f .

(ii) If f converges for |x| < r and s ∈
(

0, r√
n

)
, then there exists a majorant of f which converges for ‖x‖ ≤ s√

n
.

Analysis of Partial Differential Equations



16 The Cauchy-Kovalevskaya theorem

Proof .

(i) We note that

∑
|α|≤k

|fαxα| =
∑
|α|≤k

|fα|
n∏
i=1

|xi|αi (2.7)

≤
∑
α

gα

n∏
i=1

|xi|αi (2.8)

= g(x̃), (2.9)

where x̃ = (|xi|)ni=1 . Therefore, ‖x̃‖ = ‖x‖, so if ‖x‖ < r then ‖x̃‖ < r. We know that g
converges for |x| < r, so f(x) ≤ g(x̃) <∞means f(x) also converges.

(ii) Let s ∈
(

0, r√
n

)
and set y = (s, . . . , s). Then ‖y‖ = s

√
n. By assumption, f(y) converges, and

a convergent series has uniformly bounded terms, so there exists C such that |fαyα| ≤ C for
all α.

|fα| ≤
C

|yα|
C

|y1|α1 . . . |yn|αn
=

C

s|α|
≤ C 1

s|α|
· |α|!
α!

:= gα, (2.10)

and this defines a majorant of f .

g(x) =
∑
α

gαx
α Cs

s− (x1 + · · ·+ xn)
= C

∑
α

|α|!
s|α|α!

xα (2.11)

From the example, we know this converges for ‖x‖ < s√
n
, and g � f , so we’re done!

We can use the method of majorants to prove the Cauchy-Kovalevskaya theorem for ODEs, 2.2.

Proof of CK-ODE.
We want to show that a formal power series will actually solve the ODE when f is real analytic.
To do this, we’ll first find what the coefficients are, and then we’ll see where the power series with
those coefficients solves the ODE.
Without loss of generality let u0 = 0, and for simplicity let n = 1. (Notation comment: primes will
be used for derivatives of the explicit argument, and dots for time derivatives.)
To find the indices, we’ll basically just repeatedly apply the ODE. The zeroth order is set by the
initial condition, so let’s look at the first order.

u̇ = f(u) =⇒ u̇(0) = f(0) =⇒ u1 = f(0). (2.12)

We can take a second derivative and look at the second order,
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Real analyticity and majorants 17

ü(t) = f ′(u(t))u̇(t) =⇒ ü(0) = f ′(0)u̇ = f ′(0)f(0) =⇒ u2 =
1

2!
f ′(0)f(0), (2.13)

and continuing in the same way,

...
u (t) = f ′′(u(t))u̇(t)f(u(t)) + f(u(t))2u̇(t) (2.14)

...
u (0) = f ′′′(0)(f(0))2 + (f ′(0))2f(0) (2.15)

u3 =
1

3!
(f ′′(0)f(0)2 + (f ′(0))2f(0)). (2.16)

By induction, we can show that uk = Pk
(
f(0), f ′(0), . . . , f (k−1)(0)

)
where Pk is a polynomial of k

variables and nonnegative coefficients (as they come out of the Leibniz rule, which doesn’t allow
for negative coefficients), starting

P1(x) = x

P2(x, y) =
1

2!
xy

P3(x, y, z) =
1

3!
(x2z + xy2).

Since f is real analytic, we know that we canwrite it as a series f(v) =
∑
k≥0 fkv

k with fk = f(k)(0)
k! .

We can invert this to get f (k)(0) = k!fk for all k. Sowe can use this towrite uk as a polynomial in the
fis: we get uk = Qk(f0, f1, . . . , fk−1), whereQk is also a polynomial with non-negative coefficients.
The polynomialQk is universal, meaning that if we have another ODE system v̇ = h(v), v(0) where
h(v) =

∑
hkv

k and v(t) =
∑
vkh

k, then vk = Qk(h0, h1, . . . , hk−1). This polynomial doesn’t
depend on the problem: it comes strictly out of the Leibniz rule.
We’ve established a relationship between the coefficients in the solution power series uk and f ’s
(rescaled) known derivatives fk. This will help us show the main statement, as it makes it easy to
apply real analyticity. We want to show that

∑
k≥0 ukt

k converges in a neighbourhood of t = 0 and
solves u̇ = f(u). Since f is real analytic,

∑
fku

k converges for |u| < r for some r > 0.
Fix s ∈ (0, r). Then f(s) converges absolutely, and therefore

∣∣fksk∣∣ ≤ C uniformly in k for all k ≥ 0
and some C > 0 (the terms are bounded). Therefore

|fk| ≤
C

sk
, gk ∈ R. (2.17)

This defines our majorant:

g(u) =
∑
k≥0

gku
k = C

∑
k≥0

(u
s

)k
=

Cs

s− u
for |u| < s (2.18)

Consider the auxiliary (“additional that will end up being quite useful”) differential equation with
trivial initial data,
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18 The Cauchy-Kovalevskaya theorem

dw

dt
= g(w), w(0) = 0. (2.19)

By separation of variables, and by imposing the initial condition, we can show this is solved by
w(t) = s −

√
s2 − 2Cst (where we take the negative square root in order to impose the initial

condition). This is real analytic for |t| < s
2C . Therefore w(t) =

∑
k wkt

k converges for |t| < s
2C , and

recalling that Qk is universal, wk = Qk(g0, g1, . . . , gk−1).
We claim that wmajorizes u. By construction, gk ≥ |fk| for all k, and sinceQk has no non-negative
coefficients,

wk = Qk(g0, g1, . . . , gk−1) ≥ Qk(|f0|, |f1|, . . . , |fk−1|) ≥ |Qk(f0, f1, . . . , fk−1)| = |uk| (2.20)

Example 2.4. Aquick example of this kind of triangle-inequality argument is
∣∣3x+ 3y2

∣∣ ≤
3|x|+ 3

∣∣y2
∣∣ ≤ 3|a|+ 3b2 = 3a+ 3b2. �

Since
∑
k wkt

k converges for |t| < s
2C , we know that

∑
k ukt

k converges for |t| < s
2C by Lemma 2.4.

We claim that u(t) =
∑
k≥0 ukt

k solves the ODE. Both sides are analytic, so it suffices to substitute
u(t) into the ODE and show that the derivatives of each side agree at t = 0 to all orders, which we
have by construction.

This argument can be extended to systems of dimension n. Instead of polynomials, we have systems of
polynomials depending on multi-indices: substitute uk → ujk = Qjk(Dα

uf(0))|α|<k−1 and w → wj = w′ for
all j. The argument then follows from generalising majorants to vector-valued majorants that hold for each
component individually.

In the non-autonomous case, u̇ = f(u, t), u(0) = 0, we just expand the vector x: we solve for v(t) = (u(t), t),
where v̇(t) = (u, 1) = (f(u, t), 1) = F (v) ∈ Rn+1.

2.3 Cauchy-Kovalevskaya for PDEs

Let our unknown function be ~u : Rn → Rm. Let r > 0. Our differential equation is

solve ∂t~u =

n−1∑
j=1

Bj(~u, x
′)∂xju+ ~C(~u, x),

subject to ~u(x′, t = 0) = 0 on x′ ∈ Bn−1
r (0)

(2.21)

where x′ ∈ Rn−1 and t = xn. We want a solution to the differential equation 2.21 on the n-dimensional ball
Bnr (0) = {x ∈ Rn | ‖x‖ =

√
t2 + |x′|2 < r}.

Theorem 2.5 (Cauchy-Kovalevskaya for first-order systems). Assume {B1, . . . , Bn−1, C} are all real analytic in
‖u‖2 + ‖x′‖2 < ρ2 for some ρ > 0. Then there exists r ∈ (0, ρ) such that there exists a unique real analytic function
~u =

∑
uαx

α that solves Equation 2.21.
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Cauchy-Kovalevskaya for PDEs 19

The idea we’ll use here is similar to the ODE case: we’ll compute the components uα = Dαu(0)
α! in terms of

Bj , C. To construct the derivatives we need for this, we’ll use the PDE directly.

Example 2.5. Consider the system

ut = vx − f
vt = −ux

u = v = 0 on {t = 0}.
(2.22)

The boundary conditions are u(x, 0) = v(x, 0) = 0, and so u(0, 0) = v(0, 0) = 0.

Our aim is to determine uα for all α using the PDE.

By differentiating the boundary condition, we have

(∂x)nu(x, 0) = (∂x)nv(x, 0) = 0 ∀n ≥ 0. (2.23)

This gives us all derivatives of the form α = (n, 0).

Then, from the PDE itself, we get

ut(x, 0) = 0− f(x, 0) (2.24)
vt(x, 0) = 0 (2.25)

Assuming f ∈ C∞, we can differentiate these as many times as we like.

(∂x)n∂tu(x, 0) = −(∂x)nf(x, 0) (2.26)
(∂x)n∂tv(x, 0) = 0. (2.27)

This holds for all n ≥ 0, so this defines the derivatives of the form α = (n, 1). Doing this one more
time, we get

utt = vxt − ft =⇒ utt(x, 0) = −ft(x, 0)vtt = −uxt =⇒ vtt(x, 0) = fx(x, 0) (2.28)

and this gives us

(∂x)n(∂t)
2u(x, 0) = −(∂x)n∂tf(x, 0) (2.29)

(∂x)n(∂t)
2v(x0) = (∂x)n+1f(x, 0). (2.30)
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20 The Cauchy-Kovalevskaya theorem

Therefore we have all the derivatives of the form α = (n, 2). We can keep doing this to get any
derivative we need. �

The idea of Cauchy-Kovalevskaya is that we use the PDE to get all the coefficients needed to construct the
series, then we use the fact that everything is real analytic to extend the idea from the ODE case to show
convergence to a solution in the PDE case.

Note thatC-Kguarantees uniqueness only in the class of real analytic functions: wemayhave other solutions,
but they won’t be real analytic.

2.4 Reduction to first-order system

In ODE theory, we reduced nth order differential equations to coupled systems of first-order ones. We can
do something similar for PDEs.

Consider the system

utt = f(u, ut) (2.31)
u(0) = u0 (2.32)
ut(0) = u1. (2.33)

We enlarge the system to use a primary variable w = (u, v) ∈ R2n, where we set v = ut. Then the system
becomes

wt = (ut, vt) = (v, f(u, v)) = g(w, t)

w(0) = (u0, u1).
(2.34)

Example 2.6. Consider u : R3 → R,

utt = uuxy − uxx + ut

u

∣∣∣∣
t=0

= u0(x, y)

ut

∣∣∣∣
t=0

= u1(x, y)

(2.35)

where we assume that u0, u1 are real analytic in a neighbourhood of 0 ∈ R2.

First, we zero out the boundary conditions by a change of variables. Note that f(t, x, y) = u0 + tu1

is analytic in a neighbourhood of 0 ∈ R3, and f
∣∣
t=0

= u0, f
∣∣
t=0

= u1, so we can enlarge the system
without losing real analyticity.

Set w(t, x, y) = u− f . This gives us the following differential equation in w:
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wtt = wwxy − wxx + wt + fwxy + fxyw + F

w

∣∣∣∣
t=0

= wt

∣∣∣∣
t=0

= 0 ∈ R,
(2.36)

where F = ffxy − fxx + ft is also analytic and independent of w and its derivatives.

By making the vectors of parameters and derivatives (except for the highest order) explicit, we can
reduce the system order. Let ~x = (x, y, t) = (x1, x2, x3), and let ~v = (w,wx, wy, wz). Then

v1
t = wt = v4

v2
t = wxt = v4

x1

v3
t = wyt = v4

x2

v4
t = wtt = v1v2

x2
− v2

x1
+ v4 + fv2

x2
+ fxyv

1 + F.

(2.37)

This can be put into the standard form

~vx3 =

2∑
j=1

Bj~vxj + C

~v = 0 for Br(0) ∩ {x3 = 0}

(2.38)

with

B1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , B2 =


0 0 0 0
0 0 0 0
0 0 0 1

v1 + f 0 0 0

 (2.39)

C =


v4

0
0

v4 + fxyv
1 + F

 . (2.40)

We conclude that by Cauchy-Kovalevskaya there exists a unique real analytic solution to the PDE
problem in a neighbourhood of 0 ∈ R3. �

This procedure relied on being able to solve for utt in terms of at most two spatial derivatives of u.

Also, note that we did this in two steps: zeroing out the initial data, and rewriting into a first-order system.
If we did this in reverse, it would stil work, but we would get a different parameterisation.

What’s the greatest generality in which we can do this? Consider the scalar quasilinear problem
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22 The Cauchy-Kovalevskaya theorem

∑
α||α|=k

aα(Dk−1u, . . . , u, x)Dαu+ a0(Dk−1u, . . . , u, x) = 0, (2.41)

where u : Br(0) ⊂ Rn → R, and u = ∂xnu = · · · = (∂xn)k−1u = 0 for ‖x′‖ < r, xn = 0. The combination
of this PDE and its data is called a Cauchy problem. We’ll introduce a vector consisting of u and all of its
derivatives up to order k − 1,

~v =

(
u,

∂u

∂x1
, . . . ,

∂u

∂xn
,
∂2u

∂x2
1

, . . . ,
∂2u

∂x1∂xn
, . . . ,

∂2u

∂x2
n

, . . . ,
∂k−1u

∂xk−1
n

)
. (2.42)

This is a vector in Rm with components v1, . . . , vm.

Now, to convert the PDE to a first-order system, we need to express ∂v
∂xn

in terms of ~v and its spatial
derivatives. To do this, we consider cases. Let j ∈ {1, . . . ,m− 1} run over the derivative components except
the last one.

If j = 1, we have v1 = u, so we get ∂v
1

∂xn
= ∂u

∂xn
= vl, for some l ∈ {1, . . . ,m}.

If 2 ≤ j ≤ m − 1, then we can describe this derivative in terms of some multi-index: vj = Dαu where
1 ≤ |α| ≤ k − 1 and αn < k − 1 (it’s not the very last component). So

∂vj

∂xn
= Dα ∂u

∂xn
=

∂|α|+1

∂xα1
1 . . . ∂xαn+1

n

u. (2.43)

Now, we consider some further cases. If |α| ≤ k − 2, then |α| + 1 ≤ k − 1, so we once again have ∂vj
∂xn

= vl

for some l ∈ {1, . . . ,m}. Otherwise, |α| = k − 1. We know that αn < k − 1 so there is some other nonzero
component, say p such that αp ≥ 1. So

∂vj

∂xn
=

∂

∂xn

∂|α|u

∂xα1
1 . . . ∂xαnn

=
∂

∂xp

∂|α|u

∂xα1
1 . . . ∂x

αp−1
p . . . ∂xαn+1

n

=
∂vl

∂xp
(2.44)

for some l ∈ {1, . . . , n}. Now, only j = m remains, for which we use the PDE. To do this, we need to
derive a condition on a certain term in the PDE. Recall that the coefficients are aα(~v, x) for v ∈ Rm. We are
assuming through all of this that aα : Bρ(0)→ R are analytic near zero. We’ll further assume that a certain
one of these is nonzero near the origin, ac := a(0,...,0,k)(0, . . . , 0) 6= 0. aα being real analytic implies they are
continuous, so this implies a(0,...,0,k)(z, x) 6= 0 for all ‖z‖2 + ‖w‖2 ≤ δ2 where δ < ρ.

We can now explicitly write out the PDE, slightly rearranged:

ac
∂ku

∂xkn
= −

 ∑
|α|=k,αn<k

aαD
αu+ a0

 (2.45)

∂ku

∂xkn
= − 1

ac

 ∑
|α|=k,αn<k

aαD
αu+ a0

 (2.46)
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The RHS consists of terms in v, ∂v
l

∂xp
with p < n, which we’ve seen how to analyse. Therefore, as long as we

can assume ac 6= 0, we’ve turned the PDE into a first-order system.

Definition 2.3. If a(0,...,0,k)(0, . . . , 0) 6= 0, then we say the plane {xn = 0} is non-characteristic (good). Otherwise
it is characteristic (bad).

2.5 Exotic boundary conditions

So far, we’ve just set our initial data on {xn = 0}, which is relatively limiting; what if initial data are specified
on a more general surface? Does C-K still hold?

We’ll find that we can generalise to other surfaces, but they need some structure. This is analogous to the
idea in ODE theory that we can solve ODEs along certain integral curves.

Definition 2.4. We say that Σ ⊂ Rn is a real analytic hypersurface near x ∈ Σ if there exists ε > 0 and a real analytic
map Φ : Bε(x0)→ U ⊂ Rn, where U = Φ(Bε(x0)), such that

(i) Φ is a bĳection

(ii) Φ−1 : U → Bε(x0) is real analytic

(iii) Φ(Σ ∩Bε(x0)) = {xn = 0} ∩ U .

The idea here is we want to have a real analytic chart mapping the surface Σ to a hyperplane. For instance,
in 2D, Σ is a curve, and Φ takes it to something that’s locally a line: Φ “straightens out” Σ.

Spheres, planes, and tori are all real analytic surfaces.

With this idea, let’s see how C-K extends to these surfaces. Let γ = (γ1, . . . , γn) be the unit normal to Σ, and
suppose u solves

∑
|α|=k

aα(Dk−1u, . . . , u, x)Dαu+ a0(Dk−1u, . . . , u, x) = 0

u = γi∂iu = · · · = (γi∂i)
k−1u = 0 on Σ

(2.47)

where Σ is a RA hypersurface.

Note that γi∂iu = γ · ∇u is the directional derivative of u in the direction γ.

Let v = u ◦Φ−1 on u. Then u(x) = v(Φ(x)) for x ∈ Bε(x0), and we can write the PDE on u as one on v using
the chain rule:
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24 The Cauchy-Kovalevskaya theorem

∂uxi =

n∑
j=1

∂uyi∂Φ(j)xi (2.48)

where for notational convenience we say Φ(xi) = yi. Plugging this into the equation, we can see that v
solves a quasilinear equation of the form

∑
|α|=k

bαD
αv + b0 = 0

v = ∂iv = · · · = (∂i)
k−1v = 0 on {yn = 0}

(2.49)

noting now that partial derivatives are with respect to y.

We’ve transformedourPDEwith exotic boundary conditions into oneon ahyperplane, so the only remaining
aspect is seeing how the non-characteristic condition transforms. We do this by computing the top-order
coefficient b(0,...,0,k). If α is of order k, then we can directly do the transformation:

Dαu =
∂kv

∂ykn

α

+ terms not involving ∂
kv

∂ykn
. (2.50)

Therefore the coefficient of ∂
kv
∂ykn

is b(0,...,0,k) =
∑
|α|=k aα(∇Φ(n))α.

Definition 2.5. Σ is non-characteristic at x0 ∈ Σ for the above equation if

b(0,...,0,k)(0, . . . , 0, x0) =
∑
|α|=k

aα(0, . . . , 0, x0)(∇Φ(n))α(x0) 6= 0.

Note thatΣ = {x | Φ(n)(x) = 0}: Σ are the xs whose nth component is zero under themapΦ. Thismeans it’s
the graph of that function, soDΦ(n)(x) = c(x)γ(x), where γ is the unit normal of Σ. This lets us rewrite the
non-characteristic condition: the surface is non-characteristic if and only if

∑
|α|=k aα(0, . . . , 0, x0), γ(x0)α 6=

0.

Σ is non-characteristic at x0 ∈ Σ if
∑
aα
(
∇Φ(n)(x0)

)α 6= 0. By the condition that x0 ∈ Σ, we see that
∇Φ(n)(x0) = c(x0)︸ ︷︷ ︸

6=0

γ(x0), where γ is the unit normal of Σ. Being non-characteristic is therefore equivalent to

∑
|α|=k

aα(0, . . . , 0, x0)γ(x0)α 6= 0. (2.51)

All this gives us a more general form of Cauchy-Kovalevskaya for non-characteristic hypersurfaces:

Theorem 2.6 (C-K for data on non-characteristic hypersurfaces). Suppose Σ ⊂ Rn is a RA hypersurface, and
consider the quasilinear PDE
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{∑
aαD

αu(x) + a0 = 0

u = γ∇u = · · · = (γ∇)k−1u = 0 on Σ
(2.52)

where γ is the unit normal to Σ. Suppose also a0, aα are RA at x0 ∈ Σ, and Σ is non-characteristic at x0 ∈ Σ. Then
there exists a unique RA solution to the PDE in a neighbourhood of x0.

2.6 Characteristic surfaces

We’ve seenwhat happenswhen the surface onwhich the boundary condition is defined is non-characteristic,
but what if it is characteristic?

Suppose we have a Cauchy problem

{
Lu =

∑n
i,j=1 aij

∂2u
∂xi∂xj

= f

u = γi∂iu = 0 on Πγ = {x | ~x · ~γ = 0}
(2.53)

where aij ∈ R and without loss of generality aij = aji (mixed partials commute) and ‖γ‖ = 1.

Πγ is non-characteristic if andonly if
∑n
i,j=1 a

ijγiγj 6= 0 (the zerogammacase is coveredby thenormalisation
condition.)

Let’s try to find non-characteristic surfaces. The condition on Πγ being characteristic can be written in terms
of the Rn inner product as 〈Aγ, γ〉 where A = (aij). Because A is symmetric, it is diagonalisable, so we can
write it in the form A = P ᵀDP . The condition then becomes

〈Aγ, γ〉 = 〈P ᵀDPγ, γ〉 = 〈DPγ, γ〉 = 〈Dv, v〉 (2.54)

where v = Pγ. We see v is a unit vector, and so this has the form vᵀDv = 0, but D is diagonal so we can
write it out in terms of the eigenvalues {λi}i of A:

Πγ non-characteristic ⇐⇒
n∑
i=1

λi(vi)
2 6= 0. (2.55)

Therefore, we can look at this in terms of the eigenvalues. We’ll look at two interesting cases:

1. If all λi > 0 or λi < 0, there are no characteristic hyperplanes because the condition λiv2
i = 0 can’t be

met. In this case, L is called an elliptic operator. The simplest example is the Laplacian4 =
∑
∂2
ii.

2. If one eigenvalue is negative and the rest are positive (or vice versa), we call L a hyperbolic operator. The
simplest example is −∂2

t +4. These do admit characteristic hyperplanes, defined by the intersections
of the cone |x|2 − t2 = 0 and the unit ball ‖x‖2 + t2 = 1.
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26 The Cauchy-Kovalevskaya theorem

Our aim from here will be to focus on interesting properties of elliptic and hyperbolic equations. For the
moment, let’s ignore boundary conditions, and look for wave-like solutions of the form u(~x) = ei

~k·~x to the
PDE form we’ve been considering:

L
(
ei
~k·~x
) n∑
j,l=1

ajlkjkl =︸︷︷︸
we’d like

0 (2.56)

This happens if
∑
ajlkjkl = 0. If k is parallel to the normal of a characteristic surface γ, then we can write

k = cγ and this reduces to
∑
ajlγjγl = 0.

If L is elliptic, however, there is no such γ, so we must have that c = 0. This implies ~k = ~0, and so u(x) = 1.
There are no wave-like (periodic in x) solutions to an elliptic PDE.

On the other hand, if L is hyperbolic, it does admit wave-like solutions u(~x) = ei(λ~γ)·~x because it does have
characteristic surfaces. This gives a family of solutions per characteristic surface, parameterised by λ ∈ R.

λ controls the size of oscillations; for instance, by taking λ large, we can give the solution large oscillations
in the γ direction. Also, u′(x) ∼ λ, so for large λ, the solutions become “rougher” (integrability gets harder
because of the large variations in the derivative).

Can we take an infinite sum of such solutions?

Exercise 2.7. Consider u(x, y) =
∑∞
n=1 n

− 7
2 cos(n(x+ y)). This solves the hyperbolic equation uxx− uyy = 0 and

corresponds to the characteristic line whose normal is γ = (1, 1). Show u ∈ C2 but u 6∈ C3.

The idea here is that hyperbolic equations allow for rough solutions, whereas solutions to elliptic equations
tend to be smooth.

2.7 Limitations of Cauchy-Kovalevskaya

There are two main reasons why C-K alone is an insufficient theory.

1. We have no control over how long a solution exists; we only solve a PDE in a neighbourhood of an
initial point.

2. We have no guarantees that the solution has continuous dependence on the data.

Example 2.7. Consider uxx + uyy = 0 subject to u(x, 0) = ϕ(x) and ∂yu(x, 0) = 0. We’re parame-
terising the boundary condition using ϕ.

If ϕ(x) = 0, then u(x, y) ≡ 0 solves the PDE, and by Cauchy-Kovalevskaya this must be the only
solution. If we varied ϕ a little bit so that it’s close to, but not exactly zero, then will u(x, y) also
be close to zero? According to Hadamard’s notion of well-posedness, we’d like this to be the case,
but we can show this isn’t always the case.

Let ϕk(x) = e−
√
k cos(kx). A solution to this PDE is given by
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uk(x, y) = e−
√
k cos(kx) cosh(ky). (2.57)

Since ϕk and uk are real analytic for any k, this is the solution guaranteed by Cauchy-Kovalevskaya.
However, it does not satisfy well-posedness. As we take k →∞, the initial data function goes to 0:

sup
x∈R2

|∂nxϕk(x)| = kne−
√
k → 0. (2.58)

But this isn’t the case for the solution: fix y = ε > 0 small, then

sup
x∈R
|uk(x, ε)| = e−

√
k cosh(kε) ≥ e−

√
k 1

2
eεk →∞. (2.59)

�

The problem here is the restriction to real analyticity: the Cauchy-Kovalevskaya theorem gives us a solution
under these constraints, but not always a particularly physically useful one. Ifwewant to satisfyHadamard’s
notion of well-posedness, we need to weaken this assumption and try to reduce regularity.
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3.1 Motivation

At the end of the last chapter, we saw that the Cauchy-Kovalevskaya theorem doesn’t always help us
generate well-posed solutions. However, it would be an incomplete theory even without this, because of
its restrictions on boundary conditions. We know that elliptic equations admit real analytic solutions, so
surely C-K is a complete theory there?

It turns out it isn’t. Solving for the electrostatic potential of a conductor living in a larger space requires
solving a PDE of the form

4u = f in U

u

∣∣∣∣
∂U

= 0 on ∂U
(3.1)

which is the Dirichlet problem, where we can identify u as the electrostatic potential ϕ and f as the charge
distribution ρ.

C-K can’t guarantee a solution here, because we would also need data about what happens to u in the
normal direction to U . That is, we would also need ∂u

∂γ = 0 on ∂U . Electromagnetic theory tells us we don’t
actually need this data, so C-K would have us overspecify conditions we don’t really need. It prioritises
regularity over being physically realistic. We need a more general tool.

3.2 Hölder spaces

Anotherway of saying real analyticity is too strict a condition is: not every solution wemay care about necessarily
lives in the space of real analytic functions. So to start finding other solutions, we need to build some spaces in
which they might be able to live. We’ll impose less regular conditions in order to build larger spaces and
see what existence results we can place on those.

The first of these is the Hölder spaces, which generalise continuity. Recall that Ck is defined as follows:

Definition 3.1. Let U ⊂ Rn be open and let k ∈ N.

Ck(U) = {u : U → R | u is k times differentiable, Dαu continuous ∀|α| ≤ k}. (3.2)

This is a good start, but it is not a Banach space with the sup norm ‖·‖∞ because it doesn’t say anything
about what might happen on the boundary. For instance, u(x) = 1

x is in U = (0, 1), but the sup norm does
not exist because supx∈U u(x) =∞.

We can rule this out with the next definition:

Definition 3.2. Let U ⊂ Rn be open and let k ∈ N. The space of bounded k-continuous functions is given by

Ck(U) = {u ∈ Ck(U) | Dαu bounded and uniformly continuous on U∀|α| ≤ k}. (3.3)

together with the norm
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‖u‖Ck(U) =
∑
|α|≤k

sup
x∈U
|Dαu(x)|. (3.4)

This requires that we can uniformly extend u to the closure ∂U .

Boundedness and uniform continuity are quite strict conditions if U is unbounded: this is a more restrictive
definition than “the set of k-differentiable functions such that its derivatives of all orders are continuous”.

We can show that (Ck(U), ‖·‖Ck(U)) is a Banach space. (Note that Evans’ book doesn’t use quite the same
definition.)

Uniform continuity being a strict condition prompts us to try and relax it a bit while keeping the space
Banach. This leads us to Hölder continuity.

Definition 3.3. We say that u : U → R is Hölder continuous of index γ ∈ (0, 1] if there exists a constant c ≥ 0 such
that

|u(x)− u(y)| ≤ c|x− y|γ ∀x, y ∈ U. (3.5)

If γ = 1, we say the function is Lipschitz continuous. If γ > 1, it is possible to show that u must be constant:
between x = x0 and y = xn, define xi = x+ i

n (y − x). Then

|u(x)− u(y)| ≤ C‖x− y‖γ ≤︸︷︷︸
Minkowski’s inequality

C

n−1∑
i=0

‖xi+1 − xi‖γ = nC
‖x− y‖
nγ

n→∞−−−−→ 0. (3.6)

We can define the space of functions that are Hölder continuous:

Definition 3.4. Let γ ∈ (0, 1]. We say

C0,γ(U) = {u ∈ C0(U) | u is γ −Hölder continuous} (3.7)

is the 0-Hölder space.

We’d like to make this a Banach space, so we try to make a choice for the norm. We choose the smallest
value of C in the Hölder inequality:

[u]C0,γ(U) = sup
x,y∈U
x 6=y

|u(x)− u(y)|
|x− y|γ

(3.8)

However, this is not a norm, because constant functions are zero under it. We therefore call it the γ-Hölder
semi-norm, and we make it into a norm by adding the C0 norm to it:
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‖u‖C0,γ(U) = [u]C0,γ(U) + ‖u‖C0(U). (3.9)

With this choice, C0,γ(U) is a Banach space.

We can extend this to differentiation at higher orders:

Definition 3.5. The k−Hölder space is given by

Ck,γ(U) = {u ∈ Ck(U), Dαu ∈ C0,γ(U) ∀|α| = k} (3.10)

with the norm

‖u‖Ck,γ(U) = ‖u‖Ck(U) +
∑
|α|=k

[Dαu]C0,γ(U). (3.11)

Ck,γ(U) is a Banach space.

3.3 Lebesgue spaces

We’ve built spaces that guarantee differentiability, but we need our solutions to also be integrable, so we
review the Lp spaces.

Definition 3.6. Let U ⊂ Rn be open and let 1 ≤ p ≤ ∞. We define the space Lp(U) by

Lp(U) = {u : U → R measurable | ‖u‖Lp(U) <∞}\ ∼ (3.12)

where the norm is given by

‖u‖Lp(U) =

{(∫
U
|u(x)|pdx

)1/p
1 ≤ p <∞

ess supx∈U |u(x)| = inf{c ≥ 0 | |u(x)| ≤ c pointwise a.e.}
(3.13)

and where u1 ∼ u2 if u1 = u2 a.e.

Lp(U) with this norm is a Banach space: scaling and superposition are clear, andwe can show completeness
using the monotone and dominated convergence theorems.

Here, too, we have potential issues at the boundary, but in the other direction: we’re now being potentially
too restrictive about what happens at ∂U . What we really care about is local integrability, on parts of U that
avoid the boundary, so we make this idea concrete.

We say u ∈ Lploc(U) if u ∈ Lp(V ) for every V ⊂⊂ U (“V compactly contained in U”). This means there exists
a compact setK such that V ⊂ K ⊂ U . Another way of writing this is Lploc(U) = ∩V⊂⊂ULp(V ).
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Wemight imagine that “cutting out” the boundarywould lead to problemswith completeness, and in fact it
does: Lploc(U) is not a Banach space. The problem actually starts even before completeness, because there’s
no really useful way to put a norm on it. The norm on the parent space came from integrating over U , but
we can’t do that here if we want to rule out boundary dependence.

The tradeoff here is avoiding the boundary is often useful anyway. Let u(x) = 1
x2 on U = (0, 1). We can’t

integrate this globally, but we can integrate it anywhere we’d like locally. Another example is u(x) = 1 on
U = R. This is not in L1(R) because we can’t integrate it, but we can integrate over any subset of a compact
set, so u ∈ L1

loc(R).

Observe that ifK is compact,K ⊂ U , and U is open, then

d(K, ∂U) = inf{|x− y| | x ∈ K, y ∈ U{} > 0 (3.14)

That is, every compact setK has a nontrivial “buffer zone” between it and the boundary.

3.4 Weak derivatives

Now we’ve got a good theory of integrable functions, and we’d like to also make them differentiable. One
way to do that is to just require that functions are both differentiable and locally integrable towhatever order
we’d like. But these two ideas are slightly incompatible. We only understand local integrability through
its behaviour over a whole set at once, by requiring that a certain integral is finite. On the other hand,
when we look at nondifferentiable functions in single-variable calculus, it’s always things like f(x) = |x|;
it’s continuous except for some “problem points”. Issues at individual points (or in a more general setting,
at any subset of measure zero) don’t matter to local integrability. There’s no reason to impose the high
standard of differentiability everywhere on a condition that only ever requires that something be true
almost everywhere. So we’d like an idea of what it means to be differentiable that works with the integral
formulation, so that eventually we have a more expansive view of potential PDE solutions.

So what are the fundamental properties of a derivative, especially as it relates to integration? A major one
is the Leibniz rule or product rule,

df(x)g(x)

dx
= f(x)

dg(x)

dx
+

df(x)

dx
g(x) (3.15)

which if we rearrange and integrate becomes integration by parts:

∫
f(x)dg(x) = f(x)g(x)−

∫
g(x)df(x) (3.16)

(with some extra boundary terms).

The idea behind a weak derivative is we drop the limit/infinitesimal definition and say a weak derivative is
anything that satisfies integration by parts. We’ll see that this is unique and agrees with the usual derivative if
it exists, but also gives us the ability to handle discontinuities.

Definition 3.7. Let u, v ∈ L1
loc(U) and let α be a multi-index. We say v is the αth weak derivative of u if
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∫
U

uDαφ = (−1)|α|
∫
U

vφdx ∀φ ∈ C∞c (U). (3.17)

We write v = Dαu.

We see that v takes the place that Dαu would have if it existed in the usual sense. Also, we’ve been able to
get rid of the boundary term by requiring our test functions φ have compact support. Further, by requiring
that they’re C∞, we’ve also imposed the requirement that the derivatives Dαφ have compact support, so
the left hand side of the definition makes sense.

We wanted to include u(x) = |x| with this extension; does it? Yes! We can show its weak derivative is
v = sgn(x). Not everything is weakly differentiable, though: the Heaviside step function H(x) = 1x>0 is
not. We may know from distribution theory that the derivative of H is the Dirac delta δ0, but δ0 is not in
L1

loc and cannot be represented in the form
∫
gφ for some g ∈ L1

loc.

Earlier we claimed weak derivatives are unique, and we can show this using the definition.

Lemma 3.1 (Uniqueness of weak derivatives). Let v, v ∈ L1
loc both be αth weak derivatives of u ∈ L1

loc(U). Then
v = v almost everywhere.

Proof .
For all φ ∈ C∞c (U), we have

∫
U

vφdx =

∫
U

vφdx = (−1)|α|
∫
U

uDαφdx. (3.18)

The right hand side doesn’t matter beyond just being something that’s independent of both v and
v). This gives us

∫
U

(v − v)φdx = 0 (3.19)

We can use this to show that v = v almost everywhere. Suppose not. Then there exists a subset
E ⊂ U with nonzero measure, such that v − v is nonzero on E. Then, let φ be a smooth and
arbitrarily accurate approximation of the indicator function 1E . This would yield

∫
U

(v − v)φ 6= 0,
which would be a contradiction. Therefore v = v almost everywhere.

This also shows us that the weak derivative agrees with the usual derivative up to equality almost every-
where, because the usual derivative obeys the Leibniz rule and so the above uniqueness argument shows it
must match the weak derivative.

3.5 Sobolev spaces

With an idea of derivatives that are more naturally compatible with integration, we can now build the idea
of integrable functions that are differentiable up to a desired order.
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Definition 3.8. The Sobolev spaceW k,p(U) is defined by

W k,p(U) = {u ∈ L1
loc(U) | u ∈ Lp(U), weak derivatives Dαu exist ∀|α| ≤ k with Dαu ∈ Lp(U)} (3.20)

and has norm

‖u‖Wk,p(U) =


(∑

|α|≤k
∫
U
|Dαu|pdx

)1/p

1 ≤ p <∞∑
|α|≤k ess supU |Dαu| p =∞.

(3.21)

There is an alternate definition of Sobolev spaces in terms of the Fourier transform, but the Fourier transform
depends on a flat space, and we want a definition that works in curved spaces as well.

When p = 2, we write Hk(U) = W k,2(U). We choose H because this happens to be a Hilbert space.
In practice, we’ll later mostly use H1(U): the space of once-weakly-differentiable, locally-integrable and
globally square-integrable functions on U .

Further, we denote by W k,p
0 (U) the completion of C∞c (U) in the Sobolev(k, p) norm. The idea here is that

functions in C∞c exist interior to U and vanish close to the boundary. If we take some sequence of them,
their limit with respect to the Sobolev norm should also vanish near the boundary, and this completion
enforces that. (I think).

Example 3.8. Let U = B1(0) ⊂ Rn, and consider

u(x) =

{
|x|−λ x ∈ B1(0) \ {0}
anything x = 0.

(3.22)

What Sobolev spaces does this live in? For x 6= 0, we can write a classical derivative in the ith
direction,

Diu = − λxi

|x|λ+2
. (3.23)

By considering φ ∈ C∞c (B1(0) \ {0}), we can see that if u has a weak derivative v then it matches
this definition, i.e. vi = Diu. With the weak derivative, we get to ignore behaviour at the origin
because it vanishes under the integral.

Note by moving to spherical coordinates that u ∈ L1(U) ⇐⇒ λ < n and vi ∈ L1(U) ⇐⇒ λ <
n− 1. So we assume that λ+ 1 < n.

We claim that the weak derivative of u in U is given by
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vi =

{
−λxi
|x|λ+2 x 6= 0 \ {0}
anything x = 0.

(3.24)

This follows from Stokes’ theorem. Fix ε > 0 to contain the singularity; then, we integrate the test
function over U \Bε(0) so that we can use the classical derivative:

(−1)

∫
U\Bε(0)

uφxidx =

∫
U\Bε(0)

Diuφdx−
∫
∂Bε

uφ~n · d~S, (3.25)

where ~n is the unit inward-pointing normal, and we removed the ∂U boundary term by letting φ
have compact support.

Now, we estimate the difference between the two integrals and show it goes to 0, thereby showing
that integration by parts holds meaning that vi is the correct choice of weak derivative.

∣∣∣∣∣
∫
∂Bε(0)

uφ~n · d~S

∣∣∣∣∣ ≤ ‖φ‖L∞
∫
∂Bε(0)

ε−λ~n · d~S (3.26)

C̃εn−1−λ ε→0−−−→ 0 (3.27)

where the last step uses the assumption that n− 1− λ > 0.

Therefore, by the dominated convergence theorem, we get that

−
∫
U

uφxidx =

∫
U

viφdx, (3.28)

which means u has a weak derivative as above. �

We showed that a weak derivative exists for a nondifferentiable function with |x|, and further, the above
example shows that a weakly differentiable function does not even have to be continuous.

We may also ask what function spaces vi = Diu lives in. We can show by considering the integral that
Diu ∈ Lp(U) ⇐⇒ p(λ + 1) < n. Therefore, if λ < n

p − 1, then u ∈ W 1,p(U). If we further impose p > n,
then λ < 0 and u ∈ C0(U) so we have continuity. On the other hand, if λ > n

p − 1, then u 6∈ W 1,p(U). In
general, spaces with larger values of p are “better behaved”.

Theorem 3.2. For each k ∈ {0, 1, 2, . . . } and 1 ≤ p ≤ ∞, the Sobolev space (W k,p(U), ‖·‖Wk,p) is a Banach space.

Proof .
To show it’s a normed linear space, we use Minkowski’s inequality,
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(
n∑
i=1

(ai + bi)
p

)1/p

≤
(∑

|ai|p
)1/p

+
(∑

|bi|p
)1/p

. (3.29)

To show it is complete, let (uj) be a Cauchy sequence in W k,p(U). Note that ‖Dαu‖Lp(U) ≤
‖u‖Wk,p(U) for |α| ≤ k. Set v = uj . This tells us that (Dαuj)j is Cauchy in Lp(U).
By completeness of Lp(U) there exists some uα ∈ Lp(U) such that Dαuj → uα in Lp for each
‖α‖ ≤ k. Call u = limj u

(0,...,0)
j . We claim that uα is the weak derivative ofDαu of the limit u. Now,

it remains to prove that uα = Dαu.
Let φ ∈ C∞c (U) be a test function. Since uj ∈ W k,p, we can see that Dαuj exist and satisfy the
definition of the weak derivative:

(−1)|α|
∫
U

ujD
αφdx =

∫
U

Dαujφdx ∀j. (3.30)

Take j → ∞, use uj
Lp−−→ u, and show Dαuj

Lp−−→ uα by Hölder’s inequality. We can conclude the
statement in equation 3.30. By the definition of the weak derivative, Dαu = uα ∈ Lp(U), and
therefore u ∈W k,p(U), which was what we wanted.

3.6 Approximations of functions in Sobolev spaces

An obvious caveat when we’re working with Sobolev spaces is the functions have limited regularity. We
made these spaceswith finite differentiability and integrability built in, which gives us a large set of functions
to work with when solving PDEs, but often makes it difficult to make actual statements about them. One
way of resolving this is smoothing functions out by convolving them with smooth mollifiers.

Definition 3.9. Let

η(x) =

{
C exp

(
−1

1−|x|2

)
|x| < 1

0 |x| ≥ 1
, (3.31)

where we choose C such that
∫
Rn η(x)dx = 1.

For each ε > 0, let ηε(x) = 1
εn η
(
x
ε

)
.

We call ηε the standard mollifier.

Exercise 3.3. Show that ηε ∈ C∞c (Rn), that supp(ηε) ⊆ Bε(0), and that
∫
Rn ηε(x)dx = 1.

Suppose U ⊂ Rn is open. Let Uε = {x ∈ U | dist(x, ∂U) > ε}.

Definition 3.10. If f ∈ L1
loc(U), then the mollification of f is fε : Uε → R, given by

fε(x) =

∫
U

ηε(x− y)f(y)dy =

∫
Bε(x)

ηε(y)f(x− y)dy. (3.32)
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Theorem 3.4 (Properties of mollifiers). Let f, fε be defined as above.

(i) fε ∈ C∞(Uε) (massive improvement!)

(ii) fε
ε→0−−−→ f a.e. in U

(iii) if f ∈ C0(U) then fε → f uniformly on compact subsets of U

(iv) if 1 ≤ p <∞ and f ∈ Lploc(U), then fε → f in Lploc(U), i.e. ‖fε − f‖Lp(V ) → 0 for all V ⊂⊂ U .

Lemma 3.5 (Local approximations of Sobolev functions away from ∂U ). Let u ∈W k,p(U) for some 1 ≤ p <∞,
and set uε = ηε ∗ u on Uε. Then

(i) uε ∈ C∞(Uε) for each ε > 0

(ii) if V ⊂⊂ U then uε → u inW k,p(V ).

Proof of (ii).
Since uε ∈ C∞ we can compute its classical derivative,

Dα
xuε(x) = Dα

x

∫
U

ηε(x− y)u(y)dy =

∫
U

Dα
xηε(x− y)u(y)dy

= (−1)|α|
∫
U

(Dα
y ηε(x− y))u(y)dy

= (−1)|α(−1)|α|
∫
U

ηε(x− y)Dα
y u(y)dy

= (ηε ∗Dαu)(x).

(3.33)

Fix V ⊂⊂ U . By the properties of mollifiers (iv), since Dαu ∈ Lp(U),

Dαuε = ηε ∗Dαu→ Dαu in LpV on ε→ 0

=⇒ ∀V ⊂⊂ U∀δ > 0,∃ε0 = ε0(δ, V ) s.t. ‖uε − u‖pWk,p(U) =
∑
|α|≤k

‖Dαuε −Dαu‖LpV ≤ δ

∀0 < ε < ε0.

(3.34)

Theorem 3.6 (Global approximation by smooth functions). Suppose U ⊂ Rn is open and bounded, and suppose
u ∈W k,p(U) for some 1 ≤ p <∞. Then there exists (uj) ∈ C∞(U) ∩W k,p(U) such that uj → u inW k,p(U).

Note that we don’t yet assert that uj ∈ C∞(U).

Proof .
The idea is to exhaust U by compact sets.
We have U = ∪∞j=1Uj where Uj = {x ∈ U | dist(x, ∂U) > 1

j }: each Uj gets closer to the boundary.
Let Vj , Uj+3 \ Uj+1, so that they include the regions between the Us and also overlap with one
another if they’re consecutive. U is a bounded set, so the Ujs are precompact (their closure is
compact), so the Vjs are compactly contained in U (or symbolically Vj ⊂⊂ U ). Choose V0 ⊂⊂ U to
contain the interior, such that U = ∪∞j=0Vj .
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Now, wewant to approximate u on each set Vj . Let (ξj)
∞
j=0 be a partition of unity subordinate to Vj .

That means they’re functions of x such that 0 ≤ ξj ≤ 1, they are smooth and compactly supported
on Vj (ξj ∈ C∞c (Vj)), and they add to 1:

∑∞
j=1 ξj(x) = 1 for x ∈ U . a

Given u ∈ W k,p(U), consider the product ξju: it’s Sobolev and contained in Vj , or ξju ∈ W k,p(U)
and supp(ξju) ⊂ Vj . So we’ve localized u to Vj . Note that these don’t agree on overlaps in general,
as the partition of unity specifies nothing about that.
Next, we smooth out our split-up function. Let Wj , Uj+4 \ Uj and note supp(ξju) ⊂ Uj ⊂⊂ Wj .
By Lemma 3.5 , we know that we can mollify this function:

uj := ηεj ∗ (ξju)→ ξju on Vj . (3.35)

Fix δ > 0. For each j, we can choose εj sufficiently small such that supp(uj) ⊂ Wj (convolution in
general may wobble the support of uj outside ofWj , but we can restrict that with an appropriate
ε) and also such that

‖uj − ξju‖Wk,p(U) = ‖uj − ξju‖Wk,p(Wj)
≤ δ

2j+1
. (3.36)

The last step, to close the argument, puts the ujs together to create the desired approximation. This
uses the facts that

∑
ξj = 1 and that uj 6= 0 for only finitely many Wjs. Let v =

∑∞
j=1 uj . Then

v ∈ C∞(U), since for each open set V ⊂⊂ U this is a finite sum of smooth functions. Since the sum
of this partition of unity is 1, we have that

u = u · 1 =
∑
j≥1

ξju on U. (3.37)

So for any V ⊂⊂ U , we have

‖v − u‖Wk,p(V ) ≤︸︷︷︸
triangle inequality

∞∑
j=0

‖uj − ξju‖Wk,p(V ) ≤ δ
∑
j≥0

2−j+1 = δ. (3.38)

Note that δ is independent of V , so if we take a supremum over all such V ⊂⊂ U , we have some δ
such that ‖v − u‖Wk,p(U) ≤ δ. Therefore v ∈W k,p(U), which was what we wanted.

aThe existence of a partition of unity should be somewhere in Lee ISM, I think.

3.7 Approximations

By global approximation, we made a sequence of functions (uj) ∈ C∞(U) ∩W k,p(U) converging to any
u ∈W k,p(U) for 1 ≤ p ≤ ∞. Our next natural question is: can we approximateW k,p(U) by C∞(U)? There’s
pathological counterexamples thatmake this difficult, like the Cantor set inR2: letU = R2\C, then ∂U = C.

Definition 3.11. Suppose U ⊂ Rn is open and bounded. We say that ∂U is a Ck,∞ domain if ∀p ∈ ∂U there exists
r > 0 and a function γ : Rn−1 → R, γ ∈ Ck,α(Rn−1) and such that U ∩ Br(p) = {(x′, xn) ∈ Br(p), xn > γ(x′)}
where x′ = (x1, . . . , xn−1) ∈ Rn−1.

In words, locally ∂U is the graph of a Ck,α function: ∂U ∩Br(p) = {xn = γ(x′)}.
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Theorem 3.7 (Global approximation by smooth Sobolev functions). Let U ∈ Rn be open and bounded with
Lipschitz boundary, i.e. ∂U is a C0,1 domain. Let u ∈ W k,p(U), 1 ≤ p < ∞. Then there exists (uj)j ⊂ C∞(U)
such that uj → u inW k,p(U).

The idea of the proof is that for all p ∈ ∂U there exists a local approximation. Since ∂U is compact, for every
open cover there exists a finite subcover, and the interior of U is already covered.

Proof .
Fix p ∈ ∂U . Since ∂U ∈ C0,1, there exists r = r(p) > 0 and a Lipschitz function γ : Rn−1 → R such
that U ∩Br(p) = {x ∈ Br(p), xn > γ(x1, . . . , xn−1)}.
Set V = U ∩Br/2(p). Observe

|γ(x)− γ(p)| ≤ L|x− p|. (3.39)

In words, this tells us that the function can’t grow faster away from p than a line with gradient L.
In particular, we can always fit a cone that emanates from the point p (this idea is called themethod
of cones) inside the graph, such that its gradient is 2L.
Let Cx be a cone of height r4 , with an opening angle 2θ such that cot θ = 2L, and with its vertex at
x. Then Cp \ {p} ⊂ V .
From here, to deal with the boundary, we’ll move points up and then mollify them. For instance,
for x ∈ V , Cx+δên ⊂ U ∩Br(p) for 0 ≤ δ ≤ r

8 .
For the shifted point xδ := x+ δên where x ∈ V, 0 < δ < r

8 , we have

V δ = {xδ | x ∈ U} ⊂ U ∩Br(p). (3.40)

Let d(δ) = dist
(
V
δ
, ∂(U ∩Br(p))

)
. For every 0 < ε < 1

2d(δ) we have Bε(x) ⊂ U ∩Br(p) for x ∈ V ,

and in fact V δ ⊂⊂ U .
Define uδ(x) = u(x + δên) for x ∈ V , vε,δ = ηε ∗ uδ for 0 < ε < 1

2d(δ). Then uε,δ ∈ C∞(V ). FIx
µ > 0 small. Then note

‖vε,δ − u‖Wk,p(V ) ≤ ‖vε,δ − uδ‖Wk,p(V ) + ‖uδ − u‖Wk,p(V ). (3.41)

The translator operator is constant in the Lp−norms for p < ∞ (handout) so we pick δ > 0
such that ‖uδ − u‖Wk,p(V ) ≤ µ. Fix such a δ, and choose 0 < ε < 1

2d(δ) small enough such that
‖vε,δ − uδ‖Wk,p(V ) < µ.
Now, let p vary. We see that the sets Vp cover ∂U . But ∂U is compact, so we can find finitely many
points pi and radii ri > 0 such that Vi = U ∩Bri/2(pi), i = 1, . . . , n is a cover of ∂U . Choose V0 ⊂⊂ U
such that U = ∪ni=0Vi. By the above, we have that vi ∈ C∞((Ui)) such that ‖vi − u‖Wk,p(Ui)

≤ µ for
each i. By Lemma there exists v0 ∈ C∞(V0) such that ‖v0 − u‖Wk,p(V0) ≤ µ.
Let (ξi)

n
i=0 be a smooth partition of unity subordinate to {U0, . . . , Un}. Define v =

∑n
i=0 viξi,

v ∈ C∞(U). Further, for |α| ≤ k,
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‖Dαv −Dαu‖Lp(U) =

∥∥∥∥∥Dα(
∑
i

viξi)−Dα(
∑
i

u)

∥∥∥∥∥
Lp(U)

(3.42)

≤
n∑
i=0

‖Dα(ξi(vi − u))‖Lp(Vi)
(3.43)

≤ Ck
n∑
i=0

‖vi − u‖Wk,p(Vi)
(3.44)

≤ Ck(1 +N)µ, (3.45)

and by choosing µ as small as we want, we can show ‖v − u‖Wk,p(U) ≤ Cµ → 0, which was what
we wanted.

The key idea here was the geometric one, where we took a smooth approximation of the function on the
boundary and extended it with the cone to all of U .

3.8 Extensions and traces

Let u be Sobolev (u ∈ W k,p(U)) where U is open and bounded in Rn. We’d like to make a function u such
that u

∣∣
U

= u and it’s defined on all of Rn. To start with, how do we extend u to the boundary? We can’t just
set the function to u = 0 on Rn \ U because we would get discontinuities.

Theorem 3.8 (Extension theorem). Suppose U is open and bounded and ∂U is C1,0. Choose V such that V ⊂⊂ U
and let 1 ≤ p < ∞. Then there exists a bounded linear operator E : W 1,p(U) → W 1,p(Rn) such that for all
u ∈W 1,p(U),

1. E(u) = u a.e. in U

2. supp(E(u)) ⊂ V

3. ‖E(u)‖W 1,p(Rn) ≤ c‖u‖W 1,p(U) where C = C(U, u, p).

We call Eu an extension of u to Rn.

Proof sketch.

1. We’re going to establish the result for C1 functions first. Fix x0 ∈ ∂U and suppose ∂U flat,
i.e. it’s of the form {xn = 0}. We can assume there exists r > 0 such that

B+ = Br(x0) ∩ {xn ≥ 0} ⊂ U
B− = Br(x0) ∩ {xn < 0} ⊂ Rn \ U.

Suppose also that u ∈ C1(U).
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2. Define

u(x) =

{
u(x) x ∈ B+

−3u(x′,−xn) + 4u
(
x′,−xn2

)
x = (x′, xn) ∈ B−

(3.46)

We call this a higher-order reflection of u from B+ → B−. There’s nothing special about the
numbers −3, 4 - they’re just the easiest choices.
We claim u ∈ C1(Br(x

0)). Clearly u ∈ C0(Br(x0)) Then we compute the xn derivative,

∂xnu(x) =

{
∂xnux x ∈ B+

3∂xnu(x′,−xn)− 2∂xnu
(
x′,−xn2

)
x ∈ B−

(3.47)

For any other coordinate i = 1, . . . , n− 1,

∂xiu =

{
∂xiu x ∈ B+

3∂iu(x′,−xn)− 2∂iu
(
x′,−xn2

)
x ∈ B−

(3.48)

and so we have that Dαu
∣∣
xn=0+ = Dαu

∣∣
xn=0−

for |α| ≤ 1.

We can also check that ‖u‖W 1,p(Br(x0)) ≤ C‖u‖W 1,p(B+) for some constant C independent of
u. Therefore, we define E(u) = u.
The cool part here is the third condition in the theorem, which shows us that we can bound
the function just by its values on the subset U .

3. Now, suppose ∂U is not flat near x0. Using the fact it is C1, there exist r > 0, γ ∈ C1 such
that U ∩ Br(p) = {~x ∈ Br(p) | xn > γ(x′)}. By a change of coordinates Φ, we can shift this
such that the image of this set Φ(U ∩ Br(p)) is centered around p. This is achieved with the
definitions

Φ : Rn → Rn,Φ(x) = y (3.49)
yi = xi = Φi(x), i = 1, . . . , n− 1 (3.50)

yn = xn − γ(x′) = Φn(x) (3.51)

and note that Φ is invertible, with inverse

Ψ : Rn → Rn,Ψ(y) = x (3.52)
xi = yi = Ψi(y), i = 1, . . . , n− 1 (3.53)

xn = yn + γ(y1, . . . , yn−1) = Ψn(x). (3.54)
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We can check that Φ ◦ Ψ = Ψ ◦ Φ = id, that the determinants of the derivatives are the
identity, that Φ(U ∩ Br(x0)) ⊆ {yn > 0}, and that Ψ,Φ are both C1. We find that Φ is a
diffeomorphism.
The image of U ∩ Br(x0) under Φ is the open ball Bs(x̃0) for some s > 0 and Φ(p) = p̃.
Further,

Φ(U ∩W ) = Bs(p̃) ∩ {yn > 0} = B+. (3.55)

Now, define v(y) = u(Ψ(y)) for y ∈ B+. Then v ∈ C1(B+). There exists an extension
ṽ(y) ∈ C1(Bs(p̃)) such that v̄

∣∣
B+ = v and ‖v̄‖W 1,p(Bs(p̃))

≤ C‖v‖W 1,p(B+).
Mapping this backwards to the x coordinates (by something we’ll do on Example Sheet 2)
we can show we have a bound on u as well;

‖ū‖W 1,p(W ) ≤ c‖u‖W 1,p(U). (3.56)

4. Now, we have a local extension for all p ∈ ∂U to W = Wp. Let {W0, . . . ,WN} form a finite
subcover of U :

U ⊂ ∪Ni=0Wi, (3.57)

with extension ūi ∈ C1(Wi) for i = 1, . . . , N . Let ū0 = u.
Let (ξi)

N
i=0 be a partition of unity subordinate to {Wi}. That means supp(ξi) ⊂⊂ Wi,

∑
ξi = 1

on U . Then ū =
∑N
i=0 ξiūi. Then we have that ū

∣∣
U

= u and ū ∈ C1
c (Rn). We also have

‖ū‖W 1,p(Rn) ≤ c‖u‖W 1,p(U), (3.58)

by the inequality above that we’ll do on example sheet 2.

5. Nowwemay assume that supp(ū) ⊂ V for some U ⊂⊂ V by multiplying some cutoff function
χ. Let U ⊂⊂ S ⊂⊂ V . Then χ

∣∣
U

= 1, χ
∣∣
S{ = 0 by the mollifiers handout.

Next, there exists a sequence of functions in C∞(Ū) such that uj → u in W 1,p(U), by the
global approximation of smooth functions. We claim that (E(uj))j is Cauchy inW 1,p(Rn).
Since uj ∈ C∞(U) ⊂ C1(U), by the above,E(uj) ∈W 1,p(Rn). Since u is defined by reflections
and adding, we have linearity, so

‖E(uj)− E(uk)‖W 1,p(Rn) = ‖E(uj − uk)‖W 1,p(Rn) ≤ C‖uj − uk‖W 1,p(U). (3.59)

(uj)j is convergent in W 1,p(U), so it is Cauchy. Therefore, (E(uj))j is also Cauchy in the
complete spaceW 1,p(Rn), so there exists a limit inW (1,p)(Rn). Therefore, we can set E(u) =
limj→∞E(uj).

As an exercise, we can check that the limit is independent of the sequence approximating it.
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In general, forW k,p(U), if we consider ∂U ∈ Ck and u ∈ Ck(U), then we can write the extension in the form

u(x) =

{
u(x) in B+∑k
j=1 cju

(
x′,−xnj

)
in B−

(3.60)

where for matching at the boundary we end up needing to impose
∑k
j=1 cj

(
−1
j

)m
= 1 for all m =

0, 1, . . . , k − 1.

3.9 Traces

We’d like to talk about boundary values for elliptic PDEs. Previously, this was no problem, because we get
the boundary values by just carrying out the restriction u

∣∣
∂U

on functions in C0(U). However, this does not
necessarilycarry over to Sobolev functions, because ∂U is a set of measure zero and u is only defined almost
everywhere in U . So we replace the restriction with a trace operator T .
Theorem 3.9 (Trace theorem). Let U ⊂ Rn be open and bounded with C1 boundary. Then there exists a bounded
linear operator T : W 1,p(U)→ Lp(∂U), 1 ≤ p <∞, called the trace of u on ∂U , such that

(i) T (u) = u
∣∣
∂U

if u ∈W 1,p(U) ∩ C(U)

(ii) ‖T (u)‖Lp(∂U) ≤ C‖u‖W 1,p(U) for each u ∈W 1,p(U), where C depends only on U and p.

We assume u ∈ Lp and also Du ∈ Lp. We can’t change u on the measure zero set ∂U .

Proof sketch.
Suppose u ∈ C1(U) and ∂U is flat near x0 ∈ ∂U . Define the upper and lower half balls

B+ = Br(x0) ∩ {xn ≥ 0} ⊂ U
B− = Br(x0) ∩ {xn ≤ 0} ⊂ Rn \ U.

(3.61)

Let Γ be the portion of ∂U within Br/2(p). Pick ξ ∈ C∞c (Br(p)) such that 0 ≤ ξ ≤ 1 on Br(p) and
ξ = 1 on Br/2(p). Then

∫
Γ

|u(x′, 0)|pdx′ ≤
∫
Br(p)∩{xn=0}

ξ|u(x′, 0)|pdx′ =︸︷︷︸
FTC

−
∫
B+

∂xn(ξ|u|p)dxndx′ (3.62)

where the FTC step is possible because u ∈ C1(U), so |u| is Lipschitz. We further simplify this (by
a step on Sheet 2) to

−
∫
B+

∂xn(ξ|u|p)dxndx′ = −
∫
B+

|u|p∂xnξ + p|u|p−1
sgn(u)∂xnu · ξdx (3.63)

≤ cp
∫
B+

|u|p + |Du|pdx ≤ Cp‖u‖pW 1,p(U) (3.64)
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where the≤ is because of Young’s inequality |ab| ≤ |a|
m

m + |b|
n

n , where 1
m + 1

n = 1withm = p
p−1 , n =

p.
We identify this integral as T . To complete the proof, we extend this to general ∂U using the fact
that ∂U is compact and that C∞(U) is dense inW 1,p(U).

Recall that W k,p
0 (U) is the closure of C∞c (U) in W k,p(U). So if u ∈ W k,p

0 (U) then there exists uj ∈ C∞c (U)
converging to u inW 1,p(U). Therefore, by the continuity (boundedness + linearity) of T we have

T (u) = T (limuj) = lim
j
T (uj) = lim

j
uj

∣∣∣∣
∂U

= 0. (3.65)

The converse also holds, so T (u) = 0 iff u ∈W k,p
0 (U). Finally, if u ∈W k,p(U), we can define trace operators

for derivatives of all orders Du, . . . ,Dk−1u.

3.10 Sobolev inequalities

The general idea is we can trade differentiability (k) for integrability (p). Note that we can’t go the other
way.

Example 3.9. Let f ′ ∈ L1(R). Then f ∈ L∞(R). However, f ∈ L∞(R) 6=⇒ f ′ ∈ L1. �

The idea is we’ll show ‖u‖Lq(Rn) ≤ ‖Du‖Lp(Rn). We’ll split this up into three cases: 1 ≤ p < n, p = n, and
n < p ≤ ∞.
Lemma3.10. Letn ≥ 2 and let f1, . . . , fn ∈ Ln−1(Rn−1). For any1 ≤ i ≤ n, we denote x̃i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈
Rn−1. Set

f(x) =

n∏
i=1

fi(x̃i). (3.66)

Then f ∈ L1(Rn)1, and further,

‖f‖L1(Rn) ≤
n∏
i=1

‖fi‖Ln−1(Rn−1). (3.67)

Proof .
We proceed by induction starting with the case n = 2. Then

f(x) = f1(x2)f2(x1). (3.68)

1each component is a function of n− 1 variables, but each one gets used n− 1 times so it’s a function of n variables overall
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and the norm is

‖f‖L1(R2) =

∫
R2

|f(x1, x2)|dx1dx2 (3.69)

=︸︷︷︸
Fubini

∫
|f1(x2)|

(∫
R
|f2(x1)|dx1

)
dx2 (3.70)

= ‖f2‖L1(R)

∫
R
|f1(x2)|dx2 (3.71)

= ‖f1‖L1(R)‖f2‖L1(R). (3.72)

Suppose case n is true. Write f(x) = f1(x̃1) . . . fn(x̃n)︸ ︷︷ ︸
F (x)

fn+1( ˜xn+1). Then, fix xn+1 and integrate

with respect to everything else:

∫
Rn
|f(ξ1, . . . , ξn, xn+1)|dξ1 . . . dξn =

∫
Rn
F (ξ, xn+1)fn+1(ξ)dnξ. (3.73)

Let p = n, q = n
n−1 . Applying Hölder’s inequality,

∫
Rn
F (ξ, xn+1)fn+1(ξ)dnξ ≤ ‖F (·, xn+1)‖Lq(Rn)‖fn+1‖Lp(Rn). (3.74)

Now, we apply the inductive hypothesis:

|F (ξ, xn+1)|q = |f1(ξ, xn+1)|q · |fn(ξ, xn+1)|q, (3.75)

which implies

‖F (·, xn+1)‖Lq(Rn) ≤
n∏
i=1

∥∥fi(·, xn+1)
n
n−1

∥∥ n
n−1

Ln−1(Rn−1)
(3.76)

=

n∏
i=1

‖fi(·, xn+1)‖Ln(Rn−1). (3.77)

Now, we integrate over xn+1.

‖f‖L1(Rn+1) ≤ ‖fn+1‖Ln(Rn)

∫
R

n∏
i=1

‖fi(·, xn+1)‖Ln(Rn+1)dxn. (3.78)

By the generalized Hölder inequality, the following holds:
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‖f‖L1(Rn+1) ≤ ‖fn+1‖Ln(Rn)

(∫
R

n∏
i=1

‖fi(·, xn+1)‖nLn(Rn+1)dxn+1

)1/n

(3.79)

= ‖fn+1‖Ln(Rn)

n∏
i=1

‖fi‖Ln(Rn) (3.80)

=

n+1∏
i=1

‖fi‖Ln(Rn), (3.81)

which was what we wanted.

This lemma will help us show the following important theorem:

Theorem 3.11 (Gagliardo-Nirenberg-Sobolev (GNS) Inequality). Assume 1 ≤ p < n. Then W 1,p(Rn) ⊂
Lp
∗
(Rn) where p∗ = np

n−p is the Sobolev conjugate to p. Moreover, this embedding W 1,p(Rn) ↪→ Lp
∗
(Rn) is

continuous, i.e. there exists c = c(n, p) > 0 such that for all u ∈W 1,p(Rn), ‖u‖Lp∗ (Rn) ≤ c‖Du‖Lp(Rn).

p∗ is more commonly written in the form 1
p∗ = 1

p −
1
n . p

∗ > p, so differentiation implies more integrability.
Note that nothing is said about the integrability of Du.

Example 3.10. One might ask: who cares that this embedding is continuous? It’s actually very
easy to break: (C0([0, 1],R), L1) embeds discontinuously into (C0([0, 1],R), L∞). �

Let’s gain some intuition for this theorem. Consider f : R → R. We can use Lp(R) to quantify the width
and height of a function.

Example 3.11. If f1 = A1w(x) for some interval w, then ‖f‖p = |A|︸︷︷︸
height

(vol)(W )1/p︸ ︷︷ ︸
width

. �

Example 3.12. Let φ ∈ C∞c (R) be a bump function and let ω be some large number. Then define
f2(x) = φx sin(ωx). The height of f2 is bounded by 1, and the width of f2 is bounded by C
uniformly in ω.

However, we don’t just want this bound: we also want to quantify the regularity and frequency
scales. In the above example, the frequency is on the order ω, which we can see by taking a
derivative:

f ′2(x) = φ′ sin(ωx) + ωφ cos(ωx) (3.82)

and since this grows with ω, we can’t say |f ′2| ≤ C in ω. �
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Example 3.13. Consider the similar function

f3(x) = ω−kφ(x) sin(ωx), (3.83)

for some k ≥ 0. Then the frequency of f3 is of the order ω, and we can have a constant bound on∣∣∂lxf3

∣∣ if l ≤ k. �

Example 3.14. Let f4(x) = Aφ
(
x
R

)
sin(ωx). Then

‖f4‖Wk,p ∼

(∫
|x|≤R

|Aφ sin(ωx)|pdx+ . . .

)1/p

∼ |A|pRp|ω|k & |A|R
1
p−1 = ‖f‖Lp∗ (R), (3.84)

for the case n = 1. �

The uncertainty principle tells us that the width times the frequency has to be greater than some constant,
which is what we used in the & step.

Proof .
Assume u ∈ C∞c (Rn) ⊂︸︷︷︸

dense

W 1,p(Rn) and consider p = 1. By the fundamental theorem of

calculus, we can write

u(x) =

∫ xi

−∞
∂xiu(x1, . . . , xi−1, yi, xi+1, . . . , xn)dyi i = 1, . . . , n. (3.85)

This implies

|u(x)| ≤
∫ ∞
−∞
|Du(x1, . . . , xi−1, yi, xi+1, . . . , xn)|dyi = fi(x̃i) i = 1, . . . , n. (3.86)

This gives us

|u(x)|n = |u| . . . |u| ≤ f1(x̃1) . . . fn(x̃n) =

n∏
i=1

fi(x̃i). (3.87)

Integrate over x ∈ Rn:

∥∥∥|u| n
n−1

∥∥∥
L1(Rn)

≤︸︷︷︸
Lemma

n∏
i=1

∥∥∥∥f 1
n−1

i

∥∥∥∥
Ln−1(Rn−1)

=︸︷︷︸
definition of fi

‖Du‖
n
n−1

L1(Rn). (3.88)
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This implies

‖u‖
L

n
n−1 (Rn)

≤ |Du|L1(Rn), (3.89)

which was what we wanted.
Now, suppose p > 1. Consider v(x) = |u(x)|γ for some γ > 1 we’ll choose later. We have (by a
result from Example Sheet 2) Dv = γ sgn (u)|u|γ−1

Du. Therefore

(∫
Rn
|u|

γn
n−1 dx

)n−1
n

= ‖|u|γ‖
L

n
n−1 (Rn)

(3.90)

≤︸︷︷︸
p=1 case

‖D(|u|γ)‖L1(Rn) (3.91)

≤ γ
∫
Rn
|u|γ−1|Du|dx (3.92)

≤ γ
(∫ n

R
|u|(γ−1) p

p−1 dx

)1− 1
p
(∫

Rn
|Du|pdx

)1/p

. (3.93)

Now we choose γ such that γn
n−1 = (γ−1)p

p−1 =⇒ γ = p(n−1)
n−p > 1, and γn

n−1 = np
n−p = p∗. This gives

us

(∫
Rn
|u|p

∗
dx

)n−1
n

≤ p(n− 1)

n− p

(∫
Rn
|u|p

∗
dx

) p−1
p

‖Du‖Lp(Rn) (3.94)

which implies

‖u‖Lp∗ (Rn) ≤ C(p, n)‖Du‖Lp(Rn) ≤ C‖u‖W 1,p(Rn), (3.95)

which was what we wanted.

Corollary 3.12 (GNS for U ⊂ Rn). Suppose U ⊂ Rn is open and bounded with a C1 boundary. Let 1 ≤ p < n. If
p∗ = np

n−p then we haveW 1,p(U) ↪→ Lp
∗
(U), i.e. there exists C = C(U, p, n) such that

‖u‖Lp∗ (U) ≤ C‖u‖W 1,p(U) (3.96)

for all u ∈W 1,p(U).

Proof .
Let u ∈ W 1,p(U). By the extension theorem, we have a bounded linear extension map E :
W 1,p(U)→W 1,p(Rn) that matches u almost everywhere on U .

E(u) ∈W 1,p(Rn) =⇒ E(u) ∈ Lp
∗
(Rn) =⇒ u ∈ Lp

∗
(U). (3.97)
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Also

‖u‖Lp∗ (U) = ‖E(u)‖Lp∗ (U) ≤ ‖E(u)‖Lp∗ (Rn) (3.98)
≤︸︷︷︸

GNS

C‖E(u)‖W 1,p(Rn) (3.99)

≤︸︷︷︸
extension thm

C‖u‖W 1,p(U). (3.100)

When solving PDEs, the Poincaré inequality, which bounds u based on Du is helpful:

Corollary 3.13 (Poincaré inequality). Let U ⊂ Rn be open and bounded. Suppose u ∈ W 1,p
0 (U) for some

1 ≤ p < n. Then we have the estimate

‖u‖Lq(U) ≤ C‖Du‖Lp(U) ∀1 ≤ q ≤ p
∗ (3.101)

where the constant C depends on p, q, n, U .

In particular, as 1 ≤ p ≤ p∗ (we take q = p),

‖u‖Lp(U) ≤ C‖Du‖Lp(U). (3.102)

Note that this only holds for functions inW 1,p
0 and not generallyW 1,p, because this lets us kill off constants.

Proof .
Recall thatW 1,p

0 (U) is the closure of C∞c (U) under theW 1,p(U) norm. So there exists a sequence
(um)m ⊂ C∞c (U) such that ‖um − u‖W 1,p(U) → 0. Since um vanish near ∂U , we can extend um to
zero on U{ to get um ∈ C∞c (Rn).
Apply GSN to find

‖um‖Lp∗ (U) ≤ C‖Dum‖Lp(U). (3.103)

Sendm→∞ to get

‖u‖Lp∗ (U) ≤ C‖Du‖Lp(U). (3.104)

Since ‖u‖ <∞, by Hölder, we get

‖u‖Lq(U) ≤ C‖u‖Lp∗ ≤ C‖Du‖Lp(U) (3.105)

for 1 ≤ q ≤ p∗.
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We may wonder what happens if p ≥ n. If p = n, we get p∗ → ∞. It turns out that the statement is false if
n > 1. What about n < p ≤ ∞?

Theorem 3.14 (Morrey’s inequality). Let n < p ≤ ∞. Then there exists a constant C = C(p, n) such that

‖u‖C0,γ(Rn) ≤ C‖u‖W 1,p(Rn) (3.106)

for all u ∈ C∞c (Rn) where γ = 1− n
p < 1.

This says these functions are Hölder continuous, meaningW 1,p(Rn) ↪→ C0,γ(Rn).

Proof .
First, we control the Hölder semi-norm.
Let Q be an open cube of side length r > 0, containing the origin, and set u = 1

|Q|
∫
Q
u(x)dx. Then

|u− u(0)| ≤ 1

|Q|

∫
Q

|u(x)− u(0)|dx. (3.107)

Since u ∈ C∞c , we have the FTC, so

u(x)− u(0) =

∫ 1

0

d

dt
(u(tx))dt =

n∑
i=1

∫ 1

0

xi
∂u

∂xi
dt. (3.108)

So

|u(x)− u(0)| ≤︸︷︷︸
|xi|<r inQ

r

n∑
i=1

∫ 1

0

|∂xiu(tx)|dt (3.109)

|u− u(0)| ≤ r

|Q|

∫
Q

∫ 1

0

n∑
i=1

|∂xiu(tx)|dxdt (3.110)

=
r

|Q|

∫ 1

0

t−n

(
n∑
i=1

∫
tQ

|∂xiu(y)|dy

)
dt (3.111)

≤︸︷︷︸
Holder

r

|Q|

∫ 1

0

t−n

(∑
i

‖∂xiu‖Lp(tQ)|tQ|
1/q

)
dt (3.112)

≤︸︷︷︸)|tQ| = tnrn
r

rn

∫ 1

0

t−n‖Du‖Lp(Rn)t
n/qrn/qdt

(3.113)

=︸︷︷︸
1
q=1− 1

p

r1−n/p

1− n
p

‖Du‖Lp(Rn) (3.114)

Therefore, |u− u(0)| ≤ rγ

γ ‖Du‖Lp(Rn). By translation, this is true for all cubes Q whose sides of

Analysis of Partial Differential Equations



52 Function spaces

length r are parallel to the coordinate axes, so we can make the substitution 0 → x. So by the
triangle inequality,

|u(x)− u(y)| ≤ 2
rγ

γ
‖Du‖Lp(Rn) ∀x, y ∈ Q. (3.115)

Given any two x, y ∈ Rn, there exists a cube Q of side length r = 2|x− y| containing x and y.

|u(x)− u(y)|
|x− y|γ

≤ C‖Du‖Lp(Rn) ∀x, y (3.116)

[u]C0,γ(Rn) = sup
x,y

|u(x)− u(y)|
|x− y|γ

≤ C‖Du‖Lp(Rn) (3.117)

Therefore we’ve shown the Hölder semi-norm is controlled by ‖Du‖.
Next, we control the second piece of the Hölder norm, which is the sup norm of |u|. Note that any
x ∈ Rn belongs to a cube of side length 1. So

|u(x)| ≤ |u|+ |u− u| ≤
∫
Q

|u(x)|dx+ C‖Du‖Lp(Rn) (3.118)

≤ ‖u‖Lp(Rn)‖1‖Lq(Q) + C‖Du‖Lp(Rn) (3.119)
≤ C‖u‖W 1,p(Rn) (3.120)

where C is independent of x. Therefore, ‖u‖C0,γ(Rn) ≤ C‖u‖W 1,p(Rn).

Corollary 3.15 (Estimates on W 1,p, n < p ≤ ∞). Suppose u ∈ W 1,p(U) for U ⊂ Rn is open and bounded with
C1 boundary. Then there exists u∗ ∈ C0,γ(U) with γ = 1 − n

p < 1 such that u = u∗ almost everywhere and
‖u∗‖C0,γ(U) ≤ C‖u‖W 1,p(U).

Proof .
By the extension theorem, there exists u ∈ W 1,p(Rn) with u = u almost everywhere on U . Then
there exists (uj) ⊂ C∞c (Rn) such that uj → u in W 1,p(Rn). This implies uj(x) → u(x) almost
everywhere.
Weclaim (uj) isCauchy inC0,γ(Rn), whichholdsbecause ‖um − uj‖C0,γ(Rn) ≤ C‖um − uj‖W 1,p(Rn)

by Morrey’s inequality. Therefore uj → u∗ in the Banach space C0,γ(Rn) and u∗ = u∗
∣∣
U
satisfies

the conditions of the theorem.

If U ⊂ Rn is open and bounded with a C1 boundary, we have smooth embeddings for W 1,p(U) for both
the case p ∈ [1, n) and p ∈ (n,∞). The former is W 1,p(U) ↪→ Lp

∗
(U) where 1

p∗ = 1
p −

1
n , and the latter is

W 1,p(U) ↪→ C0,γ(U) where γ = 1− n
p .

If we start with p < n, we can use the embedding into Lp∗ for both u and its derivatives, which implies u
lives in another Sobolev space which allows us to use the embedding again.
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Example 3.15. For n = 3, if u ∈W 2,2 then u,Du ∈W 1,2. For p = 2, we get p∗ = 3·2
3−2 = 6, so we can

say u,Du ∈ L6. This gives us u ∈W 1,6 and 6 > 3 = n, which implies γ = 1
2 . Therefore u ∈ C

0,1/2.
�

The hope is we can solve a PDE in a Sobolev space and then prove things about their integrability to then
get that they are actually regular classical solutions.

With all that set up, let’s finally solve some PDEs!
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56 Second-order elliptic boundary value problems

We write down second-order elliptic BVPs in one of two standard forms that can be directly manipulated.
We find that it is difficult to directly solve them, but we can prove the existence of weak solutions under
some reasonable constraints using the machinery of Sobolev spaces. We’ll first show solution existence via
the Lax-Milgram theorem which makes use of “energy estimates” on a PDE, and then extend it using the
Fredholm alternative for compact operators (which requires that we cast the PDE into an equivalent form
involving compact operators first). We’ll subsequently increase the regularity of weak solutions to get full
solutions.

In this entire chapter, we let U be an open bounded subset of Rn with C1 boundary.

4.1 Formulating elliptic BVPs

For u ∈ C2(U), we define

Lu := −
n∑

i,j=1

(aij(x)uxi)xj +

n∑
i=1

bi(x)uxi + c(x)u (4.1)

The aij , bi, c are given functions on U . Without loss of generality, aij = aji. Typically we assume these
functions are at least L∞(U). The above form is called divergence form, as it looks like ∇ · (A∇u).

If aij ∈ C1(u), then we can write L in non-divergence form:

Lu = −
n∑

i,j=1

aij(x)uxixj +

n∑
j=1

b̃j(x)uj + c(x). (4.2)

The first form is most suited to energy methods, while the second form is most suited to themaximum principle
approach. We’ll use energy methods, and the maximum principle approach will be covered in the Lent
course on elliptic PDEs.

Definition 4.1. L is elliptic if
∑
i,j a

ij(x)ξiξj > 0 for all x ∈ U, ξ ∈ Rn \ {0}.

Definition 4.2. L is uniformly elliptic if
∑
i,j a

ij(x)ξiξj ≥ θ‖ξ‖2 for all x ∈ U, ξ ∈ Rn for some θ > 0 independent
of x, ξ.1

Uniform ellipticity is saying L(ξ) = ξᵀAξ is bounded below.

4.2 Finding weak solutions

Toolkit

In this section, we’ll need to know:

1“uniform” always means something is independent of position
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• The Riesz representation theorem. There is a canonical isomorphism between a real Hilbert spaceH and
its dual spaceH∗. That is, for each continuousϕ ∈ H∗ there’s a unique xϕ ∈ H such thatϕ(x) = 〈x, xϕ〉
identically.

• Poincaré’s inequality.

• Young’s inequality, ab ≤ a2

2ε + εb2 for all a, b ∈ R, ε > 0. Sometimes referred to as the “Peter-Paul”
inequality because you “rob Peter to pay Paul” by how you tune ε to make the first/second term
respectively big or small.

4.2.1 The Lax-Milgram theorem

Consider the following BVP:

Lu = f in U

u = 0 on ∂U.
(4.3)

Let f ∈ L2(U) and aij , bi, c ∈ L∞(U).

Suppose we have some function u that is at least C2(U) which solves Equation 4.3 pointwise almost
everywhere. For any test function v ∈ C∞c (U), we can multiply this equation by v and integrate by parts.

∫
U

vfdx =

∫
U

(−v(aijvxi)xj + vbjuxj + vc)dx (4.4)

= −
∫
∂U

vaijuxinjdS︸ ︷︷ ︸
0 on ∂U because v is compactly supported

+

∫
U

(aijuxivxj + biuxiv + cuv)dx (4.5)

Therefore

∫
U

vfdx = B[u, v]∀v ∈ C∞c (U)

B[u, v] =

∫
U

(aijuxivxj + biuxiv + cuv)dx.

(4.6)

Therefore, if u ∈ C2(U) solves Equation 4.3, then Equation 4.6 holds. Conversely, if u ∈ C2(U)with u
∣∣
∂U

= 0
and Equation 4.6 holds, then by undoing the IBP, we have

∫
U

(f − Lu)vdx = 0 ∀v ∈ C∞c (U), (4.7)

which implies Lu = f almost everywhere. Note that Equation 4.6 makes sense for v ∈ H1
0 (U), u ∈ H1(U).

To encode the boundary condition of u, we place u ∈ H1
0 (U).
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Definition 4.3. We say u ∈ H1
0 (U) is a weak solution of the BVP 4.3 for some given function f ∈ L2(U) if

B[u, v] = (f, v)L2(U) for all v ∈ H1
0 (U).

From here, we want to find a weak solution, and try to extend it by showing that u ∈ C2(U).

As a stepping stone to this, we prove the following theorem.

Theorem 4.1 (Lax-Milgram ’54). LetH be a real Hilbert space with an inner product (·, ·). SupposeB : H×H → R
is a bilinear map such that there exist constant α, β > 0 such that

1. |B[u, v]| ≤ α‖u‖‖v‖ ∀u, v ∈ H (boundedness of B)

2. β‖u‖2 ≤ B[u, u] ∀u ∈ H (coercivity of B over the norm)

Then, if f : H → R is a bounded linear functional (f ∈ H∗) then there exists a uniqueu ∈ H such that 〈f, v〉 = B[u, v]
for all v ∈ H .

Boundedness is a fairly normal condition, but coercivity tells us a lot about B on top of what we usually
know, because it puts a lower bound onB as well as the usual upper one (which can be seen from condition
1 if we take u = v). That is, the norm coerces the bilinear form towards being in a particular interval.

It’s notable that B is not necessarily symmetric: if it were, it would be an alternative inner product for H
so the proof would automatically follow from the Riesz representation theorem (canonical isomorphism
between H and the dual space H∗.)

Proof of Lax-Milgram.
For each fixed u ∈ H , the map ϕu(v) = B[u, v] is a bounded linear functional on H , i.e. ϕu ∈ H∗.
By the Riesz representation theorem, there exists a unique wu ∈ H such that ϕu(v) = (wu, v) =
B[u, v] for all v ∈ H . So there is a map u→ wu ∈ H . Call this map A : H → H ; then Au = wu and
B[u, v] = (Au, v).
From here, our plan is to show

1. A is bounded and linear, and therefore continuous.

2. A is injective.

3. The image A(H) is closed.

4. A(H) = H , i.e. A is surjective so the inverse A−1 exists.

5. Show that 〈f, v〉 = B[A−1wf , v] where wf is the element of H canonically isomorphic to f .

We claim A is a bounded linear operator. If λ1, λ2 ∈ R, and u1, u2 ∈ H , then for each v ∈ H ,

(A(λ1u1 + λ2u2), v) = B[λ1u1 + λ2u2, v] = λ1B[u1, v] + λ2B[u2, v]

= λ1(Au1, v) + λ2(Au2, v)

= (λ1Au1 + λ2Au2, v)

(4.8)

and so A is linear since the inner product is non-degenerate.
Now,
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‖Au‖2 = (Au,Au) = B[u,Au] ≤ α‖u‖‖Au‖, (4.9)

so

‖Au‖ ≤ α‖u‖ ∀u ∈ H, (4.10)

so A is bounded.
Next, we claim A is injective, and the image A(H) is a closed subspace of H . To do this, we use
coercivity to describe a useful expression.

β‖u‖2 ≤ B[u, u] = (Au, u) ≤ ‖Au‖‖u‖ by Cauchy-Schwarz , (4.11)

and therefore

‖u‖ ≤ 1

β
‖Au‖. (4.12)

So if Au1 = Au2, then

β‖u1 − u2‖ ≤ ‖Au1 −Au2‖ = 0 =⇒ u1 = u2. (4.13)

Next, to show A(H) is closed, we take a sequence (Auj)j → w ∈ H where (uj)j is Cauchy in the
complete space H (by 4.12), meaning it converges to some limit u ∈ H . By the continuity of A (as
it’s bounded and linear),

lim
j
A(uj) = A(lim

j
uj) = A(u) = w. (4.14)

Therefore A(H) is closed.
Now, we claim that A(H) = H . Since A(H) is closed in H , we can decompose it as H = A(H) ⊕
A(H)⊥. If A(H) 6= H , then there exists some w ∈ A(H)⊥ such that w 6= 0. But, looking at the
coercivity condition,

β‖w‖2 ≤ B[w,w] = (Aw,w) =︸︷︷︸
w in complement,Aw in image, orthogonal

0, (4.15)

and therefore ‖w‖ = 0 =⇒ w = 0. Therefore A(H) = H , This tells us A is bĳective, which implies
it is invertible.

w = Au ⇐⇒ u = A−1w (4.16)

‖u‖ ≤ 1

β
‖Au‖ =⇒

∥∥A−1w
∥∥ ≤ 1

β
‖w‖, (4.17)

so A−1 : H → H is linear and bounded.
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In summary, we’ve shown that A : H → H is bĳective, linear, bounded, and that (Au, v) = B[u, v]
for all v ∈ H .
Now, we want to solve the problem: given f ∈ H∗ we want to find a u such that B[u, v] = 〈f, v〉
for all v ∈ H . By the Riesz representation theorem, there exists a unique wf ∈ H such that
〈f, v〉 = (wf , v) for all v ∈ H . Let u = A−1(wf ). We know this exists because A is bĳective. Then

B[u, v] = (Au, v) = (wf , v) = 〈f, v〉 ∀v ∈ H, (4.18)

i.e. B[u, ·] = f(·).
Uniqueness remains. Say u, u′ both satisfy the condition. Then

B[u− u′, v] = 0 ∀v ∈ H. (4.19)

Set v = u− u′. Then

‖u− u′‖2 ≤ 1

β
B[u− u′, u− u′] = 0 =⇒ u = u′. (4.20)

Explicitly solving PDEs rarely happens in PDE theory, because it’s too hard. Instead, we’ll more often just
come up with estimates like this one that follows from Lax-Milgram:

Corollary 4.2 (Well-posedness). Let u1, u2 be the solutions corresponding to f1, f2 ∈ H∗. Then

‖u1 − u2‖ ≤
1

β
‖f1 − f2‖H∗ (4.21)

This gives us continuous dependence on the data.

Proof of the corollary.
We can actually prove another estimate to get this going. Let u be the unique solution, coming
from Lax-Milgram, of B[u, v] = 〈f, v〉 for all v ∈ H . Then, we know from the coercivity of B that

β‖u‖2 ≤ B[u, u] = 〈f, u〉 ≤ ‖f‖H∗‖u‖, (4.22)

which implies

‖u‖ ≤ 1

β
‖f‖H∗ . (4.23)

Then, B[ui, v] = 〈fi, v〉 for all v ∈ H implies

B[u1 − u2, v] = 〈f1 − f2, v〉 (4.24)

and we can choose v = u1 − u2 to get the desired result.
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4.2.2 Energy estimates

This is just a statement about Hilbert spaces, so we need to link it to PDEs. We do this by showing that
boundedness and coercivity (in some form) hold for the elliptic BVP.

Theorem 4.3 (Energy estimator forB). Suppose aij , bi, c ∈ L∞(U) and L is uniformly elliptic. Then ifB[u, v] :=∫
U

(aijvxiuxj + bivuxi + cuv)dx, then there exist positive constants α, β > 0 and another constant γ ≥ 0 such that

(i) |B[u, v]| ≤ α‖u‖H1(U)‖v‖H1(U)

(ii) β‖u‖2H1(U) ≤ B[u, u] + γ‖u‖2L2(U) for all u, v ∈ H1
0 (U). (Gårding’s inequality)

Proof .

(i) As follows:

|B[u, v]| ≤
∑
i,j

∥∥aij∥∥
L∞(U)

∫
U

|Du||Dv|dx+
∑
i

∥∥bi∥∥
L∞(U)

∫
U

|Du||v|dx+ ‖c‖L∞
∫
|u|
∫
|v|dx

(4.25)
≤︸︷︷︸

Cauchy-Schwarz

C1‖Du‖L2‖Du‖L2 + C2‖Du‖L2‖v‖L2 + C3‖u‖L2‖v‖L2 (4.26)

≤ α‖u‖H1(U)‖v‖H1(U) for some α > 0 (4.27)

(ii) We use uniform ellipticity:

θ

∫
U

|Du|2dx ≤
∫
U

∑
aij(x)uxiuxjdx = B[u, u]−

∫
U

(∑
biuxiu+ cu2

)
dx (4.28)

≤ B[u, u] +
∑
i

∥∥bi∥∥
L∞

∫
U

|Du||u|dx+ ‖e‖L∞
∫
U

|u|2dx

(4.29)

By Young’s inequality with ε→ 1
2ε

∫
U

|Du||u|dx ≤ ε
∫
U

|Du|2dx+
1

4ε

∫
U

|u|2dx. (4.30)

Choose ε such that ε
∑
i

∥∥bi∥∥
L∞(U)

≤ θ
2 to deduce

θ

2

∫
U

|Du|2dx ≤ B[u, u] + C‖u‖2L2(U). (4.31)
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Thus we have β‖u‖2H1(U) ≤ B[u, u] + γ‖u‖2L2(U), which was what we wanted.

If B is a bilinear form corresponding to an operator where bi = c = 0, then we actually have

θ

∫
U

|Du|2dx ≤ B[u, u]. (4.32)

Recall Poincaré’s inequality, ‖u‖L2(U) ≤ c‖Du‖L2(U) for u ∈ H1
0 (U). We deduce ‖u‖2H1(U) ≤ cB[u, u] for all

u ∈ H1
0 (U), i.e. Gårding with γ = 0.

Example 4.16. If Lu = −4u (the Laplacian) we can directly use Lax-Milgram. �

Example 4.17. For Lu = −4u+ cu for c ≥ 0, then B[u, v] =
∫
U

(∇u ·∇v + cuv)dx, so we have

|B[u, v]| ≤ c‖u‖‖v‖, (4.33)

and

|B[u, u]| = ‖∇u‖2L2 + c‖u‖2L2(U) ≥︸︷︷︸
c≥0

‖∇u‖2L2(U) ≥︸︷︷︸
Poincaré

C‖u‖2L2(U), (4.34)

for u ∈ H1
0 (U), so Lax-Milgram applies. �

Theorem 4.4 (Basic existence result for weak solutions). Let L be as before. There is a γ ≥ 0 such that for any
µ ≥ γ and any f ∈ L2(U), there exists a unique weak solution u ∈ H1

0 (U) to the BVP

{
Lu+ µu = f in U

u = 0 on ∂U.
(4.35)

Moreover, there exists a constant c > 0 such that

‖u‖H1(U) ≤ c‖f‖L2(U). (4.36)

We’ve had to change the equation slightly in order to solve it, but on the flip side, we’ve also found solutions
to a whole family of PDEs now.
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Proof .
Take γ from the Gårding inequality above. Let µ ≥ γ, and set

Bµ[u, v] = B[u, v] + µ(u, v)L2(U). (4.37)

This is the bilinear map corresponding to Lµu = Lu + µu. It satisfies the conditions needed for
Lax-Milgram (we use µ ≥ γ to show this.)
Now, we fix f ∈ L2(U) and set 〈f, v〉 = (f, v)L2(U). This gives a bounded linear functional onL2(U)
and therefore also on H1

0 . Apply Lax-Milgram to find a unique u ∈ H = H1
0 (U) satisfying

Bµ[u, v] = 〈f, v〉 = (f, v)L2(U) ∀v ∈ H1
0 , (4.38)

i.e. u is a weak solution of 4.35.
From Gårding,

β‖u‖2H1(U) ≤ Bµ[u, u] = (f, u)L2(U) ≤︸︷︷︸
C-S

‖f‖L2‖u‖H1(U). (4.39)

Next lecture, we’ll extend this back to the original PDE. For now, we’ll cover a modified version of the
Poincaré inequality, which will be crucial for that.

Lemma 4.5 (Poincaré revisited). Suppose u ∈ H1(Rn). Let Q = (ξ1, ξ1 + L) × · · · × (ξn, ξn + L) be a cube of
side length l. Then we have

‖u‖2L2(Q) ≤
1

|Q|

(∫
Q

udx

)2

+
n2L2

2
‖Du‖2L2(Q). (4.40)

and

‖u− u‖L2(Q) ≤
n2L2

2
‖Du‖2L2(Q), (4.41)

where u = 1
|Q|
∫
Q
u(x)dx.

If u = 0, we get back the Poincaré inequality from before. Note that before, we needed to kill of constant
functions by restricting u to functions with vanishing trace, u ∈ H1

0 . In this case, having the u term kills off
constants.

Proof .
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(i) Since ∂Q is Lipschitz, C∞(Q) is dense in H1(Q). For x, y ∈ Q, we use FTC:

u(x)− u(y) =

∫ x1

y1

d

dt
u(t, x2, . . . , xn)dt+

∫ x2

y2

d

dt
u(y1, t, x3, . . . , xn) + · · ·+

∫ xn

yn

d

dt
u(y1, . . . , yn−1, t).

(4.42)

which we should check manually for n = 3.

Squaring this identity and applying the inequality (
∑
i ai)

2 ≤ n
(∑

i a
2
i

)
, we get

u(x)2 + u(y)2 − 2u(x)u(y) ≤ n
(∫ x1

y1

d

dt
u(t, x2, . . . , xn)dt

)2

+ · · ·+ n

(∫ xn

yn

d

dt
u(y1, . . . , yn−1, t)dt

)2

.

(4.43)

Integrating this over x, y ∈ Q, the LHS becomes

∫
Q

dx

∫
Q

dy(u2(x) + u2(y)− 2u(x)u(y)) = 2|Q|‖u‖2L2(Q) − 2

(∫
Q

u(x)dx

)2

. (4.44)

Next, consider I1 :=
(∫ y2

y1

d
dtu(t, x2, . . . , xn)dt

)2

. Then

I1 ≤
(∫ x1

y1

Idt

)
·
∫ x1

y1

(
d

dt
u(−)

)2

dt (4.45)

≤ L
∫ ξ1+L

ξ1

(
d

dt
u(t, x2, . . . , xn)

)2

dt. (4.46)

Therefore, integrating,

∫
Q

dx

∫
Q

dyI1 ≤ L · L|Q|‖D1u‖2L2(Q). (4.47)

Similarly estimating over the RHS terms, we get

2|Q|‖u‖2L2(Q) − 2

(∫
Q

udx

)2

≤ L2n|Q|‖Du‖2L2 . (4.48)

(ii) This is an application of the proof for part (i). Consider u− cη where η is a smooth function
where η

∣∣
Q

= 1, η vanishes outside of a compact set containing Q, and is smooth. Here
c = 1

|Q|
∫
Q
u(x)dx.
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4.3 Compactness results in PDE

We can often find a bounded sequence of approximate solutions, and we’d like to find a convergent
subsequence that actually solves the PDE. This section sets up results that we’ll use in establishing the
Fredholm alternative.

Toolbox

1. A space is separable if it contains a countable dense subset, i.e. there is a sequence (xn)∞n=1 such that
every nonempty open subset of the space contains at least one xi.

2. The closed unit ball in Rn is sequentially compact, i.e. for (xj) ∈ B = {x ∈ Rn | ‖x‖ ≤ 1}, (xj) has a
convergent subsequence.

3. In a metric space, compactness is equivalent to sequential compactness.

4. Banach (X) and Hilbert (H) spaces admit metrics (inner product→ norm→metric)

5. If X or H is infinite-dimensional, then the closed unit ball {x | ‖x‖ ≤ 1} is not compact. This isn’t
what we want, so our norm is too strong and we’d like to weaken the topology.

Exercise 4.6. Show {f ∈ C0,α([0, 1]), ‖f‖C0 ≤ 1} is compact. The key point here is that we’re using a different
norm on our open-ball condition. (This is in the Analysis of Functions lecture notes.)

6. A Banach space (X, ‖·‖) has a strong and a weak topology.

• For xn ∈ X , xn → x strongly if ‖xn − x‖X → 0.
• For xn ∈ X , xn ⇀ xweakly if 〈f, xn〉 → 〈f, x〉 for all f ∈ X ′.

Strong convergence implies weak convergence, but not the reverse.

Example 4.18. For 1 ≤ p < ∞ consider (Lp(I), (−,−)p), I = (0, 2π). The sequence fn(x) =
sin(nx) has

(fn, g)Lp =

∫ 2π

0

sin(nx)g(x)→ 0 as n→∞ (4.49)

for all g ∈ Lp, so we see fn ⇀ 0. But ‖fn‖Lp(I) = c(p) > 0, so fn 6→ 0. �

7. X ′ is itself a Banach space, with the sup norm

‖f‖X′ = sup
x∈X,‖x‖X≤1

|f(x)| (4.50)

and it has a strong, a weak, and a weak-* topology.

• For fn ∈ X ′, fn → f if ‖fn − f‖X′ → 0

• fn
w−→ f if 〈fn, T 〉 → 〈fn, T 〉 for all T ∈ X ′′ (the double dual)
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• fn
w∗−−→ f if 〈fn, x〉 → 〈f, x〉 for all x ∈ X .

If X is reflexive, we can identify X with its double dual, and the weak and weak-* topologies on X ′
are the same.

Theorem 4.7 (Banach-Alaoglu). LetX be Banach. The closed unit ball in the dual space B′ = {f ∈ X ′ | ‖f‖X′ ≤
1} is compact in the weak-* topology of X . If also X is separable then the weak-* topology on B′ is a metric topology,
and so B′ is sequentially compact. (AoF, L2.2, T2.22)

Definition 4.4. Suppose (H, (−,−)) is a Hilbert space with (uj) ⊂ H . We say (uj) converges weakly to u ∈ H , i.e.
uj ⇀ u, if limj(uj , w) = (u,w) for all w ∈ H .

A weak limit, if it exists, is unique. (Lecture notes of Minter).

Theorem 4.8 (Banach-Alaoglu for separable Hilbert spaces). Let H be a separable Hilbert space, and suppose
(un)n ⊂ H is a bounded sequence (i.e. ‖un‖ ≤ K). Then (un)n has a weakly convergent subsequence.

We’re skipping the proof, it’s long and detailed and in the lecture notes but also follows directly from the
first version of B-A.

With all of this setup, we can start relating this to PDEs. What’s the strongest statement we can make about
a bounded sequence in H1(U)?

Theorem 4.9 (Rellich-Kondrachov). Suppose U ⊂ Rn, open and bounded, and let ∂U ∈ C1. Let (um)m be a
bounded sequence in H1(U). Then there exists u ∈ H1(U) and a subsequence (umj ) such that umj ⇀ u in H1(U)
(weak in the space with more derivatives) and umj → u in L2(U) (strong in the space with no derivatives).

This is an important result. We prove this using B-A and the Poincaré estimates.

Proof .
Use the extension theorem to convince ourselves we can extend each sequence element um to some
um ∈ H1(Rn) such that supp(um) is compactly contained in some cube Q. We therefore have that
the extension map H1(U) → H1

0 (Q) is a bounded linear map (why?). This gives us the norm
inequality,

‖um‖H1(Q) ≤ c‖um‖H1(U) ≤ cK. (4.51)

Next, sinceH1
0 (Q) is a separableHilbert space (sheet 3), by the separable version of Banach-Alaoglu,

there exists some limit point u ∈ H1
0 (Q) and some weakly convergent subsequence (umj ) such that

umj ⇀ u in H1
0 (Q), ‖u‖H1(Q) ≤ cK.

For convenience, set wj := umj . It remains to show that wj → u in L2(Q).
Fix δ > 0. Divide Q into k(δ) subcubes {Qa}ka=1 of side length 0 < l < δ that intersect only on
their faces (sets of measure zero). In particular, we can localise all our integrals to each Qa. By the
Poincaré lemma (4.5), we have
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‖wj − u‖2L2(Q) =

k(δ)∑
a=1

‖wj − u‖2L2(Qa) (4.52)

≤
k(δ)∑
a=1

[
1

|Qa|

(∫
Qa

(wj − u)dx

)2

+
n2δ2

2
‖Dwj −Du‖2L2(Qa)

]
(4.53)

=

k(δ)∑
a=1

1

|Qa|

(∫
Qa

(wj − u)dx

)2
+

n2δ2

2
‖Dwj −Du‖2L2(Q) (4.54)

Let ε > 0. Recall the fact that wj , u ∈ H1
0 (Q). So applying the triangle inequality on the L2 norm,

we can say ‖Dwj −Du‖2L2(Q) ≤ C for some constant C.
Fix some small value for δ > 0 such that n

2δ2

2 ‖Dwj −Du‖
2
L2(Q) <

ε
2 . This also fixes k(δ). This

bounds the second term by ε
2 ,

It remains to control the first term. Note that f(u) =
∫
Q
u(x)dx is a bounded linear functional on

H1(Q). Sincewj ⇀ u inH1
0 (Q), we have by the definition ofweak convergence that 〈f, wj〉 → 〈f, u〉,

so by linearity and substituting in what f is,

∫
Qa

(wj − u)dx→ 0, (4.55)

for all a. Since k(δ) is some fixed finite number, we can choose j large enough to bound the sum:

k∑
a=1

1

|Qa|

(∫
Qa

(wj − u)dx

)2

<
ε

2
. (4.56)

Therefore, wj → u in L2(Q), so it remains to translate this back to U .
To conclude, consider {umj} ⊂ H1(U). This is bounded, so there is a sub-subsequence mji and a
limit v ∈ H1(U) such that

umji ⇀ v in H1(U) (4.57)

and we can check that umji → u, v in L1 implies u = v almost everywhere.

4.4 The Fredholm alternative

Toolbox

Definition 4.5. LetH be a Hilbert space andK : H → H a bounded linear operator. The adjoint ofK,K† : H → H
(mimicking the conjugate transpose) is the unique operator such that

(x,K†y) = (Kx, y) (4.58)
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for all x, y ∈ H .

Definition 4.6. K is called compact if for each bounded sequence (uj)j ⊂ H there exists a subsequence (ujk)k such
that the image (K(ujk))k converges strongly in H .

4.4.1 Setting up the Fredholm alternative

Compactness gives us sequential compactness in metric spaces, so we can use the above definition to create
the conditions for Rellich-Kondrachov.

Example 4.19. Let K : L2(U)→ H1(U) be a bounded linear operator. Since H1(U) ↪→ L2(U) (the
Sobolev space continuously embeds into L2), we can think of this as a map K : L2(U) → L2(U).
We claimK is compact. Let (uj)j be a bounded sequence in L2(U). Then so is its image underK:

‖K(uj)‖H1(U) ≤ ‖K‖︸︷︷︸
operator norm

‖uj‖L2U ≤ Ck. (4.59)

By Rellich-Kondrachov, there exists a subsequence (ujk) ⊂ H1(U) such that ujk → u in L2(U).
That is,K(ujk) converges strongly in L2(U). �

This is a really important example. For some intuition, consider Poisson’s equation ∆u = f . Say we’re
looking for weak solutions u ∈ H1(U), and as usual we’re only requiring that f ∈ L2(U). So the equation is
a map u 7→ f,H1(U) 7→ L2(U).

The idea with the Fredholm alternative is that we can invert this, and map L2(U) 7→ H1(U). Let’s write
down a bunch of facts that’ll let us do this.

Definition 4.7. Suppose A : H → H is a bounded linear operator. The resolvant of A is the open set ρ(A) = {λ ∈
R | A− λIis bĳective}.

Definition 4.8. The real spectrum of A is σ(A) = R \ ρ(A).

Theorem 4.10 (Fredholm alternative for compact operators). LetH be Hilbert and letK : H → H be a compact
operator. Then

(i) ker(I −K) is finite-dimensional.

(ii) im(I −K) is a closed subspace of H .

(iii) im(I −K) = ker(I −K†)⊥.

(iv) ker(I −K) = {0} ⇐⇒ im(I −K) = H

(v) dim(ker(I −K)) = dim(ker(I −K†)).

This theorem is all about solving the equation (I −K)u = f . If we take ψ ∈ ker(I −K†), then we have
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〈(I −K)v, ψ〉 = 〈v, (I −K†)ψ︸ ︷︷ ︸
0

〉 = 〈f, ψ〉 (4.60)

That is, if the kernel of I −K† is nontrivial, it is a necessary condition for solvability that f is orthogonal to
ψ. What the theorem (i) tells us is that there are finitely many ψs to check, and moreover that the condition
〈f, ψ〉 is also a sufficient condition.

This machinery is all trivial in one dimension, but we’ll see its real power in higher dimensions when we
try to handle PDEs. The key to this power is compactness, because that brings the complexity down to
evolution in finite dimensions.

In the Fredholm theorem, we have five different results, so let’s unpack each one a bit.

(i) ker(I −K) is finite-dimensional. This is a big deal consideringH is infinite-dimensional. We can also
use this in the form: u−Ku = 0 has only finitely many linearly independent solutions u 6= 0.

(ii) im(I −K) is a closed subspace ofH . If uj −Kuj = fj , fj → f inH , then there exists u ∈ H such that
u−Ku = f .

(iii) im(I − K) = ker(I − K†)⊥. This tells us that u − Ku = f has a solution iff f lives in the kernel of
(I −K)⊥. That is, (f, v) = 0 for all v ∈ H such that v −K†v = 0.

(iv) ker(I − K) = {0} ⇐⇒ im(I − K) = H . “Nothing is missed”. The statement “u = 0 is the only
solution to u−Ku = 0" is equivalent to the statement “u−Ku = f has a soluton u ∈ H for all f ∈ H .”

(v) dim(ker(I −K)) = dim(ker(I −K†)). The number of linearly independent solutions to u −Ku and
v −K†v = 0 are the same.

This is referred to as the alternative because of (iii) and (iv). We have two options:

(I) either for each f ∈ H , (I −K)u = f has a unique solution u ∈ H ;

(II) or the homogeneous equation (I −K)u = 0 has nontrivial solutions.

In the second case, the space of homogeneous solutions is finite-dimensional. In this case, when do we have
inhomogeneous solutions? This is given by (iv): (I−K)u = f has a solution if and only if f ∈ ker(I−K†)⊥.

This is proved in appendix D.5 of Evans.

The Fredholm alternative is similar to the two possibilities in solving a linear equation Ax = b:

(a) either A is invertible and so there is a unique solution x = A−1b;

(b) or kerA 6= {0} (that is, the homogeneous equation Ax = 0 has nontrivial solutions). Also in finite
dimensions, imA = (kerAᵀ)⊥, soAx = b has a solution iff yᵀb = 0 for all y ∈ kerAᵀ (or in other words
Aᵀy = 0.)
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4.4.2 Applying the Fredholm alternative to elliptic BVPs

We’re considering a uniformly elliptic PDE on a domain U that is open and bounded with C1 boundary.
Recall that Lu = −(aijuxi)xj + biuxi + cu and from that the bilinear form

B[u, v] =

∫
U

(aijuxivxj + biuxiv + cuv)dx. (4.61)

Before we get to working with elliptic BVPs directly, we need to make the idea of adjoints work with the
elliptic BVP formulation we’ve been using thus far.

Definition 4.9. The formal adjoint of L is given by

L†v = −(aijvxi)xj − bivxi +

(
c−

n∑
i=1

bixi

)
v. (4.62)

Note that this depends on the xi derivatives of bi.

Definition 4.10. The adjoint bilinear form B† : LH1
0 → H1

0 is given by

B†[v, u] = B[u, v]. (4.63)

If bi ∈ C1, then this makes sense by integration by parts.

We say v ∈ H1
0 is a weak solution of the adjoint problem

{
L†v = f in U

v = 0 on ∂U
if it satisfiesB†[w, v] = (f, w)L2

for all w ∈ H1
0 .

If bi ∈ C1(U), then B† is the same as the bilinear form defined by L†.

With all that setup, we’re now ready for:

Theorem 4.11 (Fredholm alternative for elliptic BVPs). Consider
{
Lu = f in U

u = 0 on ∂U
.

(a) either for each f ∈ L2, the BVP admits a unique weak solution u ∈ H1
0 ;

(b) or there exists a nonzero weak solution u ∈ H1
0 to the homogeneous problem (where f = 0).

Further, if (b) holds, then dimN = dimN† < ∞, where N ⊂ H1
0 is the set of weak solutions to the homogeneous

BVP and N† ⊂ H1
0 is the set of weak solutions to the homogeneous adjoint BVP.

Finally, the BVP has a weak solution if and only if (f, v)L2 = 0 for all v ∈ N†.
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Proof .
By the basic existence result for weak solutions, there exists γ ≥ 0 such that for any f ∈ L2 there

exists a unique weak solution to
{
Lu+ γu = f in U

u = 0 on ∂U.
If γ = 0, then case (a) holds by the

Lax-Milgram theorem, so we may assume γ > 0.
The corresponding bilinear form therefore satisfies

Bγ [u, v] = B[u, v] + γ(u, v)L2 = (f, v)L2 ∀v ∈ H1
0 (4.64)

and ‖u‖H1 ≤ c‖f‖L2 .
We write L−1

γ (f) = u to represent this solution in terms of f . This is a linear map L2 → H1
0 .

Further,
∥∥L−1

γ (f)
∥∥
H1 ≤ c‖f‖L2 , so it’s bounded. This implies it is compact as a map L2 → L2.

Observe if g ∈ L2, then L−1
γ (g) = w iff Bγ [w, v] = (g, v) for all v ∈ H1

0 . Now suppose u ∈ H1
0 is a

weak solution to the BVP, i.e. B[u, v] = (f, v)L2 for all v ∈ H1
0 . Therefore

Bγ [u, v] = (f + γu, v)L2 ∀v ∈ H1
0 . (4.65)

Then u is a weak solution iff u = L−1
γ (f + γu) = L−1

γ (f) + γL−1
γ (u). This is equivalent to solving

u−Ku = h, whereK = γL−1
γ , h = L−1

γ (f). Observe thatK : L2 → L2 is compact, so we can apply
the Fredholm alternative.
We have

(I) either for all h ∈ L2, u−Ku = h admits a unique solution u ∈ L2;

(II) or there exists u 6= 0 in L2 such that u−Ku = 0.

Suppose (I) holds. We have established a solution u ∈ L2, and we got it from a linear combination
of outputs from L−1

γ , so it must live in the codomain of L−1
γ , i.e. u ∈ H1

0 and so it is the required
weak solution.
Now, suppose (II) holds. There exists a nonzero u ∈ L2 such that u = Ku = γL−1

γ (u), so similarly
we get u ∈ H1

0 . Further, we note that g = γu above, so

B[u, v] + γ(u, v)L2 = (γu, v)L2 ∀v ∈ H1
0 . (4.66)

Both the inner product terms go away by linearity, so we get B[u, v] = 0 ∀v ∈ H1
0 . That is, u is a

weak solution to the homogeneous BVP, so u ∈ N .
By (i, ii) of the Fredholm alternative, dimN = dim(ker(I −K)) = dim(N†) <∞.

We’ve left the hanging question: if we’re in case (II), where ker(I − K) 6= {0}, then we can’t solve the
inhomogeneous BVP for that f . What choices of f do admit a solution?

(directly from a note made on the lecture recording):

We assume now ker(I −K) 6= {0} and ask ourselves: for which f does B[u, v] = (f, v)L2 have a solution u
such that that expression holds for all v? This is the same as asking, for which f does u −Ku = γL−1

γ (f)

have a solution? Which is the same as asking for which f does L−1
γ (f) lie in im(I −K) = ker(I −K†)⊥? So

to begin with, what are the elements living in ker(I −K)†? This then is the motivation behind the following
claim.
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Proposition 4.12. Let v ∈ L2. Then

(I −K†)v = 0 ⇐⇒ v ∈ N† ⇐⇒ B†[v, w] = 0 ∀w ∈ H1
0 (4.67)

Proof .
Take v 6= 0.

v −K†v = 0 ⇐⇒ (v, w)L2 = (v,Kw)L2 ∀w ∈ L2. (4.68)

This is the case if and only if

(v, w)L2 = (v, γL−1
γ (w))L2 ∀w ∈ L2. (4.69)

A weak solution to the corresponding BVP, which is

{
Lγw = f in U

u = 0 on ∂U
(4.70)

obeys

B[w,ϕ] + γ(w,ϕ)L2 = (f,mϕ) ∀ϕ ∈ H1
0 . (4.71)

We can take f = w, which gives us w = L−1
γ (w) by definition. We also take v = ϕ. This tells us

that we have

B[L−1
γ (w), v] + γ

(
L−1
γ (w), w

)
L2 = (w, v)L2 . (4.72)

Inserting this into the LHS of the original BVP, we see v −K†v = 0 iff

⇐⇒ B
[
L−1
γ (w), v

]
= 0 ∀w ∈ L2 (4.73)

⇐⇒ B†[v, L−1
γ (w)] = 0 ∀w ∈ L2. (4.74)

To finish the claim, we need B†[v, ϕ] = 0 for all ϕ ∈ X , where X is dense in H1
0 . Because the

bilinear map is continuous in each of its entries, this is sufficient.
We only get this fact for elements in the image of L−1

γ (w), but in Examples Sheet 3, we show that
the image of L−1

γ is in fact dense in H1
0 , so by the continuity of L−1

γ , we have

v −K†v = 0 ⇐⇒ B†[v, w] = 0 ∀w ∈ H1
0 , (4.75)

which was what we wanted.

This leads to the following conclusion: the original BVP has a weak solution iff (f, v)L2 = 0 for all v ∈ N†.
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That is, B[u, v] = (f, v)L2 ∀v ∈ H1
0 if and only if (I −K)(u) = L−1

γ (f), which is the same thing as saying
L−1
γ (f) ∈ im(I −K) = ker(I −K†)⊥, which is equivalent to (v, L−1

γ (f))L2 = 0 for all v ∈ ker(I −K†). But
for all v ∈ ker(I −K†), we have

0 =
(
v, L−1

γ (f)
)
L2 =

(
v,

1

γ
K(f)

)
L2

=
1

γ
(K†v, f)L2 =

1

γ
(v, f)L2 . (4.76)

Hence, (v, f)L2 = 0 for all v ∈ ker(I −K†), so f is a solution to the homogeneous adjoint problem.

4.4.3 Extended example: the harmonic oscillator

Consider the harmonic oscillator,

−4+ |x|2 = H,x ∈ Rd. (4.77)

To this operator we associate a quadratic form,

B(u, v) =

∫
Rd
∇u · ∇vdx+

∫
Rd
|x|2uvdx. (4.78)

We also need a Hilbert space of possible solutions:

Σ = ρ(Rd)
‖·‖Σ

, (4.79)

where

‖u‖Σ =

(∫
Rd
|∇u|2 +

∫
Rd
|x|2|u|2

)1/2

. (4.80)

This is sort of a physically-determined norm, with a kinetic energy plus a potential energy. It’s a useful
choice for this kind of problem, but is the Fredholm machinery appropriate? Yes! Let’s see why.

We claim that Σ ↪→ H1(Rd) and that the embedding Id : Σ 7→ L2(Rd) is compact.

Proof .
We need to show there exists c > 0 such that for all u ∈ ρ(Rd), we have the usual norm bound:

∫
|x|≤1

|u|2 ≤ c
[∫

Rd
|∇u|2 +

∫
Rd
|x|2|u|2

]
. (4.81)

The first term here is no problem, it’s the usual Poincaré kind of bound. The difficulty comes in
with the |x|2 dependence: we don’t control it on the LHS outside of |x| ≤ 1, so what we need to
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show is that the gradient compensates for this. This is usually the kind of thing we have to do by
playing with test functions and using integration by parts.
Let χ ∈ C∞c such that it is 1 on the unit ball and decays to 0 between |x| = 1 and |x| = 2. We need
to control χu2.
We do this using the following trick: note that ∇ · (xχ) = dχ+ x · ∇χ, and so we can rewrite

χ =
1

d
(∇ · (xχ)− x∇χ) (4.82)

and so

∫
Rd
χu2 =

∫
Rd

1

d
(∇ · (xχ)− x∇χ)u2 (4.83)

= −1

d

∫
Rd

(x · ∇χ)u2 −
∫
Rd

1

d
xχ∇(u2)︸ ︷︷ ︸

IBP on the first term

(4.84)

= −1

d

∫
Rd

(x · ∇χ)u2 − 2

d

∫
uxχ∇u. (4.85)

Now, we try to bound χ|u|2 by the assumptions we took on χ. ∇χ is zero for |x| ≥ 2, so we can
bound the first term by |x|2|u|2. For the second term we use Cauchy-Schwarz/Young’s inequality,
so we can get

∫
Rd
χ|u|2 ≤ C1

∫
Rd
|x|2|u|2 + C2

(
ε

∫
Rd
χ|u|2 +

1

ε

∫
Rd
|∇u|2

)
. (4.86)

If we take an appropriate ε we can make the constants match up and we can absorb the blue term
back into the LHS, and what remains is a bound just in terms of the Σ norm, which was what we
wanted.
It remains to show that the embedding Id : (Σ, 〈·, ·〉Σ) 7→ (L2, 〈·, ·〉L2) is compact. Between Hilbert
spaces, a compact operator is one that transforms weakly convergent sequences into strongly
convergent ones, i.e. T : H1 → H2 is compact iff for all xi ⇀ 0 in H1, Txi → 0 in H2. (Something
about metrizability here that I’m just going to trust will always work out.)
We’re looking at the map that goes from the Σ norm to the L2 norm, I think. We want to estimate∫
|xn|2, which we split at some R into

∫
Rd
|un|2 =

∫
|x|<R

|un|2 +

∫
|x|≥R

|un|2. (4.87)

For the |x| ≥ R term, we can say

|un|2 ≤
|x|2

R2
|un| (4.88)∫

|x|≥R
|un|2 ≤

1

R2

∫
Rd

∣∣x2
∣∣|un|2 ≤ 1

R2
|un|2Σ ≤

C

R2
. (4.89)
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Since R is free, this is equivalent to bounding by any desired ε > 0. This is true for all n ≥ 1.
Further, for anyR, the first termmust go to 0 as n→∞ by Rellich-Kondrachov (expanding out the
definition of the L2 norm and restricting the domain to |x| ≥ R.) Therefore, the integral goes to 0
strongly in L2, which was what we wanted.

With all of this set up, we can start using the Fredholm machinery.

Choose f ∈ L2(Rd) and define the linear form

Lf (v) = 〈f, v〉L2 , (4.90)

which exists by Lax-Milgram. We claim that Lf is continuous on Σ; it is linear, so we just need to show
boundedness, which follows from

|Lf (v)| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖Σ. (4.91)

By the Riesz representation theorem, there exists T (f) ∈ Σ such that Lf (v) = 〈T (f), v〉Σ = 〈f, v〉L2 for all
v ∈ Σ. This defines a map T : L2 7→ Σ, f → T (f), such that (expanding out the Σ norm and the L2 norm),

∫
∇T (f) · ∇v +

∫ ∣∣x2
∣∣T (f)v =

∫
L2

fv ∀v ∈ Σ. (4.92)

In particular, we can let v be any test function, so T (f) is a weak solution to the PDE. We can also take
v = T (f) to find

‖T (f)‖2Σ ≤ ‖f‖L2‖T (f)‖Σ =⇒ ‖T (f)‖Σ ≤ ‖f‖L2 . (4.93)

This means T : L2 7→ Σ is continuous, and we know the injection Σ 7→ L2 is compact, so the resolvant map
T : L2 → L2 is compact.

Exercise 4.13. Show T : L2 7→ L2 is self-adjoint.

This implies T is diagonalizable in a Hlbertian basis of L2(Rd). In the case of the harmonic oscillator, this
tells us that solving Tψn = λ−1

n ψn is equivalent to solving Hψn = λnψn.

Can we understand what this Hilbertian basis is? We can explicitly diagonalise H ,

u = e−
−|x|2

2 v (4.94)

Hu = e−
−|x|2

2

 H̃︷ ︸︸ ︷
(−4+ (d+ 1) + 2x · ∇) v

. (4.95)
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Then, Hu = λu ⇐⇒ H̃v = λv.This is easy in dimension 1, which gives us H̃v0 = 2v0, and induction on n
lets us construct

H̃Pn = (2n+ 2)Pn, (4.96)

where the Pn are the Hermite polynomials. This is the Hilbertian basis in which the resolvant T is diagonal.
The abstract theorem that tells us that self-adjoint compact operators on Hilbert spaces are diagonalizable
in this case admits a concrete representation.

We can further analyse this by finding eigenvalues by the variational method.

In real life, though, we often have an extra potential:

(
−4+ |x|2 + V (x)

)
ψ = λψ. (4.97)

For small perturbations V → εV , we can run the standard machinery of perturbation theory from quantum
mechanics (take ψ = ψ0 + εψ1, λ = λ0 + ελ1, and expand) to get

(H0 − λ0)ψ1 = λ1ψ0 − V ψ0 + ε(λ1ψ1 − εV ψ1) := f. (4.98)

In QM, we would take the ε to 0 and get a correction to first order, but here we can treat this as its own PDE.

We previously solved the PDE involving H0 = −4+ |x|2, T = (−4+ |x|2)−1, and now we have

H0ψ1 = λ0ψ1 + f. (4.99)

Therefore,

ψ1 = T (λ0ψ1 + f) (4.100)

or equivalently

(I − λ0T )ψ1 = Tf. (4.101)

This is exactly the Fredholm structure! Therefore, we can invert this operator if and only if we have
orthogonality with f . We know H0 − λ0 has a nontrivial kernel because ψ0 is in it. We have to precisely
know the kernel, and in this case it is the span of ψ0. In such a case, (H0− λ0)u = f admits a solution if and
only if 〈f, ψ0〉L2 = 0.

Looking at the form of f , we need to impose

〈λ1ψ0 − V ψ0 + ελ1ψ0〉L2 = 0 (4.102)

λ1 =
〈V ψ0, ψ0〉 − ε〈λ1ψ1 + V ψ1, ψ0〉

‖ψ0‖2L2

. (4.103)
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With this choice of λ1, we can invert H0 − λ0 to get ψ1.

4.5 The spectra of elliptic PDEs

Toolbox

Definition 4.11. Let H be a real Hilbert space. Suppose A : H → H is a bounded linear operator.

• The resolvant of A is defined as {λ ∈ R | A− λI is invertible} and denoted ρ(A).

• The real spectrum of A is defined as σ(A) = R \ ρ(A).

• η ∈ σ(A) is said to belong to the point spectrum of A, δp(A), if ker(A− ηI) 6= {0}. That is, there exists ω 6= 0
such that Aω = ηω, and we call ω an eigenvector.

• The adjoint A† : H → H is defined such that (Ax, y) = (x,A†y) for all x, y ∈ H .

• A is self-adjoint if A = A†.

This next theorem is from Part II Linear Analysis.

Theorem 4.14 (Spectrum of a compact operator). Assume H is a separable Hilbert space with K : H → H
compact. Then

1. 0 ∈ δ(K), i.e. compact operators are not invertible.

2. δ(K) \ {0} = δp(K) \ {0}

3. δ(K) \ {0} is at most countable, i.e. it can be represented as {λi}∞i=1, and if it is infinite then λi → 0

4. If K is self-adjoint, then there exists a countable orthonormal basis for H consisting of eigenvectors of K (the
spectral theorem)

These are proved in appendix D.5 of Evans, as theorems 6 and 7.

4.5.1 Characterising the spectrum

Now, why are we doing all of this? We’re trying to solve a problem of the form

{
Lu = f inU
u = 0 on∂U

(4.104)

by associating a bilinear form B[u, v] and applying Garding’s inequality, that there exist β > 0, γ ≥ 0 such
that B‖u‖2H1 ≤ B[u, u] + γ‖u‖2L2 . Further, we know we can weakly solve Lu + µu = f for µ ≥ γ such that
the solution is bounded by the data.

When proving the Fredholm alternative, we set Lµ = L+µI and used this to define a map u = L−1
µ (f), and

L−1
µ : L2 → H1

0 ↪→ L2, so by Rellich-Kondrachov, we could show L−1
µ : L2 → L2 is compact.

Analysis of Partial Differential Equations



78 Second-order elliptic boundary value problems

We can therefore see that solving Lu = f can be reduced to

Lu = f ⇐⇒ Lu+ µu = f + µu

⇐⇒ Lµu = f + µu

⇐⇒ u = L−1
µ (f + µu)

⇐⇒ u− µL−1
γ (u) = L−1

µ (f)

⇐⇒ u−Ku = h,

(4.105)

whereK = µL−1
µ is compact.

Theorem 4.15 (Spectrum of L). Under the assumptions of the Fredholm alternative,

(i) there exists an at most countable set Σ ⊂ Rn (the “bad set”) such that the BVP Lu = λu + f in U and u = 0
on ∂U has a weak solution for all f ∈ L2, if and only if λ 6∈ Σ;

(ii) if Σ is infinite, then Σ = {λk}∞k=1 and (after reordering) we have λ1 < λ2 < · · · < λk < . . . with λk →∞.

(iii) To each λ ∈ Σ there is a finite-dimensional space,

E (λ) ,

{
u ∈ H1

0 (U) | u is a weak solution of
{
Lu = λu U

u = 0 ∂U

}
. (4.106)

We say λ ∈ Σ is an eigenvalue of L and u ∈ E (λ) is a corresponding eigenfunction.

In the case where L = −4, we get the Helmholtz equation −4u = λu.

Proof .
Pick γ > 0 as in the Fredholm alternative and set µ ≥ γ. Then Lµ = L + µI is invertible and
L−1
µ : L2 → L2 is compact. Now Lu = λu+ f ⇐⇒ Lu− λu = f , so if µ = −λ ≥ γ, i.e. if λ ≤ −γ,

then the problem
{
Lu+ µu = f U

u = 0 ∂U
admits a unique weak solution for all f ∈ L2. That is, Σ lies

somewhere in (−γ,∞); below γ, by this property, we can’t have any valid λ ∈ Σ values.

Consider λ > −γ. solving the BVP is equivalent to solving
{
Lu− λu = f, U

u = 0, ∂U
. Applying the

Fredholm alternative to L − λI , we see that u ≡ 0 is the only solution to
{

(L− λI)u = 0, U

u = 0, ∂U
.

That is, case (b) in the Fredholm alternative does not occur. This is equivalent to saying u ≡ 0 is

the only solution to
{
Lu+ γu = (γ + λ)u, U

u = 0, ∂U
.

In turn, we get that u ≡ 0 is the only solution to L−1
γ ((γ + λ)u) = γ+λ

γ K(u), i.e. K(u) = γ
γ+λu only

has u ≡ 0 as a solution. That is, γ
γ+λ is not an eigenvalue ofK.

Therefore, λ ∈ Σ if and only if γ
γ+λ is an eigenvalue of K. By Theorem 4.14, the set of eigenvalues

of K consists of a finite set or else the values of a sequence tend to 0. Let this sequence be {µk}.
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Then µk → 0. Therefore λk = γ
µk
−−γ →∞. The fact that E (λ) is finite-dimensional follows from

the Fredholm alternative.

If λ 6∈ Σ, then there exists c > 0 such that ‖u‖L2 ≤ c‖f‖L2 , and c→∞ if λ tends to an eigenvalue.

4.5.2 Self-adjoint positive operators

Definition 4.12. The operator L is said to be formally self-adjoint if L = L†.

Exercise 4.16. Check that this is equivalent to bi ≡ 0, which implies B[u, v] = B[v, u].

Definition 4.13. The operator L is positive if there exists B > 0 such that β‖u‖2H1 ≤ B[u, u] for all u ∈ H1
0 .

This is coercivity of the H1 norm, so Lax-Milgram applies.

Theorem 4.17 (Eigenvalues of symmetric self-adjoint elliptic operators). Let L be a uniformly elliptic, formally
self-adjoint, positive operator on U . Then we can represent the eigenvalues of L as 0 < λ1 ≤ λ2 ≤ . . . where each
eigenvalue appears according to its multiplicity dim(E (λ)), and there exists an orthonormal basis {wk}∞k=1 for L2(U)
of eigenfunctions, wk ∈ H1

0 , i.e. wk is a weak solution to Lwk = λkwk on U and wk = 0 on ∂U .

Proof .
By the positivity and Lax-Milgram, we have that L is invertible, and L−1 : L2 → H1

0 ↪→ L2. Denote
S := L−1 : L2 → L2. By Rellich-Kondrachov, S is compact. We claim S is self-adjoint. To show
this, we pick f, g ∈ L2. Then S(f) = umeans u ∈ H1

0 is the unique weak solution to Lu = f on U ,
u = 0 on ∂U . This also holds for S(g) = v. Therefore

B[u,w] = (f, w)∀w,B[v, ϕ] = (g, ϕ)∀ϕ. (4.107)

Then

(S(f), g)L2 = (u, g) =︸︷︷︸
ϕ=u

B[v, u], (4.108)

and

(f, S(g))L2 = (f, v)L2 = B[u, v]. (4.109)

Since L is self-adjoint, B[u, v] = B[v, u], so

(f, S(g))L2 = (S(f), g)L2∀f, g ∈ L2. (4.110)

By 4.14 (iv), there exists (µk)k ⊂ R such that µk → 0 and there exists wk ∈ L2(U) such that
(wk)k is an orthonormal basis of L2 with Swk = µkwk =⇒ L−1wk = µkwk ∈ H1

0 . Therefore
Lwk = λkwk, λk = 1

µk
. The positivity of eigenvalues comes from the positivity of L.
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4.6 Elliptic regularity

We’ve talked a lot about weak solutions, i.e. u ∈ H1
0 (U). Now, we want to improve their regularity to

u ∈ C2(Ū) so that we can make sense of Lu = f pointwise almost everywhere. The idea here is that
improving the regularity of f implies we can improve the regularity of u.

Example 4.20. Suppose u ∈ C∞c (Rn) solves Poisson’s equation, −4u = f . Then

∫
Rn
f2dx =

∫
Rn

(4u)2dx =
∑
i,j

∫
Rn

(DiDiu)(DjDju) (4.111)

=︸︷︷︸
IBP

−
∑
i,j

∫
(DjDiDiu)(Dju) (4.112)

=︸︷︷︸
IBP

∑
i,j

(DiDju)(DiDju) =

∫ ∑
i,j

|DiDju|2 (4.113)

=
∥∥D2u

∥∥2

L2(Rn)
. (4.114)

Therefore
∥∥D2u

∥∥
L2 ≤ ‖4u‖L2 : we can control all the second derivatives (mixed ones as well) just

from the Laplacian. �

An Aside
We can make sense of B[u, v] = 〈f, v〉 for f ∈ (H1

0 (U))′ = H−1(U) where 〈·, ·〉 denotes the pairing
between H1

0 and its dual H−1. If f ∈ H−1(U) then there exists f0, . . . , fu ∈ L2(U) such that

〈f, v〉 =︸︷︷︸
Riesz

(w, v)H1
0

= (f0, v)L2 + (f ′, vx1)L2 , (4.115)

for all v ∈ H1
0 .

We could consider Lu = f, f ∈ H−1(U). Suppose u ∈ H1(U) is a weak solution to Lu = f on U and
u = g on ∂U . We can make sense of this in the sense of traces: g = Tr(w), w ∈ H1(U), and we subtract

off the data by taking ū = u− g ∈ H1
0 (U), and we solve

{
Lū = f̄ U

ū = 0 ∂U
, where f̄ = f − Lu ∈ H−1(U).

Page 136 of Brezis.

The takeaway here is that dual space methods in the context of elliptic PDEs are kind of nasty.

IfA : H → H is a bounded linear operator, we sayA is a Fredholmoperator if kerA is finite-dimensional,
if imA is closed such that dim coker(im(A)) = dim(H/ imA) <∞.

The index of A is indA = dim kerA− dim cokerA.
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Example 4.21. Consider a compact operator K : H → H . ker(I − K) is finite-dimensional,
im(I −K) is closed, and dim coker(I −K) = dim im((I −K)⊥) =︸︷︷︸

Fredholm

dim ker(I −K†) <∞.

Therefore compact operators have an index of 0. �

The Atiyah-Singer index theorem links this with topological ideas: if U → a closed Riemann surface
Σg , and A→ d+ δ : Ω1 → Ω2 ⊕ Ω0, then ind(d+ δ) = 2g − 2 = −χ(Σg).

If L is uniformly elliptic and a self-adjoint positive operator, then there exists an orthonormal basis

{wk} of L2(U) where wk ∈ H1
0 (U) and

{
Lwk = λwk U

wk = 0 ∂U
. We states λk → ∞. If L = −4, the rate at

which these go to infinity are given by the Weyl asymptotics:

λk ∼
√

2π

Vol(B1(0))2/n
vol(U)2/nk2/n. (4.116)

If µ 6= λk, then Lu− µu = f has a unique solution, and

u =
∑
k≥1

(f, wk)L2

λk − µ
wk converges in L2. (4.117)

If Ω1,Ω2 ⊂ R2 and we have two eigenvalues for L = −4. If the eigenvalues are equal, are Ω1,Ω2

isometric? (Can you hear the shape of a drum?) This is unsolved in general.

Our motivating example is finding u ∈ C∞c (Rn) solving −4u = f ,
∫
Rn f

2dx =
∫

(4u)2 =
∫
uxixiuxjxj . Last

time, we applied integration by parts to show that

∥∥D2u
∥∥
L2 ≤ ‖4u‖L2 ; (4.118)

the Laplacian controls all the second-order derivatives.

In this section, we let U ⊂ Rn be open and bounded, and V ⊂⊂ U .

Definition 4.14. For 0 < |h| < dist(V, ∂U), we define the difference quotient 4hi u(x) = u(x+hei)−u(x)
h , and

4hu = (4h1u, . . . ,4hnu).

The idea here is we want to mimic the classical derivative in Lp spaces.

If u ∈ L2(U), then we have4hu ∈ L2(V ).

D(4hu) = 4h(Du), so if u ∈ H1(U) then4hu ∈ H1(v). The derivative of the difference quotient will start
to look like D2u.

Lemma 4.18 (Difference quotients are useful). Suppose u ∈ L2(U). Then u ∈ H1(V ) if and only if for all h with
0 < |h| < 1

2 dist(V, ∂U), we have
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∥∥4hu∥∥
L2(V )

≤ C (4.119)

where C > 0 is independent of h.

Moreover, there exists a constant C̃ also independent of h such that

1

c̃
‖Du‖L2(V ) ≤

∥∥4hu∥∥
L2(V )

≤ c̃‖Du‖L2(V ). (4.120)

Theorem 4.19 (Interior regularity). Suppose L is a uniformly elliptic operator on U and assume that aij ∈ C1(U),
bi, c ∈ L∞(U) and f ∈ L2(U). Suppose further that u ∈ H1(U) (no zero subscript here: u doesn’t necessarily solve
the BVP) satisfies the equation

B[u, v] = (f, v) ∀v ∈ H1
0 (U). (4.121)

Then u ∈ H2
loc(U), and for each V ⊂⊂ U , we have

‖u‖H2(V ) ≤ C
(
‖f‖L2(U) + ‖u‖L2(U)

)
, (4.122)

where C is a function of V,U, aij , bi, c, n but is independent of f, u.

This result means that we can get two weak derivatives of U , which is an improvement. It is also useful to
write the inequality in the theorem as

‖u‖H2(V ) ≤ c
(
‖Lu‖L2(U) + ‖u‖L2(U)

)
. (4.123)

(cf. with the Laplacian where we had
∥∥D2u

∥∥
L2 ≤ ‖4u‖L2 ).

Proof .

1. Fix V ⊂⊂ U and assume W is compact such that V ⊂⊂ W ⊂⊂ U . Take a cutoff function
ξ ∈ C∞c (W ), 0 ≤ ξ ≤ 1 such that ξ1V = 1 and ξ1∂W = 0. We rewrite B[u, v] = (f, v) as

∑
i,j=1

∫
U

aijuxivxjdx =

∫
U

f̃v ∀v ∈ H1
0 (U), (4.124)

where f̃ = f − biuxi − cu is in L2(U).
Choose v = −4−hk (ξ24hku) for some k = 1, . . . , n fixed and 0 < |h| < 1

2 dist(W,∂U). Note
that v ∈ H1

0 (W ) and think of v as approximating D2u.
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Set A =
∑
i,j

∫
U
Aijuxjvxi , B =

∫
U
f̃vdx, with this particular choice of v. Now, we observe a

couple of properties about difference quotients.
For ψ, φ ∈ L2(U) that are supported inW , we have the following algebraic property,

∫
U

ψ(x)(4−hk φ)(x)dx = −
∫
U

(4hkψ)(x)φ(x)dx, (4.125)

and we call this integration by parts for difference quotients.
We also have a kind of Leibniz rule:

4hk(ψ · φ)(x) =
(ψ(x+ ekh)φ(x+ ekh)− ψ(x)φ(x))

h
= (τhk ψ)(x)4hkφ(x) + (4hkψ)(x)φ(x),

(4.126)

where τhk ψ(x) = ψ(x+ hek) is the translation operator.

2. Next, let’s bound A. If we expand it out using the particular choice of v we made, we get the
following:

A = −
∫
U

aijuxi4−hk (ξ24hku)xjdx (4.127)

=

∫
U

4hk(aijuxi)(ξ
24hku)xjdx (4.128)

=

∫
U

[
(τhk a

ij)4hkuxi + (4hkaij)uxi
]
×
[
ξ24hkuxj + 2ξξxj4hku

]
dx (4.129)

= A1 +A2, (4.130)

where

A1 =

∫
U

ξ2(τhk a
ij)(4hkuxi)(4hkuxj ), (4.131)

and A2 = A−A1, which we don’t need to explicitly write down yet.
By uniform ellipticity of the operator L,

∑
(τhk a

ij(x))ηiηj ≥ θ|η|2 ∀η ∈ Rn,∀x ∈W, θ > 0. (4.132)

Applying this with η2 = 4hkuxi , we get

A1 ≥ θ
∫
U

ξ2
∣∣4hk(Du)

∣∣2dx. (4.133)

Next, we write down A2, or we just look at where Paul Minter did it. This gives us a bound,
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|A2| ≤ ε
∫
W

ξ2
∣∣4h(Du)

∣∣2dx+
C

ε

∫
W

(|Du|2 +
∣∣4hku∣∣2)dx. (4.134)

Applying the quotient-difference lemma, we can further write down

|A2| ≤
∫
W

ξ2
∣∣4h(Du)

∣∣2dx+
C

ε

∫
W

|Du|2dx. (4.135)

We make a good choice of ε. Set ε = θ
2 and use A2 ≥ −|A2| to find

A = A1 +A2 ≥ A1 − |A2| ≥
θ

2

∫
U

ξ2
∣∣4h(Du)

∣∣2 − C ∫
W

|Du|2. (4.136)

3. Next, we bound B:

f̃ = f − biuxi − cu (4.137)

|B| =
∣∣∣∣∫
W

f̃u

∣∣∣∣ ≤ C ∫
W

{|f |+ |Du|+ |u|}
∣∣4−hk (ξ24hku)

∣∣. (4.138)

By Lemma 4.14,

∫
W

∣∣4−hk (ξ24hku)
∣∣2dx ≤ C

∫
W

∣∣D(ξ24hku)
∣∣2dx (4.139)

= C

∫
W

|ξ|2|Dξ|2
∣∣4hku∣∣2 + ξ2

∣∣4hk(Du)
∣∣2dx (4.140)

≤ C
∫
W

|Du|2 + c

∫
W

ξ2
∣∣4hk(Du)

∣∣2dx. (4.141)

By Young’s inequality,

|B| ≤ ε
∫
U

ξ2
∣∣4hk(Du)

∣∣2 +
C

ε

∫
W

(f2 + u2 + |Du|2). (4.142)

4. The condition that B[u, v] = (f, v) for all v implies that A = B, so |A| = |B|. So in particular,
we can write out the sandwich of inequalities we’ve shown:

θ

2

∫
U

ξ2
∣∣4hk(Du)

∣∣2 − C ∫
W

|Du|2 ≤ |A| = |B| (4.143)

≤ θ

4

∫
U

ξ2
∣∣4hk(Du)

∣∣2 +

∫
W

(f2 + u2 + |Du|2) (4.144)

(4.145)
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and so

∫
U

ξ2
∣∣4hk(Du)

∣∣2 ≤ C ∫
W

f2 + u2 + |Du|2. (4.146)

Since ξ
∣∣
V

= 1, we get that if u ∈ H1(U) solves B[u, v] = (f, v), then

∫
V

∣∣4hk(Du)
∣∣2 ≤ C︸︷︷︸

indep ofh

∫
W

(f2 + u2 + |Du|2), (4.147)

which implies by Lemma 4.14 that Du ∈ H1(U) =⇒ u ∈ H2
loc(U) with

∥∥D2u
∥∥
L2(U)

≤ C
(
‖f‖L2(W ) + ‖u‖H1(W )

)
. (4.148)

5. We show that the ‖Du‖L2(W ) term is unnecessary (in theH1(W ) norm on u) is unnecessary.
Let ξ ∈ C∞c (U) with ξ

∣∣
W

= 1. Set v = ξ2u in B[u, v] = (f, v) to get

∫
U

(
aijuxi(ξ

2u)xj + biuxiξ
2u+ cu2ξ2

)
dx =

∫
U

ξ2fudx. (4.149)

Then, repeating the proof of Garding’s inequality,

‖Du‖2L2(W ) ≤ C
(
B[u, u] + γ‖u‖2L2(W )

)
≤ c
(
‖f‖2L2(W ) + ‖u‖2L2(W )

)
. (4.150)

and therefore

‖u‖H1(W ) ≤ C
(
‖f‖L2(W ) + ‖u‖L2(W )

)
(4.151)∥∥D2u

∥∥
L2(V )

≤ C
(
‖f‖L2(U) + ‖u‖L2(U)

)
. (4.152)

This is a local result: to have u ∈ H2(V ), it is enough to have f ∈ L2(W ) where V ⊂⊂ W . Therefore
singularities/losses of regularity don’t propagate from the boundary. So if somehow f 6∈ L2 near ∂U , we
don’t see that in our estimates.

We claim that Lu = f almost everywhere in U . We see this since (Lu− f, v)L2(V ) = 0, so Lu− f = 0 almost
everywhere in V , but since V ⊂⊂ U is arbitrary, it holds in U .

Theorem 4.20 (Improved interior regularity). If aij , bi, c ∈ Cm+1(U) and f ∈ Hm(U), for somem ∈ N, we have
u ∈ Hm+2

loc (U) and for all V ⊂⊂W ⊂⊂ U ,

‖u‖Hm+2(V ) ≤ C
(
‖f‖Hm(W ) + ‖u‖L2(W )

)
. (4.153)
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Proof .
By induction, on sheet 4.

Holder regularity roughly says that if f ∈ Cm,α(U), then u ∈ Cm+2,α(U) for all 0 < α < 1.

We can combine the above theoremwith Sobolev embedding results. In particular, ifm is large (specifically
ifm > n

p = n
2 ) then u ∈ H

m+2
loc (U) ↪→ C2

loc(U). If f ∈ C∞(U) then so is u.

Having talked about interior regularity, let’s look at boundary regularity.

Theorem 4.21 (Boundary H2 regularity). Assume aij ∈ C1(Ū), bi, c ∈ L∞(U), f ∈ L2(U), and ∂U ∈ C2.

Suppose we have a weak solution u ∈ H1
0 (U) of

{
Lu = f U

u = 0 ∂U
.

Then u ∈ H2(U) ∩H1
0 (U) and ‖u‖H2(U) ≤ C

(
‖f‖L2(U) + ‖u‖L2(U)

)
.

Moreover, if u is the unique weak solution to the BVP, then ‖u‖H2(U) ≤ C‖f‖L2(U) = C‖Lu‖L2(U).

Proof sketch.
We sketch the main idea for U = B1(0) ∩ {xn > 0}. Let V = B1/2(0) ∩ {xn > 0} and choose
ξ ∈ C∞c (B1(0)) with ξ

∣∣
V

= 1, 0 ≤ ξ ≤ 1. That is, the support of ξ is between V and U and it’s 1 on
V .
Since u is a weak solution to the PDE, we have

n∑
i,j=1

∫
U

aijuxivxj =

∫
U

f̃v ∀v ∈ H1
0 (U). (4.154)

Let 0 < |h| ≤ 1
4 dist (supp ξ, ∂B1(0)), so that if we shift we still stay away from ∂U .

As before, take v = −4−hk (ξ24hku) for fixed k = 1, . . . , n − 1 (working tangential to {xn = 0} so
that v stays inside the domain).
We claim v ∈ H1

0 (U), which we can show because

v(x) = − 1

h
4−hk

(
ξ2(x)(u(x+ hek)− u(x))

)
=

1

h2

[
ξ2(x− hek)(u(x)− u(x− hek)) + ξ2(x)(u(x+ hek)− u(x))

]
for x ∈ U . Since the translation is horizontal and Tr(u)

∣∣
xn=0

= 0, we have Tr(u(x± hek))
∣∣
xn=0

= 0

for all |x| < 1 − h. For xn = 0, |x| ≥ 1 − h have ξ2(x) = 0, ξ(x − hek) = 0. So as in the proof of
Theorem 4.20, we deduce

∫
V

∣∣4hk(Du)
∣∣2 ≤ C ∫

U

(
f2 + u2 + |Du|2

)
. (4.155)

Therefore, we can controll all second-order derivatives of the form DkDiu with i ∈ {1, . . . , n} and
k ∈ {1, . . . , n− 1} via
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‖DkDiu‖L2(V ) ≤ C
(
‖f‖L2(U) + ‖u‖H1(U)

)
. (4.156)

To control uxnxn we use the weak formulation, IBP, and a previous remark to find

−(aijuxi)xj + biuxi + cu = f a.e. in U (4.157)

and so

annuxnxn = F = −
∑

i<n,j<n

aijuxixj + b̃iuxi + cu− f a.e. in U. (4.158)

So F ∈ L2(V ), and using the previous results

‖F‖L2(V ) ≤ C
(
‖f‖L2(U) + ‖u‖H1(U)

)
. (4.159)

Next, we use the uniform ellipticity condition on L to show ann(x) ≥ θ|ξ|2 = θ > 0 by substituting
in ξ = (0, . . . , 0, 1).
Since ann ∈ C1(U), we see ann ≥ C > 0, so we can divide by ann and get uxnxn ∈ L2(V ) with the
same bound as for F . This implies

‖u‖H2(V ) ≤ C(‖f‖L2(U) + ‖u‖H1(U)). (4.160)

Again using the proof of Garding’s inequality, we can replace the ‖·‖H1(U) on the RHS by ‖·‖L2(U).

Higher regularity results can still be shown. For example, if aij , bi, c are in Cm+1(U), f ∈ Hm(U), and
∂U ∈ Cm+2, and we have u ∈ H1

0 as our weak solution, then u ∈ Hm+2(U) with the corresponding data
bound

‖u‖Hm+2(U) ≤ c
(
‖f‖Hm(U) + ‖u‖L2(U)

)
. (4.161)

In particular, if everything is C∞, then u ∈ C∞ as well, and we have a classical solution. In doing this, we
implicitly make use of the Sobolev embedding theorem, to bump us up from weak to regular derivatives.

An example of where this might come up is in the eigenvalue problem Lu = λu. L − λI is uniformly
elliptic (if L is), and so we have (L − λ)u = 0 = f ∈ C∞(U): an infinitely differentiable L admits infinitely
differentiable eigenfunctions.
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5.1 Defining hyperbolicity

These are sometimes known as “wave equations”, but really, the wave equation is only a particular case.

Definition 5.1. A second-order partial differential equation

n+1∑
i,j=1

(
aij(y)uyi

)
yj

+

n∑
i=1

ai(y)uyi + a(y)u = f, (5.1)

with y ∈ Rn+1, aij = aji, ai, a ∈ C∞(Rn+1) is said to be hyperbolic if the quadratic form q(ξ) =
∑n+1
i,j=1 a

ij(y)ξiξj ,
the principal symbol, has signature (+,−, . . . ,−) for all y ∈ Rn+1. This means that at each point y (possibly after a
change of basis), we can write

q(ξ) = λ2
n+1ξ

2
n+1 −

n∑
i=1

λ2
i ξ

2
i , (5.2)

where λk(y) > 0 for all k = 1, . . . , n+ 1.

Anotherway of saying this is that thematrix (aij(y))ij is diagonalizablewith exactly one positive eigenvalue.

By a coordinate transformation, we can transform Equation 5.1 into a more familiar form, as long as we’re
working locally.

utt −
∑(

aij(x, t)uxi
)
xj

+
∑

bi(x, t)uxi + c(x, t)u = f. (5.3)

Here, we’ve undergone a relabelling (x1, . . . , xn, t) = (y1, . . . , yn+1). In general, we can patch together local
solutions to make global ones when we’re working with hyperbolic PDEs, so this is a good result to have.

Note that assuming
∑
aijξiξj ≥ θ|ξ|2,m we see that {(x, t), t = 0} is a non-characteristic (good) surface

of the PDE, so we can apply the Cauchy-Kovalevskaya theorem to solve the PDE if we have analytic data
u
∣∣
t=0

, ut
∣∣
t=0

. We could do this, but we’d like to use the structure of the PDE to solve the equation under
weaker assumptions.

5.2 Hyperbolic initial boundary value problems

SupposeU ⊂ Rn is open and bounded, with ∂U ∈ C1, andwe define the following notation: UT = (0, T )×U
(so this is open), Σt = U × {t}, and ∂∗UT = [0, T ] × ∂U . If U is a circle, UT is an open cylinder, Σt is a
particular cross-section of the cylinder, and ∂∗UT is the curved boundary, missing the caps of the cylinder
(intentionally).

So ∂(UT ) = Σ0 ∪ ΣT ∪ ∂∗UT , and these sets are disjoint.

Having defined the domain of interest, we can look at an IBVP in this domain. Let u ∈ C2(UT ) satisfy the
IBVP (the wave equation)
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utt −4u = 0 in UT

u = ψ0 on Σ0

ut = ψ1 on Σ0

u = 0 on ∂∗UT .

(5.4)

The specification of u, ut on Σ0 is the initial value part, and the specification of u = 0 on the curved surface
specifies the boundary values. In this case u cannot escape from the sides of the cylinder. Thewave equation
usually deals with energy propagation, so this is essentially requiring conservation of energy.

Now, we perform an energy estimate as we’ve done for elliptic equation. Multiply the PDE by ut and
integrate by parts over Ut to get

0 =

∫
Ut

(uttut − ut4u)dxdt (5.5)

=

∫
Ut

(
1

2
∂t
(
(ut)

2
)
− divx(utDu) +Dut ·Du

)
dxdt, (5.6)

where in the second step we used the identity ∇(g∇h) = ∇g∇h + g4h. Continuing to simplify and using
the divergence theorem, we get

0 =

∫
Ut

(
1

2
∂t

(
(u2
t ) + |Du|2

)
− divx(utDu)

)
dxdt (5.7)

=
1

2

∫
Σt

(u2
t + |Du|2)dx− 1

2

∫
Σ0

(
u2
t + |Du|2

)
dx−

∫ t

0

∫
∂U

utDu · ~ndS︸ ︷︷ ︸
=0 since u≡0 on ∂∗UT =⇒ ut≡0 on ∂∗UT

. (5.8)

Therefore we get an energy conservation law,

∫
Σt

(ut)
2 + |Du|2dx =

∫
Σ0

(
(ψ1)2 + |Dψ0|2

)
dx. (5.9)

We’ll sometimes use the weaker result where the = is a≤. We call this an a priori estimate, taking on a similar
role to the Garding inequality in elliptic theory. Let’s see how we can use this estimate in practice. Let
v, v ∈ C2 be two solutions with data φi, φi, with i = 0, 1. Let u = v− v, ψi = φi − φi. Then there exists c > 0
such that

sup
t∈[0,T ]

(
‖u(·, t)‖2H1(U) + ‖ut(·, t)‖2L2(U)

)
≤ c(‖ψ0‖) (5.10)

This comes out of the Poincaré inequality via u = 0 on ∂∗UT . This shows us uniqueness, and continuous
dependence on initial data.

We proceed similarly to how we established elliptic theory, by defining an operator L:
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Lu = −
∑(

aij(x, t)uxi
)
xj

+
∑

bi(x, t)uxi + b(x, t)ut + c(x, t)u. (5.11)

Note that the b(x, t) term is new. We take aij = aji, bi, b, c ∈ C1(UT ). We assume the principal part is
uniformly elliptic, i.e. there exists θ > 0 such that

∑
aij(x, t)ξiξj ≥ θ‖xi‖2 for all (x, t) ∈ UT , kξ ∈ Rn. We

consider the IBVP


utt + Lu = f in UT

u = ψ0 on Σ0

ut = ψ1 on Σ0

u = 0 on ∂∗UT .

(5.12)

We aim to find a weak formulation for this problem. Suppose u ∈ C2(UT ) is a solution to this equation.
Multiply the PDE by some v ∈ C2(UT ) such that v = 0 on the sides ∂∗UT and the top Σt, but not necessarily
on the bottom. We get

∫
UT

fvdxdt =

∫
UT

(uttv + Lu · v)dxdt (5.13)

and we expand out L and integrate by parts,

∫
UT

fvdxdt =

∫
UT

(
−utvt + aijuxivxj + biuxiv + butv + cuv

)
dxdt+

[∫
U

utvdx

]t=T
t=0

−
∫ T

0

∫
∂U

aij~niuxjvdSdt

(5.14)∫
UT

fvdxdt =

∫
UT

(
−utvt + aijuxivxj + biuxiv + butv + cuv

)
dxdt−

∫
Σ0

ψ1(x)v(x, 0)dx, (5.15)

and u
∣∣
Σ0

= ψ0, u
∣∣
∂∗UT

= 0. We’d like to treat this as an alternative version of the PDE, which requires
that we can undo this and get back the PDE. Suppose the above holds for all v ∈ C2(UT ) with v = 0 on
∂∗UT ∪ ΣT . If v has compact support on UT , then undoing the IBP gets us

0 =

∫
UT

(utt + Lu− f)v. (5.16)

Since v is arbitrary, we get utt + Lu− f = 0 on UT .

Next, we drop the compact support assumption and instead say v is C∞. We get

∫
UT

(utt + Lu− f)vdxdt =

∫
Σ0

(ψ1 − ut)vdx, (5.17)
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but the LHS vanishes by the reasoning above, so we get

∫
Σ0

(ψ1 − ut)vdx = 0 ∀v ∈ C∞(UT ), v

∣∣∣∣
∂∗UT∪ΣT

= 0. (5.18)

We separate variables: let v(x, t) = χ(t)ϕ(x) with χ ∈ C∞([0, T ]) such that χ = 1 near t = 0 and χ = 0 near
t = T . This tells us that v

∣∣
Σ0

= ϕ, where ϕ is any compactly supported function on Σ0. From here, we say

∫
Σ0

(ψ1(x)− ut(x, 0))ϕ(x) ∀ϕ ∈ C∞c (Σ0) (5.19)

=⇒ ψ1 = ut on Σ0. (5.20)

Having established this equivalence, we can formally definewhat it means to be aweak solution to the IBVP.
Definition 5.2. Suppose f ∈ L2(UT ), ψ0 ∈ H1

0 (Σ0), ψ1 ∈ L2(Σ0), aij = aji, bi, b, c ∈ C1(UT ) where aij are
uniformly elliptic. We say u ∈ H1(UT ) is a weak solution to the hyperbolic initial boundary value problem


utt + Lu = f in UT

u = ψ0, ut = ψ1 on Σ0

u = 0 on ∂∗UT .

(5.21)

if u
∣∣
Σ0
, u∂∗UT = 0 (in the trace sense) and

∫
UT

(−utvt + aijuxivxj + biuxiv + butv + cuv)dxdt−
∫

Σ0

ψ1(x)v(x, 0)dx =

∫
UT

fvdxdt (5.22)

holds for all test functions v ∈ H1(UT ) with v
∣∣
pd∗UT∪ΣT

(in a trace sense).

Theorem 5.1. A weak solution to the hyperbolic IBVP is unique.

Proof .
If w, w̄ are two weak solutions to the IBVP with the same initial data, then u = w − w̄ is a weak
solution with f ≡ 0, u(x, 0) = 0, ut(x, 0) = 0. The idea from here is to use the energy method to
get a norm on u, show it vanishes, and hence show that u itself vanishes. We would like to pick
v = ut in the weak solution condition, because we’d then get something similar to what we got for
the wave equation. The issue with this is v may not be inH1(UT ), and v may not vanish on ΣT . So
we need to find a workaround.
Define v(x, t) =

∫ T
t
e−λsu(x, s)ds for some λ > 0 that we’ll fix later. This has the desired properties,

v ∈ H1(UT ) with v = 0 on ∂∗UT ∪ ΣT . Also we can check vt = −eλtu(x, t) ∈ H1(UT ).
We can take this v and substitute it into the weak-equation condition, to get a long integral
expression:

∫
UT

(utue
−λt − eλtaijvtxjvxi + biuxiv + butu+ (c− 1)uv − eλtvvt)dxdt = 0. (5.23)
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Integrating by parts on the bi, b terms and the eλtvvt term, we get something even worse:

∫
UT

(utue
−λt − eλtaijvtxjvxi + (biuv)xi︸ ︷︷ ︸

a

+ (buv)t︸ ︷︷ ︸
b

−(bixiuv + biuvxi + btuv + buvt)

+ (c− 1)uv − 1

2
∂t(v

2eλt) +
1

2
λv2eλt)dxdt = 0

(5.24)

∫
a = 0 since u = v = 0 on ∂∗UT .

∫
b

= 0 since v = 0 on ΣT , u = ψ0 = 0 on Σ0.
We group what’s left over into one total derivative in time:

A = B (5.25)

A =

∫ T

0

∫
ΣT

1

2
∂t
(
u2e−λt − aijvxivxjeλt − v2eλt

)
dxdt+

∫
UT

λ

2
(u2e−λt + aijeλtvxivxj + v2eλt)dxdt

(5.26)

B =

∫
UT

(
1

2
aijt vxivxje

λt + (bixi + bt + 1− c)uv + bivxiu+ buvt

)
dxdt (5.27)

We’re going to estimate A and B separately and then put those estimates together. Note that
uniform ellipticity doesn’t apply to B because we don’t know that aijt is uniformly elliptic. We use
it for A:

A = eλT
∫

ΣT

1

2
u2dx+

1

2

∫
Σ0

(aijvxivxj + v2)dx+
λ

2

∫
UT

(. . . ) (5.28)

and since the first two terms are nonnegative, we can say

A ≥ λ

2

∫
UT

(u2e−λt + θ|Dv|2eλt + v2eλt)dxdt. (5.29)

Next, we apply Young’s inequality with ab = (ae−λt)(eλtb) to lower-bound B:

B ≤ C(aijt )

∫
UT

eλt|Dv|2 + C(b, bi, c)

∫
UT

|u||v|+ C(bi)

∫
UT

|u||Dv|+ C(b)

∫
UT

u2e−λt (5.30)

≤ C

θ
intUT e

λtθ|Dv|2 + C

∫
UT

(
e−λt|u|2 + eλt(|v|2 + |Dv|2)

)
. (5.31)

We did all this to ensure the two integrands would match up, so we can say (prefactor of A’s lower
bound minus prefactor of B’s upper bound) times the integral is less than or equal to 0:

(
λ

2
− C

)∫
UT

(u2e−λt + θ|Dv|2eλt + v2eλt)dxdt ≤ 0. (5.32)

Pick λ > 2C to get
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∫
UT

e−λtu2dxdt = 0, (5.33)

and this is the vanishing norm expression we wanted, so u ≡ 0 almost everywhere on UT .

Theorem 5.2 (Existence of solutions to the hyperbolic IBVP). Given ψ0 ∈ H1
0 (Σ0), ψ1 ∈ L2(Σ0), f ∈ L2(UT ),

then there exists a weak solution u ∈ H1(UT ) of the IBVP 5.1 with

‖u‖H1(UT ) ≤ C
(
‖ψ0‖H1(U) + ‖ψ1‖L2(U) + ‖f‖L2(UT )

)
. (5.34)

Proof .
We’ll use Galerkin’s method, which is also used for parabolic equations (which is a bit easier than
this) - see Evans for that application. The idea is we’re going to project everything onto some
finite-dimensional subspace of H1

0 × L2, then we’re going to get a uniform bound then argue that
we have a weak solution by Banach-Alaoglu.
First, recall that the eigenfunctions {ϕk}∞k=1 of the Laplacian L = −4 with Dirichlet boundary
conditions form an orthonormal basis of L2(U). We have that ϕk ∈ H1

0 (U), and in fact by elliptic
regularity, ϕk ∈ C∞(U). Also recall that (ϕk, ϕl)L2(U) = δkl.
Therefore, we can expand any u ∈ L2(U) in this basis:

u =
∑
k≥1

(u, ϕk)L2(U)ϕk (5.35)

with convergence in L2(U).
We’re going to do a finite-dimensional approximation onto the span of N of these eigenfunctions.
By density, we can consider our data to be smooth and compactly supported, and likewise for
our sourcing term: ψ0, ψ1 ∈ C∞c (Σ0), f ∈ C∞c (UT ). Define an approximate solution with a finite
number of terms by separation of variables, uN (x, t) =

∑N
k=1 u

N
k (t)ϕk(x). Later, we may drop the

superscript N on each component function for simplicity.
Assumeuk(t) ∈ C2([0, T ]) and thatuN (x, t) is aweak solution to the IBVP.We canfigure out anODE
system that uk must satisfy. Take as our test functional v(x, t) = ρ(t)ϕl(x), where ρ ∈ C∞c ((0, T ))
arbitrary. Put this into the test-function formulation of the IBVP to get

∫
UT

(
−uNt ρ̇ϕl + aij(uN )xj (ϕl)xi + bi(uN )xiρϕl + b(uN )tρϕl + cuρϕl − fρϕl

)
dxdt = 0. (5.36)

Here, the ρ̇ indicates a time derivative. Every term carries a factor of ρ except the first one, so we
integrate that by parts:

∫
UT

−(uN )tρ̇ϕldxdt =

∫
UT

(uN )ttρϕldxdt (5.37)

If we put all the ρ dependent terms, including the one we just found using IBP, into a function G,
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we get
∫ T

0

∫
U
G(x)ρ(t)dxdt = 0 for all ρ. Therefore

∫
U
G(x)dx = 0, and expanding out what G is

gives using

(uNtt , ϕl)L2(U) +

∫
U

(aij(uN )xj (ϕl)xi + bi(uN )xiϕl + b(uN )tϕl + cuNϕl)dx = (f, ϕL)L2(U). (5.38)

We’re going to derive an ODE system from this equation, using orthonormality:

(uNtt , ϕl)L2(U) =

N∑
k=1

(ük(t)ϕk, ϕl)L2(U) = ül(t). (5.39)

In this way we obtain the following ODE system, for l = 1 . . . N ,

ül(t) +

N∑
k=1

αl,k(t)uk(t) + βl,k(t)u̇k(t) = fl(t) =

∫
U

f(x, t)ϕl(x)dx, (5.40)

where

αl,k(t) =

∫
U

(aij(ϕl)xi(ϕk)xj + bi(ϕl)xiϕk + cϕlϕk)dx (5.41)

βl,k(t) =

∫
U

b(x, t)ϕlϕkdx. (5.42)

This is a system of N second-order ODEs linear in u with coefficients that are uniformly bounded
in t ∈ [0, T ], so by Picard-Lindelöf, there exists a unique solution uk ∈ C2([0, T ]). Note that we
can’t always do the “stitching” argument that lets us go from a P-L solution in [0, ε] to one over
an entire desired time interval, but we can here because we have uniformly bounded constants.
Because we’re taking finite combinations, we can show that uN ∈ H1(UT ), ∂tuN ∈ H1(UT ).
Next, we want to use our a priori estimates to get

∥∥uN∥∥
H1(UT )

≤ C for all N , so that we can use
Banach-Alaoglu.
We take our expression for (f, ϕl)L2(U) and multiply it by e−λtu̇l(t), sum over l = 1 . . . N , and
integrate over [0, τ ] for τ ∈ [0, T ]. We find

∫
UT

(
(uN )tt(u

N )t + aij(uN )xi(u
N )txj + bi(uN )xi(u

N )t + b(uN )2
t + cuN (uN )t

)
e−λtdxdt (5.43)

=

∫ τ

0

∫
U

f(uN )te
−λtdxdt. (5.44)

We’re going to rewrite this in a smart way.
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Ã = B̃ (5.45)

Ã =

∫
UT

1

2

d

dt

(
Qae

−λt)dxdt+

∫
UT

λ

2
Qae

−λtdxdt (5.46)

B̃ =

∫
UT

[
1

2
(aij)t(u

N )xi(u
N )xj − bi(uN )xi(u

N )t − b(uN )2
t + (1− c)uN (uN )t + f(uN )t

]
e−λtdxdt,

(5.47)

where

Qa = (uN )2
t + aij(uN )xi(u

N )xj + (uN )2. (5.48)

Let Qθ = (uN )2
t + θ

∣∣DuN ∣∣2 + (uN )2. Using uniform ellipticity, Young’s inequality and e−λt ≤ 1,
we can show that

B̃ ≤ C
∫
UT

Qθe
−λtdxdt+ ‖f‖2L2(UT ) (5.49)

and that

Ã ≥ e−λτ2∫
ΣT

Qθdx−
1

2

∫
Σ0

Qadx+
λ

2

∫
UT

Qθe
−λtdxdt. (5.50)

Therefore, for λ2 − C ≥
1
2 , we get

e−λτ
∫

Στ

Qθdx+

∫ τ

0

∫
U

Qθe
−λtdxdt

≤
∫

Σ0

Qadx+ C‖f‖2L2(Uτ )

≤ C
(∥∥uN (·, 0)

∥∥2

H1(U)
+
∥∥u̇N (·, 0)

∥∥2

L2(U)
+ ‖f‖2L2(UT )

)
.

(5.51)

This is true for all τ ∈ [0, T ], so we get

sup
τ∈[0,T ]

(∥∥uN (·, τ)
∥∥2

H1(U)
+
∥∥u̇N (·, τ)

∥∥2

L2(U)

)
+
∥∥uN∥∥2

H1(Uτ )

≤ CeλT
(∥∥uN (·, 0)

∥∥2

H1(U)
+
∥∥u̇N (·, 0)

∥∥2

L2(U)

)
+ ‖f‖2L2(UT ),

(5.52)

where the constant C is independent of N .
Since uN (0) =

∑N
k=1(ϕ0, ϕk)ϕk

N−→ ψ0 inH1(U), we can put a norm bound: if ψ0 6= 0 then for large
N ,
∥∥uN (0)

∥∥
H1(U)

≤ 2‖ψ0‖H1(U) If ψ0 = 0, then uN (0) = 0. Similarly,
∥∥u̇N∥∥

L2(U)
≤ 2‖ψ1‖L2(U)

Therefore, we can place a uniform bound in N on uN :
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∥∥uN∥∥
H1(UT )

≤ C
(
‖ψ0‖H1(U) + ‖ψ1‖L2(U) + ‖f‖L2(UT )

)
= C1. (5.53)

Note that uN ∈ H̃1(UT ) := {ϕ ∈ H1(UT ) | ϕ
∣∣
∂∗UT

= 0} is a closed subspace of H1(UT ). This
implies weak compactness, so there exists a (uNi)i ⇀ u in H̃1(UT ) for some u ∈ H̃1(UT ). Also,

‖u‖H1(UT ) ≤ lim inf
i→∞

∥∥uNi∥∥
H1(UT )

≤ C1. (5.54)

Now, we want to show that u is a weak solution to the original IBVP. Relabel uNi → uN and fixm.
Consider v =

∑m
k=1 vk(t)ϕk(x) with vk ∈ H1((0, T )), vk(T ) = 0. Note that v is a test function for

the weak formulation. Consider the Galerkin system (4) for N > m. Multiply the kth equation in
(4) by vk(t) and sum over k = 1, 2, . . . , N , where we take vm+1 = · · · = vN = 0. This tells us

(uNtt , v)L2(U) +

∫
Σt

(
aij(uN )xivxi + bi(uN )xiv + buNt v + cuv

)
= (f, v)L2(U). (5.55)

Integrate over [0, T ], use IBP, and use v(T ) = 0. This tells us

−
∫

Σ0

u̇Nvdx+

∫
UT

uNt vt + aij(uN )xivxj + bi(uN )xiv + buNt v + cuNvdxdt =

∫
UT

fvdxdt. (5.56)

Since N > m, we can show using Parseval’s theorem that
∫

Σ0
(uN )tvdx =

∫
Σ0
ψ1vdx. Passing to

the weak limit in H1(UT ), we get

∫
Σ0

−ψ1vdx+

∫
UT

(−utvt + aijuxivxj + biuxiv + butv + cuv)dxdt =

∫
UT

fvdxdt. (5.57)

Therefore, for the specific choice of vs we made above, u satisfies the weak solution condition. It
still remains to check some more stuff.
We have that u

∣∣
∂∗UT

= 0 by u ∈ H̃1(UT ), but we still need to check that u
∣∣
Σ0

= ψ0. For each fixed
k = 1, . . . ,m, we can show that the map Φk : H1(UT )→ R, ω 7→

∫
Σ0
ωϕkdx is a functional. (what’s

the definition being used here?)
Brief proof of this using Cauchy-Schwarz on the integral |Φk(ω)| ≤ ‖ω‖L2(Σ0)‖ϕk‖L2(Σ0) ≤
‖Tr(ω)‖L2(∂UT ), and by the trace theorem, this is bounded by c‖w‖H1(UT ).
By weak convergence, Φk(uN ) → Φk(u), so

∫
Σ0
ψ0ϕkdx =

∫
Σ0
uN (x, 0)ϕk(x)dx →

∫
u(x, 0)ϕkdx.

Then

∫
Σ0

(ψ0 − u(x, 0))ϕkdx = 0 ∀k, (5.58)

butm is arbitrary, so u = ψ0 on Σ0.
Now, the linear space {v ∈

∑m
k=1 vk(t)ϕk(x), vk ∈ H1((0, T )), vk(T ) = 0} is dense in H̃1(UT )

(exercise), so u is a weak solution as the equation holds for all v.

Definition 5.3. If X is a Banach space, then we denote
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‖u‖Lp((0,T );X) :=
(∫ T

0
‖u‖pXdt

)1/p

1 ≤ p <∞
ess supt∈(0,T ) ‖u(t)‖X p =∞,

(5.59)

and Lp((0, T );X) := {u : (0, T )→ X | ‖u‖Lp((0,T ),X) <∞}.

In the proof, we showed ‖u‖H1(UT ) ≤ C1. In fact, the weak solution satisfies

‖u‖L∞((0,T ),H1(U)) + ‖ut‖L∞((0,T ),L2(U)) ≤ C1. (5.60)

5.3 Finite Speed of Propagation

A crucial feature of hyperbolic equations is that information can only travel at a finite speed.

Definition 5.4. Let Σ ⊂ Rn+1 be a zero-set of some function F . That is, Σ = {(x, t) | F (x, t) = 0}. Define
w(Fx1

, . . . , Fxn , Ft) = (Ft)
2 −

∑n
i,j=1 a

ijFxiFxj . We say Σ is spacelike if w > 0, timelike if w < 0, and
characteristic (null if we were in a GR class) if w = 0.

Example 5.22.

1. The plane t = 0 is spacelike.

2. The cylinder F = |x− x0|2 −R2 is timelike.

3. Let S0 ⊂ U be an open set with smooth boundary. Let τ : S0 → (0, T ) be a smooth function
such that τ

∣∣
∂S0

= 0. Let S1 be the graph of τ . Then F (x1, . . . , xn, t) = t − τ(x), and so
S1 is spacelike if 1 −

∑
aijτxiτxj > 0 ⇐⇒

∑n
i,j=1 a

ij(x)τxiτxj < 1 for all x ∈ S0. Let
D = {(x, t) ∈ UT | x ∈ S0, 0 < t < τ(x)}. Some sketch.

�

Theorem 5.3 (Domain of dependence). If S1 is spacelike and and u is a weak solution to (2), then u
∣∣
D

depends
only on the values of ψ0, ψ1

∣∣
S0
, f
∣∣
D
.

Proof .
We return to the uniqueness proof (of Theorem 5.1). By linearity it is sufficient to prove that
u
∣∣
D

= 0 if ψ0

∣∣
S0

= ψ1

∣∣
S0

= f
∣∣
D

= 0. Take the test function

v =

∫ τ(x)

t

e−λsu(x, s)ds, (x, t) ∈ D, (5.61)

and set v = 0 otherwise. As an exercise, we can show that v ∈ H1(UT ) with v = 0 on ∂∗UT ∪ ΣT
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and

vxi = τxie
−λτ(x)u(x, τ(x)) +

∫ τ(x)

t

e−λsuxi(x, s)ds in D

vt = −e−λtu(x, t) in D

(5.62)

and otherwise vxi = vt = 0 on UT \D.
Inserting this into the definition of a weak solution, we obtain

∫
D

1

2

∂

∂t

(
u2e−λt − aijvxivxjeλt − v2eλt

)
dxdt+

λ

2

∫
D

(
u2e−λt + aijvxivxje

λt + v2eλt
)
dxdt

=

∫
D

(
−1

2
(aij)tvxivxje

λt + (bixi + bt + 1− c)uv + bivxiu+ buvt

)
dxdt.

(5.63)

By Fubini’s theorem,
∫
D
·dxdt =

∫
S0

dx
(∫ τ(x)

0
dt
)
, so we can integrate the ∂

∂t term. We also use
v
∣∣
S′

= 0 and vxi
∣∣
S′

= τxju(x, τ(x))e−λτ(x).

A =
1

2

∫
S0

u2(x, τ(x))e−λτ(x)(1− aijτxiτxj )dx+
1

2

∫
S0

(aijvxivxj + v2)

∣∣∣∣
t=0

dx (5.64)

and each individual term is ≥ 0; the 1 − aijτxiτxj is nonnegative because S′ is spacelike, and
aijvxivxj ≥ 0 by uniform ellipticity.
As in the proof of uniqueness, we obtain

(
λ

2
− C

)∫
D

(
u2e−λt + θ|Du|2eλt + v2eλt

)
dxdt ≤ 0. (5.65)

So by taking λ sufficiently large, we conclude u
∣∣
D

= 0.

This implies that no signal can travel faster than a certain speed. For instance, let x0 ∈ U and let S0 be some
ball about x0. The data outside S0 does not determine u(x0, t) provided (x0, t) ∈ D, i.e. 0 ≤ t ≤ τ(x0). Only
after t ≥ τ(x0) will the solution u(x, t) be determined by data outside S0.

Everything is local in a hyperbolic PDE.

5.4 Hyperbolic regularity

So far we have established the existence of a weak solution to Equation 5.1. provided ψ0 ∈ H1
0 (U), ψ1 ∈

L2(U), f ∈ L2(UT ). Moreover,

‖ut‖L∞((0,T );L2(U)) + ‖u‖L∞((0,T );H1(U)) + ‖u‖H1(UT ) ≤ C
(
‖ψ0‖H1(Σ0) + ‖ψ1‖L2(Σ0) + ‖f‖L2(UT )

)
. (5.66)

We have no gain in x regularity. We want to improve the regularity of u and bump it up to H2(UT ) if
possible.

Analysis of Partial Differential Equations



Hyperbolic regularity 101

Example 5.23. This is a motivating example for improving regularity. Let L = −4 in the usual
hyperbolic IBVP and suppose u ∈ C∞(UT ) solves it. Set w = ut. Then w is a solution to


wtt−4w = 0 UT

w = ψ1, wt = 4ψ0 Σ0

w = 0 ∂∗UT

(5.67)

where the second boundary condition comes from wt = utt = ∆u = ∆ψ0. The bound on the
solution from the data translates to

‖w‖L∞((0,T );H1(U)) + ‖w‖L∞((0,T );L2(U)) ≤ C
(
‖ψ1‖H1(U) + ‖4ψ0‖L2(U) + ‖f‖H1(UT )

)
. (5.68)

This gives us control on utt, utxi inL2(U) in terms of the initial data. To recover the uxixi derivative,
we note that for every Σt = U ×{t}we have4u = utt and u = 0 on ∂Σt. By elliptic regularity with
f = utt, we get

‖u‖H2(U) ≤ C‖f‖L2(Σt)
= C‖utt‖L2(Σt)

(5.69)

(I think the f is correct but ni the notes it’s a u, double check)

This implies

sup
t∈[0,T ]

‖u(·, t)‖H2(U) ≤ C
(
‖ψ1‖H1(U) + ‖ψ0‖H2(U)

)
(5.70)

(exercise, repeat with source term f, Evans 7.2.3) �

Theorem 5.4 (Hyperbolic regularity). Suppose aij , bi, b, c ∈ C2(UT ), ∂U ∈ C2. Then for

ψ0 ∈ H2(U) ∩H1
0 (U), ψ1 ∈ H1

0 (U), f, ft ∈ L2(UT )

the unique weak solution to the IBVP in fact satisfies

u ∈ H2(UT ) ∩ L∞((0, T );H2(U))

ut ∈ L∞((0, T );H1
0 (U))

utt ∈ L∞((0, T );L2(U)).
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Proof .
By approximation we assume f ∈ C∞(UT ), and that ψ0, ψ1 are compactly supported in U . Re-
turning to the Galerkin approximation, if uN (x, t) =

∑
k uk(t)ϕk(x) solves the hyperbolic initial

boundary value problem where ϕk are eigenfunctions of the Dirichlet Laplacian, then

(uNtt , ϕk)L2(U) =−
∫
U

(aij(uN )xi(ϕu)xj + bi(u
N )xiϕk + b(uN )tϕk + cuNϕk)dx+ (f, ϕk)L2(U)

for k = 1, . . . , N .
This is a linear second-order ODE with coefficients C2([0, T ]), so uN ∈ C3([0, T ]). As in the proof
for existence, for λ large we have

sup
t∈[0,T ]

(∥∥uN (·, t)
∥∥2

H1(U)
+
∥∥(uN )t(·, t)

∥∥2

L2(U)

)
+
∥∥uN∥∥2

H1(UT )

≤ eλTC
(
‖ψ0‖2H1(Σ0) + ‖ψ1‖2L2(Σ0) + ‖f‖2L2(UT )

)
.

(5.71)

Now, since uN is C3, we can differentiate Equation 5.71 with respect to t:

(uNttt, ϕu)L2(U) +

∫
Σt

(
aij(uN )txi(ϕk)xj + bi(uN )txiϕk + b(uN )ttϕk + c(uN )tϕk

)
dx

= (ft, ϕk)L2(U) −
∫

Σt

(
(aij)t(u

N )xi(ϕk)xj + ḃi(uN )xiϕk + ḃ(uN )tϕk + ·cunϕk
)

dx.

(5.72)

Multiply this expression by üke−λt, sum over k = 1, . . . , N , and integrate over
∫ τ

0
dt for t ∈ [0, T ],

and pick λ large to get

sup
t∈[0,T ]

(∥∥(uN )t(·, t)
∥∥2

H1(U)
+
∥∥(uN )tt(·, t)

∥∥2

L2(U)

)
+
∥∥uN∥∥2

H1(UT )
(5.73)

≤ eλTC

‖ψ0‖2H1(Σ0) + ‖ψ1‖2L2(Σ0) + ‖f‖2L2(UT ) +

∥∥∥∥∥∥ uNt︸︷︷︸
a

∥∥∥∥∥∥
2

H1(Σ0)

+

∥∥∥∥∥∥(uN )tt︸ ︷︷ ︸
b

∥∥∥∥∥∥
2

L2(Σ0)

+ ‖ft‖2L2(UT )


(5.74)

We control a using a basis ϕk of L2:

uNt

∣∣∣∣
t=0

=
∑

(ψ1, ϕk)L2(Σ0)ϕk =⇒
∥∥uNt ∥∥H1(Σ0)

≤ ‖ψ1‖H1(Σ0). (5.75)

For b, we use Equation 5.71 on the slice t = 0. Multiply by ük and sum over k = 1, . . . , N (note no
time integral) to get
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∥∥(uN )tt
∥∥2

L2(Σ0)
= −

∫
Σ0

(
aij(uN )xi(u

N )ttxj + bi(uN )xi(u
N )tt + b(uN )t(u

N )tt + cuN (uN )tt
)
dx

+ (f, (uN )tt)L2(Σ0)

=︸︷︷︸
IBP

∫
Σ0

(
−(aij(uN )xj )xi(u

N )tt + bi(uN )xi(u
N )tt + b(uN )t(u

N )tt + cuN (uN )tt
)
dx

+ (f, (uN )tt)L2(Σ0)

(5.76)

Using C-S, we get

∥∥(uN )tt
∥∥
L2(Σ0)

≤ C
(∥∥uN∥∥

H2(Σ0)
+
∥∥uNt ∥∥L2(Σ0)

+ ‖f‖L2(Σ0)

)
(5.77)

and we can further show that ‖f‖L2(Σ0) ≤ ‖f‖L2(UT ) + ‖ft‖L2(UT ).
From here, our goal is to control

∥∥(uN )tt
∥∥
L2(Σ0)

uniformly inN . It remains to prove we can control∥∥uN∥∥
H2(Σ0)

uniformly inN . Note that4 is self-adjoint with respect to L2(Σ0), so we take the inner
product,

(
4uN ,4uN

)
L2(Σ0)

=
(
uN42uN

)
L2(Σ0)

=
(
ψ0,42uN

)
L2(Σ0)

=
(
4ψ0,4uN

)
L2(Σ0)

, (5.78)

where the relation to ψ0 comes in from 4ϕk
∣∣
∂U

= 0 and uN being a finite sum of ϕks.
By Cauchy-Schwarz,

∥∥4uN∥∥2

L2(Σ0)
≤ ‖4ψ0‖L2(Σ0)

∥∥4uN∥∥
L2(Σ0)

(5.79)∥∥4uN∥∥
L2(Σ0)

≤ ‖4ψ0‖L2(Σ0) ≤ ‖ψ0‖H2(Σ0). (5.80)

By elliptic estimates, this gives us
∥∥uN∥∥

H2(Σ0)
≤ c‖ψ0‖H2(Σ0).

Finally, we bring this all together.

∥∥(uN )t
∥∥
L∞((0,T );H1(U))

+
∥∥(uN )tt

∥∥
L∞((0,T );L2(U))

+
∥∥uN∥∥

H1(UT )
(5.81)

≤ C
(
‖ψ0‖H1(Σ0) + ‖psi1‖L2(Σ0) + ‖f‖L2(UT ) +

∥∥uNt ∥∥H1(Σ0)
+
∥∥(uN )tt

∥∥
L2(Σ0)

+ ‖ft‖L2(UT )

)
(5.82)

≤ C
(
‖ψ0‖H2(Σ0) + ‖ψ1‖H1(Σ0) + ‖f‖L2(UT ) + ‖ft‖L2(UT )

)
(5.83)

The RHS is independent of N , so by Banach-Alaoglu we can pass to a subsequence to get

ut ∈ H1(UT )

ut ∈ L∞((0, T );H1
0 (U))

utt ∈ L∞((0, T );H2(U)).
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Finally, we want something about spatial derivatives. utt + Lu = f for almost all times. So u(τ) is
a weak solution of

−(aijuxi)xj = −f − utt − biuxi − but − cu =: f̃ (5.84)

in Στ with u = 0 on ∂Στ .
Now f̃ ∈ L2(U) implies u(τ) ∈ H2(U) with

‖u(τ)‖2H2(U) ≤ C
∥∥∥f̃∥∥∥2

L2(U)

≤ C
(
‖ψ0‖2H2(U) + ‖ψ1‖2H1(U) + ‖f‖2L2(UT ) + ‖ft‖2L2(UT )

) (5.85)

and so u ∈ L∞((0, T );H2(U)).

We study the solutions of {
ut +

∑n
j=1Bjuj = f in Rn × (0,∞)

u = g on Rn × {t = 0},
(5.86)

where u : Rn × (0,∞)→ Rm, (x, t) 7→ (u1, u2, . . . , um).

Bj , f vary with the point (x, t); we have as givens Bj : Rm × [0,∞) → M(m) (m × m matrices), f :
Rn × [0,∞)→ Rm, and as data g : Rn → Rm.

So far we haven’t introduced hyperbolicity at all.

Definition 5.5. We say the system 5.86 is hyperbolic if B̃(x, t; y) =
∑n
j=1 yjBj is diagonalizable for all x, y, t ≥ 0.

There exist eigenvalues and eigenvectors spanning Rm. It may be useful to assume the Bj are symmetric
without loss of generality, but we won’t need to do this for now.

So why have we done this setup?

Assume f ≡ 0 and Bj are constant, and look for plane wave solutions, i.e. u(x, t) = v(y · x − σt) for some
v, y, σ. This tells us

(−σI + B̃(y))v′ = 0, (5.87)

so if hyperbolicity holds, we have

(y · x− λk(y)t)γk(y) = 0 ∀k ∈ {1, . . . ,m}, (5.88)

i.e. an eigenvector equation.

Another piece of motivation is given by the following exercise.

Exercise 5.5. Suppose vtt − aijvxixj = 0, where aij = aji. Write u = (u1, . . . , um) = (vx1
, . . . , vxm−1

, vt) as a
system of the form B0ut +

∑n
j=1Bjuj = 0 where B0 is positive definite.
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Finally, we can look at the Einstein field equations as a first-order system of hyperbolic PDEs, using the
ADM formalism.

Recall that for well-posedness, we need to show existence, uniqueness, continuous dependence on the data,
and regularity. We’ll first look at existence in the case f ≡ 0 and Bj is constant.

Theorem 5.6. Suppose g ∈ Hs(Rn;Rm) for some s > n
2 + m. Then there exists a unique solution u ∈

C1([0,∞),Rm) of 5.86.

Proof .
Assume u = (u1, . . . , um) is smooth, and û = (û1, . . . , ûm) is its spatial Fourier transform. We have

ût + i

n∑
j=1

yjBj û = 0. (5.89)

We can then solve the PDE for fixed y:

û(y, t) = e−itB(y)ĝ(y), (5.90)

and we can show this implies

U(x, t) =
1

(2π)n/2

∫
Rn
eix·ye−itB(y)ĝ(y)dy. (5.91)

This is actually a solution of the original PDE. Fix y ∈ Rn, and say all the eigenvalues have a
maximum absolute value r. They then all lie within B(0, r). Then

e−itB(y) =
1

2πi

A(y,t)︷ ︸︸ ︷∫
∂B(0,r)

e−itz(zI −B(y))−1dz . (5.92)

The proof of the above is as follows. Fix x ∈ Rn.

B(y)A(y, t)x =
1

2πi

∫
∂B(0,r)

e−itzB(y)(zI −B(y))−1xdz (5.93)

=
1

2πi

∫
∂B(0,r)

e−itz
[
z(zI −B(y))−1x− x

]
dz (5.94)

= −1

i

d

dt
A(t, y)x. (5.95)

This is a first-order differential equation:

(
d

dt
+ iB(y)

)
A(t, y) = 0. (5.96)
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We get

A(0, y)x =
1

2πi

∫
(zI −B(y))−1xdz (5.97)

=
1

2πi

∫
z−1[x+B(y)(zI −B(y))−1x]dz (5.98)

= x+
1

2πi

∫
B(y)(zI −B(y))−1x

dz

z
→ 0. (5.99)

Now, define a new region ∆ to be the union of small open balls encircling each eigenvalue, and
change the region of integration to this. We can bound the integral over this region by bounding
the two parts of the integrand:

∥∥(zI −B(y))−1
∥∥ ≤ ∥∥∥∥∥cof(zI −B)ᵀ∣∣(∣∣ zI −B)

∥∥∥∥∥ ≤ C(1 + |z|m−1
+ ‖B(y)‖m−1

) ≤ C(1 + |y|m−1
), (5.100)

and

∥∥∥e−itB(y)
∥∥∥ ≤ Cet(1 + |y|m−1

). (5.101)

Now, g ∈ Hs(Rn,Rm) implies there exists f ∈ L2(Rn,Rm) such that |ĝ(y)| ≤ C(1 + |y|s)−1|f(y)|.
Putting these together, we get

∫
Rn

∣∣∣eix·ye−itB(y)ĝ(y)
∣∣∣ ≤ C‖f‖L2

(∫
Rn

dy

1 + |y|2(s−m+1)

)1/2

. (5.102)
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