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Lecture 1: Introduction and Motivation
Lecturer: Stuart Bale, Ivan Vasko 22 January Aditya Sengupta

Note: LATEX format adapted from template courtesy of UC Berkeley EECS dept.

1.1 Introduction

This is a course on classical mechanics. Classical mechanics means a system is not quantum and non-
relativistic. We can determine whether a system is classical or quantum based on length scales; if the de
Broglie wavelength of, for example, a gas is much less than the typical length scale, classical mechanics are
okay. We can similarly determine whether or not a system is relativistic based on characteristic time scales.
For example, muons have a relativistic effect, through which their lifetime is much longer in the reference
frame of the observer than in the muon’s:

τ ≈ τµ√
1− v2/c2

(1.1)

In classical mechanics, time is absolute.

The governing equation of classical mechanics is Newton’s second law,

m̈~r = ~F (1.2)

Classical mechanics is a good approximation to quantum and relativistic mechanics. Two major formulations
of classical mechanics are currently studied; that of Lagrange, and that of Hamilton. There are actually still
many open questions in classical mechanics, such as the mechanics of particles in which small approximations
(for example, a particle in an elliptical magnetic field with a radius not much smaller than the radius of
curvature of the ellipse) do not hold. This kind of problem deals with deterministic chaos.

1.2 Math Review

The high-level view of classical mechanics tells us that we can see systems in 3D space and in absolute time.
This means the study of orthogonal transformations, scalars, and vectors will be useful. Usually, 3D space
is parameterized by a Cartesian coordinate system, in which a vector to any point in space is given by

~r = xx̂+ yŷ + zẑ = (x, y, z) (1.3)

Suppose we wanted to describe this in some other coordinate system (x′, y′, z′). Now, the same point has a
different expansion for its position vector,
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~r′ = x′x̂′ + y′ŷ′ + z′ẑ′ = (x′, y′, z′) (1.4)

In more generality, we can say that ~r =
∑
xiêi and ~r′ =

∑
x′iê
′
i.

To transform between coordinates, note that for all e′i,

e′i =
∑
j

λijej (1.5)

Also, we note that the basis vectors are assumed to be orthogonal, that is, for all i, k:

e′ie
′
k = δik (1.6)

meaning that when i = k, ~e′i · ~e′k = 1 and otherwise it is 0.

We can use the λij coefficients to define a coordinate transformation matrix:

λij =

λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33

 (1.7)

For an orthonormal basis, we know that

λ · λ† = 1 (1.8)

for a matrix λ. Also, conventionally, we say that λ†ij = λji

1.2.1 Change of Coordinates

By the definition of the change of coordinates matrix, we can say

x′iλij = xj (1.9)

We right multiply by λjs (s is just a different index) to get

x′iλijλjs = xjλjs (1.10)

xiδis = xjλjs =⇒ x′s = λjsxj (1.11)

Here, we used the property of orthonormality, which suggests that vector length should be preserved. We
can confirm this.
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1.2.2 Physical Meaning

We have the property that

λλ† = 1̂ (1.12)

which can also be written as

λijλsj = δis (1.13)

Here, we have six equations and nine elements of each matrix, which means there are three unconstrained
parameters. It turns out that these are the angles betwen the old and new coordinates.

1.2.3 A Particular Example

Suppose we have a coordinate system (x, y, z) that we rotate around the z axis by some angle φ. Since there
is no rotation of the z axis, we know that z′ = z. Trigonometry tells us that x′ = x cosφ + y sinφ and
y′ = −x sinφ+ y cosφ, therefore the matrix is

x′y′
z′

 =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

xy
z

 (1.14)

Suppose we do a second coordinate transformation on these coordinates, where we rotate by π about the x′

axis.

x′′y′′
z′′

 =

1 0 0
0 0 1
0 −1 0

x′y′
z′

 (1.15)

We can chain together coordinate transformations by multiplying matrices. Suppose there is a transformation
λ from S to S′, and w from S′ to S′′. For each coordinate, we can see that

x′ = λ̂x (1.16)

x′′ = ŵx′ = wλx (1.17)

To check that this is a valid matrix, we verify that it has a unit determinant:

wλ · (wλ)† = wλ · λ†w† = ww† = 1̂ (1.18)
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Note that here we used the transpose rule (A ·B)† = B†A†. The set of orthogonal transformations is a group
(?).

To check the commutativity of these transformations, we can carry out the transformations in both orders
and compare. We get

S′′ = wS′ = wλS (1.19)

S′′ = λS′ = λwS (1.20)

It turns out that λ · w 6= w · λ. For example, consider two rotation matrices, one about the x axis and the
other about the z axis, with the z rotation being applied first:

1 0 0
0 0 1
0 −1 0

×
 0 1 0
−1 0 0
0 0 1

 =

0 1 0
0 0 1
1 0 0

 (1.21)

and with the x rotation being applied first:

 0 1 0
−1 0 0
0 0 1

×
1 0 0

0 0 1
0 −1 0

 =

 0 0 1
−1 0 0
0 −1 0

 (1.22)

which can also be seen graphically.

1.2.4 Determinant of a Rotation Matrix

We know that for a transformation to be orthogonal, it must have the property

λλ† = 1̂ (1.23)

det(λλ†) = 1 =⇒ |
∣∣(∣∣λ)|2 = 1 =⇒

∣∣λ∣∣ = ±1 (1.24)

Regular rotations usually have a determinant of +1, and inversions have a determinant of −1. for example,
the coordinate transformation in which the x coordinate is flipped. The matrix is

λ =

−1 0 0
0 1 0
0 0 1

 (1.25)

which has a -1 determinant. If the determinant is -1, we know that an inversion has happened.
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1.2.5 Scalar and Vector Fields

A scalar field is one with a scalar output, such as the temperature in a space T (M) = T (xi) or T (M) = T (x′i)
where x′i = λijxj . Scalar fields are invariant with respect to (inversions and) rotations. A vector field has
a vector output, such as a velocity field which is characterized by coordinates (vx, vy, vz). Vector fields are
not invariant with respect to rotations. For example, coordinates (vx′ , vy′ , vz′) would not be numerically
the same vector as the velocity vector at the same point in a different coordinate system. We can translate
between these velocities with the same change of basis rule:

vi′ = λijvj (1.26)

We can apply these in physics to identify whether a quantity is a scalar or a vector, or just unphysical.
For example, if an equation gives a vector output that does not follow the invariance rule, it is considered
unphysical.



Lecture 2: 24 January 6

Physics 105: Analytic Mechanics Spring 2019

Lecture 2: Angular Velocity and Rigid Body Motion
Lecturer: Stuart Bale, Ivan Vasko 24 January Aditya Sengupta

Lecturer: Ivan Vasko

2.1 Coordinate Transformations

Consider a coordinate transformation Λ : S → S′, êi → ê′i. This is characterized by a matrix, so that
ê′i = Λij êi. The set of all transformations is a group, which means for any transformations Λ,W , ΛW is an
orthogonal transformation, and any orthogonal transformations satisfy ΛΛ† = 1. This is a noncommutative
group, which means ΛW 6= WΛ (in general, ΛijWjk 6= WijΛjk.)

We know that

detΛdetΛ† = 1 (2.1)

|detΛ| = ±1 (2.2)

We claim that all transformations with determinant Λ are rotations, that is, the new coordinate system can
be arrived at from the original coordinate system by rotation about some axis. If this is the case, then a
zero-rotation transformation is possible:

∃~xλ : Λ~xλ = ~xλ (2.3)

If this is the case, then Λ has eigenvalue 1 (Euler’s rotation theorem), which can be shown as follows:

(Λ− I)Λ† = I − Λ† = (I − Λ)† (2.4)

Then, we take a determinant:

∣∣Λ− I∣∣ =
∣∣Λ− I∣∣ · ∣∣Λ∣∣ =

∣∣(I − Λ)†
∣∣ =

∣∣I − Λ
∣∣ =⇒

∣∣Λ− I∣∣ = 0 =⇒ |
∣∣Λ∣∣ | = 1 (2.5)

Consider the transformations with determinant -1. These have an odd number of inversions, in which an axis
is flipped. For example, a transformation sending (x, y, z)→ (−x,−y,−z) has the matrix representation

−1 0
−1

0 −1

 (2.6)
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This has an odd number of inversions (3) and a determinant of -1.

We claim that any Λ whose determinant is -1 is a combination of rotations and inversions. Consider P , the
above inversion matrix (and note that P 2 = I which can be shown explicitly by PijPjk = δik, and Λ, an
arbitrary inversion-rotation matrix. Let

W = P · Λ (2.7)

We see that W is a rotation matrix, as it has a determinant of 1. Then, left multiply by P to get P ·W = Λ.
This is the decomposition of Λ into rotations (W) and inversions (P).

2.2 Rotations of Vectors in Fixed Coordinates

Consider a transformation Λ : S → S′, where ~r = xiêi = x′iê
′
i. We know that x′i = Λijxj and ê′i = Λij êj . We

want to consider vector rotation, which we can first do in 2D.

Consider a 2D space with basis vectors ê1, ê2, rotated by an angle ϕ. The transformation matrix is

Λ =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 (2.8)

Then, a vector rotation is described by

~r′ = Λϕ~r (2.9)

or more generally

x′i = Λijxj (2.10)

Suppose we want to change coordinates from xi to yi, and suppose B is the transformation between these:

yi = Bijxj (2.11)

y′i = Bijx
′
i (2.12)

where y′i = Λijyj . Then, we can define a similarity transform (I don’t know what that is):

Λ̃y = BΛB† (2.13)
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2.3 The Vector Product

Consider vectors ~a1, ~a2 in a coordinate system ê1, ê2, ê3, where ~ai = aikk=1,2,3. The vector product of these
two is

| ~a1 × ~a2| = | ~a1| · | ~a2| sin θ (2.14)

(Side note: a vector is not just any collection of variables, it is a set of functions that is invariant under
inversions and rotations. Consider an equation

d~C

dt
= (Aiai) ~B (2.15)

and apply the inverse to it. Ai and ~B flip their sign, leaving the d~C
dt term invariant. Since the term is

invariant, it cannot be a vector.)

Conventionally, we say

êi+1 × ê(i+1)mod3+1 = ê(i+2)mod3+1 (2.16)

In general, this transformation is described by

[êi × êj ] = εijkêk (2.17)

where εijk is the Levi-Civita tensor. It is a 27-element tensor that is +1 if the permutation (ijk) is even, i.e.
there are an even number of transpositions from the order (123), and it is -1 if the permutation is odd. This
covers 6 elements, and the remaining 21 are zero. Explicitly,

εijk =


+1 (123), (231), (312)

−1 (132), (213), (321)

0 otherwise

(2.18)

In these terms, the vector product is

~a1 × ~a2 =
∑
i,j

= a1ia2j |êi × êj | =
∑

a1ia2jεijkêk (2.19)

The magnitude of the vector product is equivalent to the area of the parallelogram between them:
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http://www.sharetechnote.com/html/Handbook_EngMath_Matrix_CrossProduct.html

The vector product can also be represented as a determinant,

( ~a1 × ~a2) =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ · ê3 = det(a) · ê3 (2.20)

2.4 Vector Product under Coordinate Changes

Consider ~C = ~A× ~B, with Ck = εkijAiBj , under an inversion of both A and B. ~C is a pseudovector, not a

real vector, as it is not inverted under this process. ~C can be a real vector under just rotation, though, as
we can see:

A′i = ΛijAj (2.21)

As = ΛisA
′
i, Be = ΛieB

′
i (2.22)

Then, ~C in these terms is

Ck = εijk = ΛαiA
′
αΛβjB

′
β (2.23)

Λmk = C ′m = εijkΛαiΛβjA
′
αB
′′
β (2.24)

Substituting in the previous expression for C here,

Λmk · εαβmA′αB′β = εijkΛαiΛβjA
′
αB
′
β (2.25)

or

(Λmkεαβm−εijkΛαiΛβj )×A′αB′β (2.26)
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Applying the same coordinate transformation again,

ΛskΛmkεαβm = εijkΛαiΛβjΛsk (2.27)

We can use this to prove the following general transformation law,

εαβγ = εijkΛαiΛβjΛγk (2.28)

or

||A||εαβγ = εijkAαiAβjAγk (2.29)

2.5 Scalar Triple Product

Consider the product

~a3 · ( ~a1 × ~a2) = V = ||aij || =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ (2.30)

Explicitly, we can say that

a3iêi · ( ~a1 × ~a2)kêk = a3kεkija1ia2j (2.31)

which we set equal to the determinant,

||a|| = εijka1ia2ja3k =⇒ ||a||εαβγ = εijkaαiaβjaγk =⇒ ||a|| = 1

6
εαβγεijk (2.32)

Note that a known formula is

~a× (~b× ~c) = ~b(~a~c)− ~c(~a~b) (2.33)

which leads to some other stuff I don’t get
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2.6 Angular Velocity

Consider a coordinate system with a rotation Λ. We can say that

Λij = δij + δφij (2.34)

where δφij << 1. Then we can say that Λ = ~1 + δϕ̂, an infinitesimal operator. δϕ is given in matrix form by

δϕ =

 0 −δϕ3 δϕ2

δϕ3 0 −δϕ1

−δϕ2 δϕ1 0

 (2.35)

We apply the identity plus this infinitesimal operator to an arbitrary vector ~x,

~x′ = (1̂ + δϕ̂)~x =⇒ ~x′ − ~xδϕ̂~x (2.36)

or

δ~x = (δ~ϕ× ~x) (2.37)

This is an infinitesimal rotation for some reason. Differentiate this in time to get

d~r

dt
= [~Ω× ~r] (2.38)

Ω is a vector with respect to rotations, but not inversions.

We introduce the time derivative of position as usual,

d~r

dt
= lim
δt→0

~r(t+ ∆t)− ~r(t)
∆t

(2.39)

~v =
d~r

dt
=
dxi
dt
êi = viêi (2.40)

~a =
d~v

dt
=
d2~r

dt2
(2.41)

In terms of a coordinate system (ρ, ϕ, z), we see

~r = ρêρ + zêz (2.42)

~v =~̇r = ρ̇êρ + żêz + ρėrho (2.43)
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2.7 Velocity Transformation

In changing the coordinate system of a rigid body, we get

d~r

dt S
=
d~r

dt S′
+ (~Ω× ~r) (2.44)
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Lecture 3: Calculus of Variations
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Homework 1 is due Friday, Feb 8, and it consists of problems 6.1, 6.2, 6.11, 6.17, 6.22, 6.24 from Taylor.

General OH: Campbell 355, Tuesday 11-12.

3.1 The Idea of Lagrangian Mechanics

There are two major problems with using Newtonian mechanics for everything. One is it is not very gen-
eral, dealing only with the motion of particles, and the other is it usually deals well only with orthogonal
Cartesian coordinates. The calculus of variations is the mathematical foundation for dealing with mechanics
in generalized coordinates qi(i = 1, . . . , N) or in Hamiltonian mechanics generalized momenta pi. These qis
define a configuration space, and when they are coupled with the pis, it creates phase space. Instead of a
path parameterized by x, y, z, we have a path in the configuration space.

We know from Newtonian mechanics that

~F = mq̈ (3.1)

We need two initial or boundary conditions to completely specify q here. For example, let q̈ = g, considering
the case of free fall in a gravitational field:

~F = mg (3.2)

q̈ = g (3.3)

q̇ = gt+ v0 where v0 = q̇(t = 0) (3.4)

q =
1

2
gt2 + v0t+ q0 where q0 = q(t = 0) (3.5)

Here, we need the initial conditions; what the particle is doing, in terms of its velocity and position, at t = 0.
Lagrangian mechanics deals with boundary conditions instead, starting from q(t1) and q(t2). Lagrangian
mechanics starts with these two data points, and asks “what path in q space does the system follow from
q(t1) to q(t2)?”.

3.2 Calculus of Variations

Consider the example of a plane flying between SFO and EWR. Airlines want to save money, so other than
paying their workers very poorly, they can minimize fuel. The path that minimizes fuel may not be the
shortest path in terms of distance, for example, if there are strong head winds over the main path. It may
be around those on a path that is longer. We express this idea with a functional,
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F (~x) =

∫ t2

t1

f(~x,~̇x, t)dt (3.6)

where we want to minimize F , which in this example might be fuel usage.

The usual canonical example of a problem that can be solved quickly with the calculus of variations is the
brachistochrone problem. Consider two points A and B in a plane, with gravity directed downward. What
trajectory would a particle take from A to B to minimize its travel time? This is not a straight line between
them, because of the force of gravity.

We can write the travel time as an integral over the path,

t =

∫ (xB ,yB)

(xA,yA)

ds

v
(3.7)

which is the same sort of functional expression, where we want to minimize a quantity that is expressed as
an integral. (This problem will be solved later after we have built the machinery of variational calculus.)

3.3 The Machinery of Variational Calculus

Again, the generalized statement of a functional is

F (~x) =

∫ t2

t1

f(~x,~̇x, t)dt (3.8)

By definition of the optimal path, any perturbation away from that path will increase the value of F . Let
this perturbation be η(t) and add the requirement that η(t1) = η(t2) = 0.

x(t) = x(t) + η(t) ≈ x(t) (3.9)

Then, we can rewrite the functional expression. By definition, F (~x) ≤ F (~x), where

F (~x) =

∫ t2

t1

f(~x+ η, ~̇x+ η̇, t)dt (3.10)

We expand this as a Taylor series,

F (~x) =

∫ t2

t1

(
f(x, ẋ, t) +

∂f

∂x
· η +

∂f

∂ẋ
· η̇ + . . .

)
dt (3.11)
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Therefore the difference between the two paths is

F (~x)− F (~x) =

∫ t2

t1

(
∂f

∂x
η +

∂f

∂ẋ
η̇

)
dt (3.12)

We apply integration by parts to the second part of this,

∫ t2

t1

∂f

∂ẋ
η̇dt =

∂f

∂ẋ
η

∣∣∣∣t2
t1

−
∫ t2

t1

d

dt

(
∂f

∂x

)
ηdt (3.13)

The first term drops out, because we stipulated initially that a deviation would not change the end points
of a path, i.e. η(t1) = η(t2) = 0. Therefore overall we get

F (x) = F (x) +

∫ t2

t1

(
∂f

∂x
− d

dt

∂f

∂ẋ

)
· ηdt (3.14)

If we consider the deviation to be small, it follows that the integral must be zero, i.e.

d

dt

∂f

∂ẋ
=
∂f

∂x
(3.15)

This is the Euler-Lagrange equation.

In general, this will have to be applied as many times as there are dimensions in the configuration space.

3.4 Applying Variational Calculus

Consider two points A = (x1, y1) and B = (x2, y2). We can use the E-L equations to find that the shortest
path between them is a line. The functional expression is

L =

∫ (x2,y2)

(x1,y1)

ds =

∫ x2

x1

√
dx2 + dy2 =

∫ x2

x1

√
1 +

(
dy

dx

)2

dx (3.16)

L =

∫ x2

x1

√
1 + y′2dx (3.17)

This is the same form as the general functional setup for a variational calculus problem, f(y, y′, x) =√
1 + y′2, therefore we can apply the E-L equation:

d

dx

∂f

∂y′
= 0 (3.18)
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where ∂f
∂y is trivially zero. We get

d

dx

(
y′√

1 + y′2

)
= 0 (3.19)

or

y′ = c
√

1 + y′2 (3.20)

y′ = const (3.21)

dy

dx
= m (3.22)

y = mx+ b (3.23)

as we expected.

3.5 Brachistochrone Problem

We previously wrote the time equation for the brachistochrone problem. Let point A be the origin for
convenience. We know that mẍ = 0 and mÿ = mg. From conservation of energy, we can find the velocity
(as is required in the time equation),

1

2
mv2 = mgy =⇒ v =

√
2gy (3.24)

and the differential element ds is the same as in the straight-line example. Therefore we get

t =

∫ x2

0

√
1 + y′2√

2gy
dx (3.25)

This gives us the function under the integral that is required as input to the E-L equation,

f(y, y′, x) =

√
1 + y′2
√
y

(3.26)

to which we can then apply the equations and get the path. However, there is a shortcut using the Hamil-
tonian, which we will see in a few months. Take H as follows:

H = y′
∂f

∂y′
− f (3.27)
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Then, take an x derivative:

dH

dx
= y′′

∂f

∂y′
+ y′

d

dx

(
∂f

∂y′

)
− y′ ∂f

∂y
− y′′ ∂f

∂y′
− ∂f

∂x
(3.28)

which can be simplified to

dH

dx
= y′

(
d

dx

(
∂f

∂y′

)
− ∂f

∂y

)
− ∂f

∂x
(3.29)

which just gives us dH
dx = −∂f∂x , because the first part is exactly the E-L equation and is therefore zero. This

is an alternative statement of conservation of energy: when there is no time dependence, H is conserved.

Returning to the brachistochrone problem, we have

f =

√
1 + y′2

y
(3.30)

and so the Hamiltonian is

−1√
y(1 + y′2)

= C (3.31)

(as we just saw, the Hamiltonian is a constant)

Solving and setting
√
y =
√
C sin θ, we get

x =
C

2
(2θ − sin 2θ) (3.32)

y = C sin2 θ = C(1− cos2 2θ) (3.33)

Therefore, setting ϕ = 2θ, we get

x = C(ϕ− sinϕ) (3.34)

y = C(1− cosϕ) (3.35)

This is the equation for a cycloid.
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4.1 Recap

We can optimize a functional of the form

F (~x) =

∫ t2

t1

f(~x,~̇x, t)dt (4.1)

using the Euler-Lagrange equation,

d

dt

∂f

∂ẋ
− ∂f

∂x
= 0 (4.2)

We can also optimize it using the Hamiltonian,

H = y′
∂f

∂y′
− f (4.3)

dH

dx
= −∂f

∂x
(4.4)

4.2 Plateau’s Problem

Imagine two hoops that are fixed and rigid, with radius R, separated by some distance D. We want to find
the minimum energy state for this system if, for example, a soap film extends between the two. There is
some optimal surface that sweeps out the two rings and minimizes the surface area and therefore the surface
tension of the soap film.

Consider a differential element of the volume, with some length dx spanning the radial space r(x). The area
of the boundary is

2πr(x)
√
dr2 + dx2 = 2πr(x)

√
1 + r′(x)2dx (4.5)

Therefore, the total area is found by integrating this over x:

A = 2π

∫ D/2

−D/2
r(x)

√
1 + r′(x)2dx (4.6)
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This gives us f(r, r′, x) = r(x)
√

1 + r′(x)2. Since this is independent of x, we can use the Hamiltonian:

H = r′
∂f

∂r′
− f =

rr′2√
1 + r′2

− r
√

1 + r′2 = − r√
1 + r′2

= K (4.7)

This can be rearranged to get

dr

dx
= ±

√( r
H

)2

− 1 (4.8)∫
dr√(
r
H

)2 − 1
=

∫
dx = x+ α (4.9)

This has a solution

r

H
= coshψ, dr = H sinhψdψ (4.10)

and therefore

r2

H2
− 1 = sinh2 ψ (4.11)

If we assume r(−x) = r(x), i.e. the solution is symmetric, we find that α = 0, and therefore

r(x) = H cosh
x

H
(4.12)

We can apply boundary conditions to this: x = ±D/2 =⇒ r = R. This gives us

R = H cosh
D

2H
(4.13)

Let χ = H
D , then

R = χD cosh
1

2χ
(4.14)

R

D
= χ cosh

1

2χ
(4.15)

where χ is a specific number.

Note that the cosh function means there is no solution for R
D < 0.75, which physically corresponds to the

soap film breaking. For R
D = 0.75, there is one solution, and for R

D > 0.75, there are two solutions.
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4.3 Connecting Quantum Mechanics and Lagrangian Mechanics

In quantum mechanics, we have a transition amplitude, representing the probability of a transition between
a state q1(t1) and q2(t2). This is written as

〈q2(t) | q1(t)|q2(t) | q1(t)〉 (4.16)

and let t2 = t1 + ∆t. The transition is then characterized by

〈q2(t+ ∆t)|q1(t)|q2(t+ ∆t)|q1(t)〉 =
〈
q2|e−i∆H |q1

∣∣q2|e−i∆H |q1

〉
(4.17)

or

ei∆tH ∼ e−i∆t
p2

2m ei∆tV (4.18)

Then the action is given by

S(x(t)) =

∫ t2

t1

dt

(
p2

2m
− V

)
(4.19)

The amplitude functional is

A[x(t)] = eiS/~ (4.20)

and the probability is

|A|2 =

∫
allpaths

x(t)eiS(x(t))/~ (4.21)

We want to find the stationary values of S, as this gives us a stationary phase and therefore the most
probable state. Hamilton’s Principle states

δS(x(t)) = δ

∫
dt

(
p2

2m
− V

)
= 0 (4.22)

We define the Lagrangian L = T − V . Then, we have

δ

∫ t2

t1

dtL(q, q̇, t) = 0 (4.23)
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Using the Euler-Lagrange equation,

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (4.24)

If we consider a mass m and a potential V (q), the Lagrangian is

T =
1

2
mv2 =

1

2
mq̇2 (4.25)

L = T − V =
1

2
mq̇2 − V (q) (4.26)

∂L

∂q̇
= mq̇ (4.27)

d

dt

∂L

∂q̇
= mq̈ =⇒ mq̈ = −∂V

∂q
(4.28)

which is just the statement that ma = F .

4.4 Spherical pendulum

Consider a pendulum being described in 3D space by angles θ and ϕ, with a constant length l, and under a
constant gravitational field g. We write the position vector,

~r = l cosϕ sin θx̂+ l sinϕ sin θŷ + l cos θẑ (4.29)

~̇r = (−lϕ̇ sinϕ sin θ + l cosϕθ̇ cos θ)x̂+ (lϕ̇ cosϕ sin θ + l sinϕθ̇ cos θ)ŷ − lθ̇ sin θẑ (4.30)

We dot this with itself and find

ṙ2 = l2ϕ̇2(sin2 ϕ+ cos2 ϕ) sin2 θ + l2θ̇2(sin2 ϕ+ cos2 ϕ) cos2 θ + l2θ̇2 sin2 θ = l2ϕ̇2 sin2 θ + l2θ̇2 (4.31)

Therefore the kinetic energy is

T =
1

2
mṙ2 =

1

2
ml2θ̇2 +

1

2
ml2ϕ̇2 sin2 θ (4.32)

and the potential energy is just V = mgl cos θ.

Therefore the Lagrangian is

L = T − V =
1

2
ml2θ̇2 +

1

2
ml2ϕ̇2 sin2 θ −mgl cos θ (4.33)
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We can write E-L equations for both coordinates,

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0 (4.34)

d

dt

∂L

∂ϕ̇
− ∂L

∂ϕ
(4.35)

In ϕ, we get

∂L

∂ϕ̇
= pϕ (4.36)

which is a constant, so

∂L

∂ϕ̇
= ml2ϕ̇2 sin2 θ = pϕ (4.37)

Now in θ we get

∂L

∂θ̇
= ml2θ̇ =⇒ d

dt

∂L

∂θ̇
= ml2θ̈ (4.38)

∂L

∂θ
= mgl sin θ +ml2φ̇2 sin θ cos θ (4.39)

Therefore after some simplification we get

θ̈ =
g

l
sin θ + ϕ̇2 sin θ cos θ (4.40)

θ̈ =
g

l
sin θ +

p2
ϕ

m2l4
cos θ

sin3 θ
(4.41)

For a fixed θ = θ0, we can get

(g
l

+ ϕ̇2 cos θ0

)
sin θ0 = 0 (4.42)

or

ϕ̇2 cos θ0 = −g
l

=⇒ ϕ̇2 >
g

l
− ω2

0 (4.43)
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4.5 Another example

Consider a pendulum attached to a spring along the x axis, x = a cosωt. We can write the Lagrangian by
finding T ,

ṙ2 = ẋ2 + l2θ̇2 + 2ẋθ̇l cos θ (4.44)

and so

L = T − V =
1

2
ṁ(ẋ2 + l2θ̇2 + 2ẋθ̇l cos θ) +mgl cos θ (4.45)

Then, applying the E-L equations gets us

θ̈ +
g

l
θ =

aω2

l
cosωt (4.46)

This is a driven harmonic oscillator. We find that this differential equation has a general solution θ(t) =
A cosω0t+B sinω0t, which we solve to get

θ(t) = − F

ω2 − ω2
0

cosωt (4.47)
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5.1 Angular Momentum

Consider a particle of mass m constrained to move on the inner surface of a cone of radius r and cone angle
α, under a gravitational field. We know from the geometry that

r

z
= tanα (5.1)

We construct a position vector for the particle,

~r = r cos θx̂+ r sin θŷ + zẑ (5.2)

and we take a derivative,

~̇r = (ṙ cos θ − rθ̇ sin θ)x̂+ (ṙ sin θ + rθ̇ cos θ)ŷ + żẑ (5.3)

We want to find the kinetic energy, for which we dot this vector with itself,

ṙ2 =~̇r ·~̇r = ṙ2 cos2 θ − 2rṙ sin θ cos θ + r2θ̇2 sin2 θ + ṙ2 sin2 θ + 2rṙθ̇ sin θ cos θ + r2θ̇2 cos2 θ + ż2 (5.4)

Lots of terms cancel and we get

T =
1

2
m
(
ṙ2 + r2θ̇2 + ż2

)
(5.5)

We can write this using the geometric constraint to eliminate z, by z = r cot θ =⇒ ż = ṙ cot θ,

T =
1

2

(
ṙ2 + r2θ̇2 + ṙ2 cot2 α

)
=

1

2
m
(
ṙ2 csc2 α+ r2θ̇2

)
(5.6)

The potential energy is just V = mgz = mgr cotα. This means we can write a Lagrangian,

L =
1

2
m
(
ṙ2 csc2 α+ r2θ̇2

)
−mgr cotα (5.7)
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We see that ∂L
∂θ = 0. When the Lagrangian does not depend on a spatial coordinate, we say that that

coordinate is cyclic. Here, θ is a cyclic coordinate. From the Euler-Lagrange equation, we get

d

dt

(
∂L
∂θ̇

)
=
∂L
∂θ

= 0 (5.8)

∂L
∂θ̇

= const = pθ (5.9)

We can take the derivative of the Lagrangian and find that

∂L
∂θ̇

= mr2θ̇ = pθ (5.10)

This is exactly the statement of conservation of angular momentum.

We can apply the other Euler-Lagrange equation on the second spatial coordinate, to get an equation of
motion,

∂L
∂r

= mrθ̇2 −mg cotα (5.11)

∂L
∂ṙ

= mṙ csc2 α =⇒ d

dt

(
∂L
∂r

)
= mr̈ csc2 α (5.12)

Then, the E-L equation gives us

r̈ = rθ̇2 sin2 α− g sinα cosα (5.13)

We can consider points with no acceleration in r,

rθ̇2 sinα = g cosα =⇒ θ̇2 tanα =
g

r0
= ω2

0 (5.14)

5.2 Mass/Spring on a T

Consider a mass and a spring in the following arrangement,
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In terms of the length radially outwards l, and the length along the part orthogonal to that radial length ρ,
we can write a position vector,

~r = (l cosωt− ρ sinωt)x̂+ (l sinωt+ ρ cosωt)ŷ (5.15)

~̇r = (ω(−l sinωt− ρ cosωt)− ρ̇ sinωt) x̂+ (ω(l cosωt− r sinωt) + ρ̇ cosωt) ŷ (5.16)

Squaring this and substituting into the Lagrangian, along with the spring equation for the potential energy,
we get

L =
1

2
m
(
ω2(l2 + ρ2) + ρ̇2 + 2ωlρ̇

)
− 1

2
kρ2 (5.17)

Now, we can apply the Euler-Lagrange equation to the system with the coordinate ρ,

d

dt

(
∂L
∂ρ̇

)
=
∂L
∂ρ

(5.18)

We get

ρ̈ =

(
k

m
− ω2

)
ρ = 0 (5.19)
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There are three possibilities based on the value of ω. In the case where ω <
√

k
m , we get simple harmonic

motion, and ρ(t) = A cos(ω0t+ θ0). In the case ω >
√

k
m , we get a sum of exponentials, ρ(t) = Beαt+Ce−αt,

where α =
√
ω2 − k

m . In case of equality, we get resonance, and ρ(t) ∝ t.

One more case that can be considered is what happens when gravity is added. The term mg(l sinωt+ρ cosωt)
is added to the potential energy, which gives us the following slightly altered equation of motion,

ρ̈+ ω2
0ρ = −g cosωt (5.20)

ρ(t) ∼ A cos(ω0t+ θ0) +
g

2ω2 − k
m

cosωt (5.21)

5.3 Symmetries of the Lagrangian

A symmetry of the Lagrangian is when a change to L, via a change in the coordinates from qi to q̃i, does
not perturb the Lagrangian.

For example, let x̃ = x+ ε, where ε is a small constant. ˜̇x = ẋ. Then, the Lagrangian is altered as follows:

L =
1

2
mẋ2 − V (x) (5.22)

L̃ =
1

2
m˜̇x2

− V (x̃) (5.23)

Therefore, the Lagrangian does not vary if V (x) = V (x+ ε). We can Taylor expand,

V (x+ ε) = V (x) + ε
∂V

∂x
+ . . . (5.24)

Therefore, for the required condition to be true, ∂V∂x must be 0. This is equivalent to saying the force in the
x direction is zero, or alternatively

d

dt
(mẋ) = 0 (5.25)

mẋ = px (5.26)

where px is a constant, the linear momentum.

In general, when we have a coordinate that is slightly shifted to first order in time, the Lagrangian on that
coordinate becomes

L(q + εκ, q̇ + εκ̇) = L(q, q̇) = ε
∑
i

κ̇i
∂L
∂q̇i

+ ε
∑
i

κ
∂L

∂qi
+ . . . (5.27)
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If we require that the perturbation is zero, we get Noether’s Theorem,

∑
i

κ̇i
∂L
∂q̇i

+
∑
i

κi
∂L
∂qi

= 0 (5.28)

This can be written in product rule form as follows:

d

dt

(∑
i

ki
∂L
∂q̇i

)
= const (5.29)

5.4 Pendulum Motion

The Lagrangian for a pendulum of length l and mass m with an angle from the normal θ is

L =
1

2
ml̇2 +

1

2
ml2θ̇2 (5.30)

We perturb θ slightly, and from Noether’s theorem we get

L(θ + ε, θ̇) = L(θ, θ̇) + ε
∂L
∂θ

(5.31)

which gives us the conservation law

∂L
∂θ

= 0 (5.32)

5.5 The Hamiltonian

Consider

H = q̇
∂L
∂q̇
− L (5.33)

We can take the time derivative of H,

dH

dt
=

d

dt

(
q̇
∂L
∂q̇

)
− dL
dt

(5.34)

dH

dt
= q̈

∂L
∂q̇

+ q̇
d

dt

(
∂L
∂q̇

)
− q̈ ∂L

∂q̇
− q̇ ∂L

∂q
− ∂L
∂t

(5.35)
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More simply, this is

dH

dt
= −∂L

∂t
(5.36)

We see that if L does not explicitly depend on time, then H is a constant with time.

In the one-dimensional case, consider a generic Lagrangian, and write the corresponding Hamiltonian,

L =
1

2
mẋ2 − V (x) (5.37)

H = ẋ
∂L

∂ẋ
− L = mẋ2 −

(
1

2
mẋ2 − V (x)

)
=

1

2
mẋ2 + V (x) (5.38)

which is just the total energy.
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Note that a property of the Lagrangian is it is invariant under constant multipliers; if L is a valid Lagrangian,
then L̃ = cL is also valid.

6.1 Pendulum

Conside a pendulum with mass m under a gravitational field g, with an angle θ from the normal. The
Lagrangian is

L = T − V (6.1)

T =
1

2
ml2θ̇2 =

1

2
m(ẋ2 + ẏ2) (6.2)

where x = l sin θ, y = −l cos θ, and the potential energy is

V = −mgl cos θ (6.3)

Therefore, we can drop some constant factors and write as a valid Lagrangian

L =
1

2
θ̇2 +

g

l
cos θ =

1

2
θ̇2 + ω2

0 cos θ (6.4)

where ω2
0 = g

l . We apply the E-L equation,

d

dt

(
∂L
∂θ̇

)
=
∂L
∂θ

(6.5)

Therefore

θ̈ = −ω2
0 sin θ = −∂V

∂θ
(6.6)

Look at the specific case where θ̈ = 0. Then we get sin θ = 0, so θ = 0 or θ = π. There are two solutions to
this; θ = 0, with the pendulum pointing straight down, and θ = π, with it pointing straight up. Only θ = 0
is a stable solution; under a slight deflection δθ, only θ = 0 will remain around that point as time goes on.
We can see this formally.



Lecture 6: 7 February 32

θ = θ0 + δθ (6.7)

δθ̈ = −ω2
0 sin(θ0 + δθ) = −ω2

0(sin θ0 cos δθ + sin δθ cos θ0) (6.8)

We know by definition that sin θ0 = 0, so

δθ̈ = −ω2
0 cos θ0δθ (6.9)

Here, if θ0 = 0, we get

δθ̈ = −ω2
0δθ (6.10)

This is a linear differential equation that is of the familiar form of an oscillator. Formally, we assume
δθ = Aept is a solution, and we get p2 = −ω2

0 . So a formal solution is

δθ = A1e
−iω0t +A2e

iω0t (6.11)

which has a small magnitude for all times. (We assume that because δθ is small, A1 and A2 must also be
small.)

However, for the case θ0 = π, we get

δθ̈ = ω2
0δθ (6.12)

δθ = A1e
−ω0t +A2e

ω0t (6.13)

Therefore, even due to the small magnitudes of the coefficients, the solution grows exponentially with time.
Unless we have initial conditions that let A2 = 0, we will have an unstable system. We can try to find these.

ω0 δθ|t=0 = (A1 +A2)ω0 (6.14)

δθ̇
∣∣∣
t=0

= (−A1 +A2)ω0 (6.15)

Therefore

ω0δθ(t = 0) + δθ̇(t = 0) = 2ω0A2 = 0 (6.16)

Therefore

δθ̇(t = 0) = −ω0δθ(t = 0) (6.17)

Therefore we need a velocity that slows down and stops as θ approaches π, which is unphysical.
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6.2 Coordinate Deviations

Consider a Lagrangian in a coordinate variable q,

L =
1

2
q̇2 − V (q) (6.18)

We perturb this slightly, q = q0 + δq, and we get

L =
1

2
(δq̇)2 + V (q0 + δq) =

1

2
δq̇2 − V (q0 + δq) =

1

2
δq̇2 − V (q0)−

(
∂V

∂q

)
q=q0

δq − 1

2

(
∂2V

∂q2
q=q0

δq2

)
(6.19)

Simplifying and dropping constants,

L =
1

2
δq̇2 − 1

2

(
∂2V

∂q2

)
δq2 (6.20)

Therefore

δq̈ = −
(
∂2V

∂q2
0

)
δq (6.21)

or

ω2 =

(
∂2V

∂q2
≥ 0

)
(6.22)
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6.3 Double Pendulum

We can set up the Lagrangian for this system,
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U = −m1gl1 cos θ1 −m2g(l1 cos θ1 + l2 cos θ2) (6.23)

T =
1

2
m1(ẋ2

1 + ẏ2
1) +

1

2
m2(ẋ2

2 + ẏ2
2) (6.24)

We can write the Cartesian coordinates in terms of lengths and angles, x1 = l1 cos θ1, y1 = −l1 cos θ1, and
x2 = l1 sin θ1 + l2 sin θ2, y2 = −l1 cos θ1− l2 cos θ2. To substitute into the Lagrangian, we can take derivatives.
Eventually, we get the following for the kinetic energy:

T =
1

2
m1l

2
1θ̇

2
1 +

1

2
m2

(
l21θ̇

2
1 + l22θ̇

2
2 + l1l2θ̇1θ̇2 cos(θ1 − θ2)

)
(6.25)

Therefore, the Lagrangian is

L =
1

2
m1l

2
1θ̇

2
1 +

1

2
m2

(
l21θ̇

2
1 + l22θ̇

2
2 + l1l2θ̇1θ̇2 cos(θ1 − θ2)

)
+ (m1 +m2)gl1 cos θ1 +m2gl2 cos θ2 (6.26)

Then, we can apply the Euler-Lagrange equations on both θ1 and θ2. Consider the equilibrium case, where

θ
(0)
1 = θ

(0)
2 = 0.

θ1 = θ
(0)
1 + δθ1 (6.27)

We linearize the Lagrangian around the equilibrium point to first order, and drop some constants,

L =
1

2
(m1 +m2)l21θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2 +m2l1l2θ̇1θ̇2 +

1

2
(m1 +m2)gl1θ

2
1 +

1

2
m2gl2θ

2
2 (6.28)

We introduce a coefficient for the mass ratio and the length, as well as the equilibrium angular frequency,
to get

L =
1

2
θ̇2

1 +
1

2
µl2θ̇2

2 + µlθ̇1θ̇2 +
1

2
ω2

0θ
2
1 +

1

2
µlω2

0θ
2
2 (6.29)

where µ = m2

m1+m2
, l = l2

l1
, and ω2

0 = g
l1

. We apply the Euler-Lagrange equations to θ1 and get

θ̈1 + µlθ̇2 = −ω2
0θ1 (6.30)

lθ̈2 + θ̈1 = −ω2
0θ2 (6.31)

This is a system of linear differential equations. We assume an arbitrary exponential solution for both
(θj = Aje

iωt), and we get the following matrix,
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[
ω2

0 − ω2 −µlω2

−ω2 ω2
0 − ω2l

] [
A1

A2

]
=

[
0
0

]
(6.32)

We take the determinant, to find the eigenvalues of ω. We get

ω2
± = ω2

0

1 + l ±
√

(1 + l)2 − 4(1− µ)l

2(1− µ)l
(6.33)

and for a general solution based on the eigenvalues, we get

θi = C
(+)
i A

(+)
i eiω+t + C

(−)
i A

(−)
i eiω−t (6.34)

iω±t are the normal modes of the system, and the Ci coefficieents are given by initial conditions.

From the matrix equation above, we get

A1 =
µlω2

+

ω2
0 − ω2

+

A2 (6.35)

6.4 Circle of Springs

Consider a set of four springs of spring constant k arranged in a circle. There are four masses m evenly
spaced between them. The springs can be parameterized by their angles φi relative to the positive x axis:

L =
1

2
R2

4∑
i=1

ϕ̇2
i −

1

2
R2 k

m

(
(ϕ1 − ϕ2)2 + (ϕ1 − ϕ4)2 + (ϕ2 − ϕ3)2 + (ϕ3 − ϕ4)2

)
(6.36)

Here we have four possible E-L equations:

ϕ̈1 = −ω2
0(2ϕ1 − ϕ2 − ϕ4) (6.37)

ϕ̈2 = −ω2
0(2ϕ2 − ϕ1 − ϕ3) (6.38)

ϕ̈3 = −ω2
0(2ϕ3 − ϕ2 − ϕ4) (6.39)

ϕ̈4 = −ω2
0(2ϕ4 − ϕ1 − ϕ3) (6.40)

which we can change into a massive matrix problem,


2ω2

0 − ω2 −ω2
0 0 −ω2

0

−ω2
0 2ω2

0 − ω2 −ω2
0 0

0 −ω2
0 2ω2

0 − ω2 −ω2
0

−ω2
0 0 −ω2

0 2ω2
0 − ω2



A1

A2

A3

A4

 =


0
0
0
0

 (6.41)
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This has a determinant

||D|| = ±(2ω2
0 − ω2)2(4ω2

0 − ω2)ω2 (6.42)

When this determinant is zero, ω = 0, or ω = 2ω0, or ω =
√

2ω0.
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7.1 Linear Oscillations

We can start the study of oscillations using the principle of energy conservation. Consider a one-dimensional
case, where there is a force in one direction and an associated potential,

Fx = −∂V (x)

∂x
(7.1)

and the energy of the system undergoing this force is

E =
1

2
mv2

x + V (x) (7.2)

This creates a roughly parabolic graph of potential vs x. There is a well at the bottom, at some x = x0.
This is an equilibrium point, where dV

dx = 0 and so Fx = 0. This is a case of stable equilibrium. If we had
a potential well that looked like an inverted parabola, the zero point is also an equilibrium point, but it is
unstable; if the particle is perturbed, it does not return to its equilibrium point.

Consider perturbations away from an equilibrium point, x = x0 +η. We can Taylor expand about this point,

V (x) = V (x0) + η
∂V

∂x

∣∣∣∣
x0

+
1

2
η2 ∂

2V

∂x2

∣∣∣∣
x0

+ . . . (7.3)

The first-order derivative goes to zero, by definition of the equilibrium point. So the dynamics of a one-
dimensional oscillator are entirely determined by the quadratic term. We can drop the constant term because
a shift in the potential does not affect the dynamics.

We can write a Lagrangian,

L = T − V =
1

2
mη̇2 − 1

2

∂2V

∂x2

∣∣∣∣
x0

η2 (7.4)

and apply the E-L equation to get the equation of motion,

mη̈ +
∂2V

∂x2

∣∣∣∣
x0

η = 0 (7.5)
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This is the equation for a simple harmonic oscillator. The solutions to this are of the form of a complex
exponential,

η(t) = Aei(ωt+θ) (7.6)

where ω =
√

1
m

∂2V
∂x2

∣∣
x0

is the angular frequency. The motion is determined by the real part of η(t), which

is A cos(ωt+ θ) for ω ∈ R.

The energy is given by

E =
1

2
mη̇2 +

1

2
kη2 = const (7.7)

We compute the η components in terms of the solution written above,

η2 = A2 cos2(ωt+ θ) (7.8)

η̇ = −ωA sin(ωt+ θ) (7.9)

η̇2 = ω2A2 sin2(ωt+ θ) (7.10)

E = T + V =
1

2
mω2A2 sin2(ωt+ θ) +

1

2
mω2A2 cos2(ωt+ θ) =

1

2
mω2A2 (7.11)

7.2 Phase space

We can parameterize a system by the values of η and η̇. The total energy equation can be rewritten in terms
of an ellipse,

(
√
E)2 =

(√
m

2
η̇

)2

+

(√
k

2
η

)2

(7.12)

and if we rescale the axes, this becomes a circle. The polar representation of a point on the circle is entirely

determined by its angle θ, where ω = dθ
dt =

√
k
m .
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7.3 Linearity

The simple harmonic oscillator is linear, meaning that solutions to its equation of motion have linearity
(superposition and homogeneity). This means methods of linear algebra can be used.

SHO has the exponential solution

η(t) = η(0)eαt (7.13)
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which is invariant under time translation,

η(t+ t0) = η(0)eα(t+t0) =
(
η(0)eαt0

)
eαt (7.14)

7.4 Damped SHO

Consider a simple harmonic oscillator with a mass on a spring, but with frictional forces proportional to the
first derivative of the position. The differential equation of motion is

mz̈ + bż + kz = 0 (7.15)

which can be rewritten as

z̈ + 2βż + ω2
0z = 0 (7.16)

where 2β = b
m and ω2

0 = k
m . To solve this, we assume an exponential of the form z(t) = ept and take

derivatives, which we substitute in to get

p2 + 2βp+ ω2
0 = 0 (7.17)

p = −β ±
√
β2 − ω2

0 (7.18)

Based on the sign of the term under the square root, there are three different cases.

7.4.1 β > ω0

In this case, the term is real, and so p is a negative real number. For z(t) we get

z(t) = C1e
(−β+

√
β2−ω2

0)t + C2e
(−β−

√
β2−ω2

0)t (7.19)

Here, the e−βt term dominates, and so the solution is a decaying exponential. We call the system overdamped.

7.4.2 β < ω0

In this case, the term is imaginary, so we write it as i
√
ω2

0 − β2 = iω1. Using Euler’s formula for complex
numbers, we find we can rewrite z(t) in this case as

z(t) = e−βt (C1(cosω1t+ i sinω1t) + C2(cosω1t+ i sinω1t)) (7.20)

z(t) = e−βt(d1 cosω1t+ d2 sinω1t) (7.21)

z(t) = Ae−βt cos(ω1t+ ϕ) (7.22)
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This solution is oscillating and decaying at the same time.

7.4.3 β = ω0

In the case β = ω0, we get z(t) = (C1 + C2)e−βt, and we are required to find a second linearly independent
solution. To resolve this, we look at the underdamped case; at t = 0, z = z(0) and ż = ż(0). From above,
we know that z(0) = d1 = C1 + C2 and ż(0) = −βd1 + ω1d2. Therefore

d1 = z(0), d2 =
ż(0) + βz(0)

ω1
(7.23)

We can substitute these into the general underdamped solution,

z(t) = e−βt
(
z(0) cosω1t+

(
ż(0) + βz(0)

ω1
sinω1t

))
(7.24)

We let ω1 → 0 (because ω0 ≈ β) and we get

z(t) ≈ e−βt (z(0) + i (ż(0) + βz(0)) t) (7.25)
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7.5 Analogies to circuits

Consider a circuit with components characterized by R,L,C in series. In a differential equation form, these
interact with charge in the system the same way that the mass/damping/spring components interact with
the position:

L
d2q

dt2
+R

dq

dt
+
q

C
= 0 (7.26)

Here L ∼ m, R ∼ β and C ∼ 1
k .
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8.1 Solutions to the forced oscillator

In linear differential equations, we have linearity in the solutions. Consider a damped harmonic oscillator
with two solutions z1, z2,

(
d2

dt2
+ 2β

d

dt
+ ω2

0

)
z1(t) = 0 (8.1)

(
d2

dt2
+ 2β

d

dt
+ ω2

0

)
z2(t) = 0 (8.2)

Then z = z1 + z2 is also a solution. Suppose now that the right-hand side of one of the solutions is nonzero,
i.e. the solution is not homogeneous:

(
d2

dt2
+ 2β

d

dt
+ ω2

0

)
z1(t) =

F1(t)

m
(8.3)(

d2

dt2
+ 2β

d

dt
+ ω2

0

)
z0(t) = 0 (8.4)

Then z = z0 + z1 is a solution.

Say F (t) = C0e
−iωt, i.e. the force is harmonic. We can try a harmonic solution, z(t) = Ãe−iωt. Then, we

can take derivatives and see that ż = −iωz, and z̈ = −ω2z. Therefore the equation becomes

(
−ω2 + 2βiω + ω2

0

)
Ã = C0 (8.5)

Ã =
C0

−ω2 + 2βiω + ω2
0

(8.6)

This is the particular solution. This can be split into real and imaginary components,

Ã =
F0/m

(
(ω2

0 − ω2) + 2βiω
)

(ω2
0 − ω2)2 + 4β2ω2

= A+ iB (8.7)

The elastic amplitude A =
F0/m(ω2

0−ω
2)

(ω2
0−ω2)2+4β2ω2 , and the absorptive amplitude B = 2βωF0/m

(ω2
0−ω2)2+4β2ω2 .
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We can split the particular solution into real and imaginary components based on these amplitudes,

z(t) = Ãe−iωt = (A+ iB)(cosωt− i sinωt) = (A cosωt+B sinωt) + i(B cosωt−A sinωt) (8.8)

We can plot A and B against ω/ω0 to see its behaviour. When ω2
0 > ω2, A > 0, the system moves with the

driving force; when ω2 > ω2
0 , A < 0 and the system moves against the driving force; and when A = 0 the

system is 90 degrees out of phase.

8.2 Power

Consider power, which is work over time, or force times velocity.

P (t) = F (t) · ż(t) (8.9)

P (t) = F0 cosωt · ∂
∂t

(A cosωt+B sinωt) (8.10)

P (t) = −F0ωA sinωt cosωt+ F0ωβ cos2 ωt (8.11)

The first term averages to zero in a half cycle.

8.3 Rewriting solutions

We can express the real part of the general solution in the form of an amplitude times a trigonometric phase
term,

Re(z) =
A√

(ω2
0 − ω2)2 + 4β2ω2

cos(ωt− ϕ) (8.12)
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where ϕ = arctan
(

2βω
ω2

0−ω2

)
.

We can also characterize the quality of a system by a parameter Q,

Q =
ω

2β
=

√
ω2

0 − β2

2β
(8.13)

This allows us to rewrite the system simply as

z̈ +
1

Q
ż + z = 0 (8.14)

A low Q factor corresponds to lots of damping, and a high Q factor (on the order of 5000-10000 for radio)
corresponds to very little damping.

8.4 Arbitrary Driving Forces

Previously, we looked at harmonic driving forces. If F (t) is not harmonic, this solution changes. Suppose
F (t) = F0u(−t+τ), a constant input force that turns off for t ≥ τ . For the first part, we get z̈+2βż+ω2

0z =
F0/m, which has the solution

z(t) = e−βt(C1 cosω1t+ C2 sinω1t) +
F0

mω2
0

(8.15)

We can Taylor expand to approximately get a solution after z(t) settles to around the average,

z(t) =
F0

mω2
0

(
1− (1− βt+

β2t2

2
)− βt

ω1
(1− βt+

β2t2

2
)ω1t

)
≈ F0t

2

2mω2
0

(
ω2

1 − β2
)

(8.16)

After t = τ , we use boundary conditions to ensure the function is valid. The general solution is

zII(t) = e−β(t−τ) (D1 cosω1(t− τ) +D2 sinω1(t− τ)) (8.17)

At t = τ , we get zII(τ) = D1 and żII(τ) = D2ω1 + βD1. We can match this up with the first solution,

zI(τ) =
F0

mω2
0

(
(1− e−βτ ) cosω1τ −

β

ω1
e−βτ sinω1τ

)
= D1 (8.18)

and the same with the derivative.
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8.5 Green Function Solutions

We can also approach this by letting τ → 0 and F0 → ∞ such that the area under the force-time curve is
constant. This suggests that the displacement can be written as an integral of the impulse,

z(t) =

∫ t′=t

t′=−∞
G(t, t′)F (t′)dt′ (8.19)

where G(t) is the Green function.

We can individually solve for the z due to each displacement, z̈i + 2βżi + ω2
0zi = Fi(t), and we get

zi =
I1
mω1

e−β(t−t1) sinω1(t− t1) (8.20)

After t > t2, this becomes

z =
I1
mω1

e−β(t−t1) +
I2
mω1

e−β(t−t1) sinω1(t− t2) (8.21)

(I missed a step)

In general, the Green function is

G(t, t′) =
e−β(t−t′) sinω1(t− t′)

mω1
(8.22)

We can apply this to a DSHO with z(0) = ż(0) = 0. We try F (t′) = αt′.
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9.1 Central Forces

Recall that under Newtonian mechanics,

~F = m~a =
d~p

dt
(9.1)

For some direction ŝ,

~F · ŝ = 0 =⇒ ~p · ŝ = const. (9.2)

That is, momentum is conserved along ŝ. Analogous to this, we can make a similar statement about torque,

~τ = ~r × ~F (9.3)

~L = ~r × ~p (9.4)

~τ · ŝ = 0 =⇒ ~L · ŝ = const (9.5)

Suppose we wanted to set up a system in which angular momentum were conserved in any direction. This
leads naturally to the notion of a central force, one in which a force depends on the position vector between
objects,

~F (~r) = f(r)r̂ (9.6)

The torque due to a central force is zero,

τ = ~r × ~F = ~r × r̂f(r) = 0 (9.7)

Therefore there is zero torque and angular momentum is conserved for any direction.

9.2 Two-Body Problem

Let there be masses m1 and m2 in the x − y plane, with position vectors ~r1 and ~r2 from the origin of the
inertial coordinate system to m1 and to m2 respectively. Define a position vector ~r from m1 to m2. By
vector addition, we can say
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~r = ~r2 − ~r1 (9.8)

Now, define a vector ~R that points from the origin to the CM. We have not yet found the CM, but the point
defined by ~R will be lie somewhere on the line defined by ~r.

We can write a Lagrangian,

L = T (̇~R,~̇r)− U(~r,~̇r) (9.9)

This is not yet very specific. We can add terms to the coordinate system to make easy expressions for the
energy. Call the vectors from the CM to m1 and m2 respectively ~r′1 and ~r′2. Then, we can say

~R+ ~r′1 = ~r1 (9.10)

~R+ ~r′2 + ~r2 (9.11)

or, differentiating,

~̇r1 +~̇R+~̇r′1 (9.12)

~̇r2 +~̇R+~̇r′2 (9.13)

So, the kinetic energy is

T =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 =

1

2
m1

(̇
~R+~̇r′1

)2

+
1

2
m2(̇~R+~̇r′2)2 (9.14)

T =
1

2
(m1 +m2)Ṙ2 +

1

2
m1ṙ

′2
1 +m1Ṙṙ

′
1 +

1

2
m2ṙ

′2
2 +m2Ṙṙ

′
2 (9.15)

This is a confusing expression, but the correct definition of the CM will save it.

∑
i

mi~ri = ~R
∑
i

mi (9.16)

This is essentially a weighted average. Using the expression we derived before, we can say

∑
i

mi~ri =
∑
i

mi
~R+

∑
i

mi~r
′
i (9.17)

In our case, this simplifies (how?) to
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m1r
′
1 +m2r

′
2 = 0 (9.18)

Therefore the cross terms m1Ṙṙ
′
1 and m2Ṙṙ

′
2 cancel. We simplify T to

T =
1

2
(m1 +m2)Ṙ2 +

1

2
m1ṙ

′2
1 +

1

2
m2ṙ

′2
2 (9.19)

We want to convert this to an expression in r1 and r2 so that it matches up with the definition of the
potential energy. We do this by the definition of the center of mass,

~r′2 =
−m1

m1 +m2
~r ~r′1 =

m2

m1 +m2
~r (9.20)

Therefore we can do algebra to simplify the noncentral terms in the kinetic energy,

1

2
m1ṙ

′2
1 +

1

2
m2ṙ

′2
2 =

1

2

(
m1m

2
2

(m1 +m2)2
+

m2
1m2

(m1 +m2)2

)
ṙ2 =

1

2

(
m1m2

m1 +m2

)
ṙ2 (9.21)

This is equivalent to the kinetic energy of a single particle at the CM with the reduced mass µ = m1m2

m1+m2
.

T =
1

2
MṘ2 +

1

2
µṙ2 (9.22)

The Lagrangian is

L =
1

2
MṘ2 +

1

2
µṙ2 − U(r) (9.23)

We can set up E-L equations in both coordinates. First we do this in R,

∂L
∂R

= 0 (9.24)

∂L
∂Ṙ

= MṘ (9.25)

d

dt

∂L
∂Ṙ

=
∂L
∂R

= 0 (9.26)

MṘ = const (9.27)

This is the statement of conservation of linear momentum of the center of mass.

Then, we do this in r. We can drop the 1
2MṘ2 term for this. Here, the potential energy term matters, so to

simplify we first take conservative forces that depend only on r.
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~F (~r) = f(r)r̂ (9.28)

~F = − ~∇V (r) = f(r)~r (9.29)

V (r) = −
∫ ~r

~r0

~F (~r′)d~r′ (9.30)

~F being a central force implies conservation of angular momentum. This suggests that ~r and ~p are always
in a plane normal to ~L (the plane is defined by the cross product of the two, i.e. the normal vector, being a
constant). We describe this using polar coordinates in the plane, and the new Lagrangian is

L =
1

2
m(ṙ2 + r2θ̇2)− V (r) (9.31)

We take derivatives,

∂L
∂θ̇

= mr2θ̇ (9.32)

∂L
∂θ

= 0 (9.33)

d

dt
(mr2θ̇) = 0 (9.34)

Therefore the angular momentum mr2θ̇ is a constant. This can also be interpreted as an area swept out in
polar coordinates, 1

2r(rdθ) = dA. We therefore find that assuming constant mass, dA
dt = 0. This gives us

Kepler’s second law, that the radius vector sweeps out equal areas in equal times.

In this, we have not specified the form of the potential, so this applies to all central forces.

We can find the equation of motion by taking derivatives in r,

d

dt

∂L
∂ṙ
− ∂L
∂r

= 0 (9.35)

mr̈ −mrθ̇2 +
∂V

∂r
= 0 (9.36)

mr̈ −mrθ̇2 = f(r) (9.37)

We can replace θ̇ by l
mr2 , to get a one-dimensional equation of motion,

mr̈ − l2

mr3
= f(r) (9.38)

There is no time dependence here, so energy is conserved as well. This comes from the fact that ∂L
∂t = dH

dt = 0.
We can write an expression for the energy.
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E =
1

2
mṙ2 +

1

2

l2

mr2
+ V (r) = const (9.39)

To solve for r(t), we can try to integrate the equation of motion.

θ̇ =
dθ

dt
=

l

mr2
(9.40)

θ =

∫
dθ =

∫
l

mr2
dt (9.41)

θ − θ0 = l

∫ t

0

dt′

mr2(t′)
(9.42)

Here, we need to find r to get θ. Using the energy equation, we can isolate ṙ and get

ṙ =

√
2

m

(
E − V (r)− l2

2mr2

)
(9.43)

which we can integrate for time,

t =

∫
dt =

∫ r

r0

dr√
2
m

(
E − V (r)− l2

2mr2

) (9.44)

This allows us to define an “effective” potential,

V ′(r) = V (r) +
l2

2mr2
(9.45)

which allows us to define energy simply as E = 1
2mṙ

2 + V ′(r).

Now, we can start looking at what happens when we specify a form of the potential. Let V = −kr , which

implies f = − k
r2 . Then the effective potential is

V ′(r) = −k
r

+
l2

2mr2
(9.46)

This allows us to graph the kinetic and potential energies. With a positive total energy, the potential energy
becomes hyperbolic. With zero total energy, it is a parabola. With a negative total energy just above the
bottom point of the potential well, the potential energy looks like an ellipse. At the bottom of the potential
well, we have ṙ = 0 and a constant r = r1. We get f = −mr1θ̇

2 and a circular path.

Qualitatively, the potential dominates the centrifugal force at large r, which is equivalent to saying that V
falls off slower than 1

r2 . At small r, the centrifugal term dominates.
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We can change any time dependence terms to θ dependence, and solve for r(θ) or θ(r) using the integral
expressions in terms of t for both of these,

∫ θ

θ0

dθ =

∫ r

r0

ldr

mr2

√
2
m

(
E − V (r)− l2

2mr2

) (9.47)

θ = θ0 +

∫ r

r0

dr

r2

√
2mE
l2 −

2mV
l2 −

k
r2

(9.48)

In principle, we can now solve for r(θ).
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10.1 Recap

In general, with a central force, we have

mr̈ − l2

mr3
= f(r), (10.1)

which has associated energy

E =
1

2
mṙ2 +

l2

2mr2
+ V (r) ≡ const. (10.2)

Based on this, we can integrate for θ in terms of r.

dθ =
ldr

mr2

√
2
m

(
E − V (r)− l2

2mr2

) (10.3)

θ = θ0 +

∫ r

r0

dr

mr2

√
2m(E−V )

l2 − 1
r2

(10.4)

Let u = 1
r . Then the integral becomes

θ = θ0 −
∫ u

u0

du√
2m(E−V )

l2 − u2

(10.5)

If f ∼ 1
r2 , then V = −kr = −ku. Using trig substitution, we can solve this:

1

r
=
mk

l2

(
1 +

√
1 +

2El2

mk2
cos(θ − θ0)

)
(10.6)

10.2 Equation of Conic Sections

The above equation can be written simply as
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1

r
= C(1 + ε cos(θ − θ0)), (10.7)

where ε =
√

1 + 2El2

mk2 is the eccentricity. We can construct a phase-space diagram with axes p√
2m

and
√

k
2x.

Using this relationship as well as the energy/position dependence, we can construct diagrams representing
the system. These can help us visualize the phase-space trajectories of the particle.

10.3 Limits of the Orbit

Consider the minimum value of r. This is achieved at the maximum value of the right hand side, at cos θ = 1.
We get

1

rmin
=
mk

l2
(1 + ε). (10.8)
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To find the maximum value of r, we break this up into two cases, depending on whether ε > 1 or ε < 1. We
get

rmax =

{
l2

mk(1−ε) ε < 1

∞ ε > 1
(10.9)

We get ∞ in the ε > 1 case because the right hand side of the equation can be zero.

In the case of a circle, we get simply

r =
l2

mk
. (10.10)

The fact that the radius is constant with θ reflects the fact that this is the equation of a circle. If we let

α = l2

mk , then we can express the equation of the orbit in terms of the equivalent circular orbit,

1

r
=

1

α
(1 + ε cos θ). (10.11)

α = r + εx (10.12)

r2 = α2 − 2αεx+ ε2x2 = x2 + y2 (10.13)

We complete the square on this equation.

1

a2

(
x+

αε

1− ε2

)2

+
1

b2
y2 = 1 (10.14)

where

a =
α

1− ε2
, b =

α√
1− ε2

. (10.15)

a and b define the semimajor and semiminor axes, respectively. This is the equation of an ellipse centered
at x0 = − αε

1−ε2 .

Suppose ε = 1. We get

y2 = α2 − 2αx, (10.16)

which is the equation of a parabola whose vertex is at
(
α
2 , 0
)
.

In the case ε > 1, we get a hyperbola, through similar reasoning.
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10.4 Kepler’s Laws

We can connect the behaviour of central forces to Kepler’s laws in orbital mechanics, specifically the second
and third ones. The statement of equal areas being swept out in equal times can be expressed mathematically
as

dA

dt
=

1

2
r2θ̇ =

l

2m
, (10.17)

which is essentially a different statement of the conservation of angular momentum. Similarly, the third law
states that for a gravitational force,

T 2 =
4π2a3

GMo
. (10.18)

We start from the second law, and get

dA

dt
=

l

2m
=⇒ A =

l

2m
T = πab (10.19)

Substituting in the relations between the axes and the eccentricity,

ab = a2
√

1− ε2 (10.20)

πa4 =
l2

m(1− ε2)

T 2

4m
(10.21)

with k = GMm.
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11.1 Higher-Order Forces

Previously, we found the orbits for a potential with V ∼ 1
r . Now, consider a force of the form F (r) = k

rn , so
that the potential is

V (r) =
k

n− 1
r−(n−1) (11.1)

So the effective potential in a circular orbit becomes

Veff (r) =
l2

2mr2
− k

n− 1

1

rn−1
(11.2)

We take an r derivative and set it to zero, and we get

∂L
∂r

=
k

rn
− l2

mr3
= 0 (11.3)

rn−3
0 =

mk

l2
(11.4)

For stability, we look at the second derivative,

∂2V

∂r2
= − nk

rn+3
0

+
3l2

mr4
0

> 0 (11.5)

(3− n)
l2

m
> 0 (11.6)

Therefore, for n < 3, we have stability in a circular orbit. We do not get this for n ≥ 3.

The equation of motion is

mr̈ − l2

mr3
= −f(r) = −∂L

∂r
(11.7)

and we can find the frequency of small oscillations around r0 by setting r = r0 + η and r̈ = η̈. We get
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η̈ − l2

mr3
0

(
1 + η

r0

)3 = −g(r0 + η) (11.8)

η̈ − l2

m2r3
0

(
1− 3η

r0

)
= −g(r0)− η

∂g

∂η

∣∣∣∣
r0

(11.9)

where in general g = g(r), and for the case of 1
r2 dependence g happens to be constant.

11.2 Scattering

Consider Rutherford’s alpha particle scattering experiment, in which He2+ particles were fired through a lead
“stop” into gold foil at a range of angles θ, then onto a zinc sulphide screen to see the effects of scattering.
This can be formulated classically as a two-body problem. Let Θ be the scattering angle for a given particle,
and let ψ be the angle between the path of the α particle and the path off the target of a reflected particle.
ψ = π

2 −
Θ
2 .

Define the cross-section dσ = dσ
dΩdΩ, the amount of flux per unit solid angle, where dΩ is the differential

cross-section. Then σ can be found via an integral,

σ =

∫
dσ

dΩ
dΩ =

∫ π

0

sin θdθ

∫ 2π

0

dϕ
dσ

dΩ
(θ, ϕ) (11.10)

The flux density is defined as the number of particles per unit area per unit time; call this I. Over a
differential element dΘ, the number of particles scattered is

2πIs|ds| = 2πσ(Θ)I sin ΘdΘ (11.11)

and so we get

σ(Θ) =
s

sin |Θ|

∣∣∣∣ dsdΘ

∣∣∣∣ (11.12)

We can also invoke conservation of angular momentum, l = mv0s = s
√

2mE. From the results in the
previous section, we know that

ψ =

∫ ∞
r1

dr

r2
(

2m(E−V (r)))
l2 − 1

r2

)1/2
(11.13)

We know that this yields a hyperbolic orbit, and k = −z1z2e
2. Therefore
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1

r
= −mz1z2e

2

l2
(1 + ε cosψ) (11.14)

In the limit r →∞, we get ε = − csc θ
2 . Using the previous relationships we can get s(Θ),

cot2 θ

2
= ε2 − 1 =

2Es

z1z2e2
(11.15)

s =
z1z2e

2

2E
cot

θ

2
(11.16)

σ(Θ) =
1

4

(
z1z2e

2

2E

)
csc4 θ

2
(11.17)

11.3 Hamiltonian mechanics

Recall that in Lagrangian mechanics, a Lagrangian in each coordinate is a function L(q, q̇, t) = T − V , and
the Euler-Lagrange equation allows us to find equations of motion based on this. Consider the generalized
momenta pi = ∂L

∂q̇i
. Then, we define the Hamiltonian as a function of these generalized momenta,

H =
∑
i

piq̇i − L(q, q̇(q, p), t) = H(q, p, t) (11.18)

This exists in 2n-dimensional phase space. We can derive an equation of motion from the Hamiltonian by
taking a p derivative,

∂H

∂p
=

∂

∂p

(∑
pq̇ − L(q, q̇, t)

)
= q̇ + p

∂q̇

∂p
− ∂L
∂q̇

∂q̇

∂p
= q̇ (11.19)

and by taking a q derivative,

∂H

∂q
=

∂

∂q

(∑
pq̇ − L(q, q̇, t)

)
= p

∂q̇

∂q
− ∂L
∂q
− ∂L
∂q̇

∂q̇

∂q
= p (11.20)

Therefore

∂H

∂q
= −∂L

∂q
= − d

dt

(
∂L
∂q̇

)
= − d

dt
p (11.21)

This gives us Hamilton’s equations of motion,

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,
∂H

∂t
= −∂L

∂t
(11.22)

This has a couple of advantages over the Lagrangian method. It is a system of first-order equations rather
than second-order, and any time dependence is explicit.
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11.4 Harmonic Oscillator

Consider a simple harmonic oscillator, with Lagrangian L = 1
2mẋ

2 − 1
2kx

2. We first write down p,

p =
∂L
∂ẋ

= mẋ =⇒ ẋ =
p

m
(11.23)

so the Hamiltonian is

H = pẋ− 1

2
mẋ2 +

1

2
kx2 =

p2

m
−
(
p2

2m
− 1

2
kx2

)
=

p2

2m
+

1

2
kx2 (11.24)

Then, we use the Hamiltonian equations, we get

ẋ =
∂H

∂p
=

p

m
, ṗ = −∂H

∂x
= kx,

∂H

∂t
= 0 (11.25)

The third equation is essentially the statement of conservation of energy.

11.5 Particle in EM Field

L =
1

2
mṙ2 − eϕ(r, t) +

e

2
~̇r · ~A(ṙ, t) (11.26)

Using ~B = ~∇× ~A, we get ~E = −~∇ϕ− 1
2
∂ ~A
∂t . Then, we take derivatives in x, to get

∂L
∂ẋ

= mẋ+
e

2
Ax = px (11.27)

∂L
∂x

= −e∂ϕ
∂x

+
e

2

(
ẋ
∂Ax
∂x

+ ẏ
∂Ay
∂x

+ ż
∂Az
∂x

)
(11.28)

Bashing out algebra (come back here!), we get

H =
1

2m

(
p− e

2
~A
)

+ eφ(r, t) (11.29)
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12.1 Deriving the Hamiltonian equations

Recall that the Hamiltonian represents a system in terms of its generalized momenta,

H = piq̇i − L(qi, q̇i(qi, pi), t) = H(qi, pi, t) (12.1)

where pi = ∂L
∂q̇i

is the canonical momentum. Then we get the equation of motion and conserved quantities
from the Hamiltonian equations,

q̇ =
∂H

∂p
(12.2)

ṗ = −∂H
∂q

(12.3)

∂H

∂t
= −∂L

∂t
(12.4)

We can derive these in the same way as for the Lagrangian, by requiring a stationary value of the action
(which here becomes the phase(?)):

S =

∫ t2

t1

Ldt =

∫
t1

t2 (pq̇ −H) dt (12.5)

Perturb q → q + εη, and p→ p+ εx. Then we get

S =

∫ t2

t1

((p+ εx)(q̇ + εη̇)−H(q + εη, p+ εx, t)) dt (12.6)

Keeping the terms that are linear in ε, we get the deviation,

δS = ε

∫ (
piη̇ + xq̇ − ∂H

∂q
η − ∂H

∂p
x

)
dt (12.7)

We require that this is zero, meaning that the coefficients on η and x be zero. We apply integration by parts
to shift the derivative in the first term from η to pi,
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piη̇ =
d

dt
(pη)− ηṗ (12.8)

and so the deviation in S is

δS = ε

∫ t2

t1

dt

((
q̇ − ∂H

∂p

)
x−

(
ṗ+

∂H

∂q

)
η

)
(12.9)

Therefore, q̇ − ∂H
∂p = 0 and ṗ+ ∂H

∂q = 0.

12.2 Connection to Quantum Mechanics

Intuitively, having a stationary phase corresponds to the path with the greatest probability due to no
destructive addition of phases.

We can apply the Hamiltonian method to a wave packet described by p = ~k and E = ~ω. We use the
Hamiltonian equations,

q̇ =
∂H

∂p
=⇒ v =

dx

dt
=

∂

∂p
(~ω) =

∂ω

∂k
(12.10)

ṗ = −∂H
∂x

=⇒ dk

dx
= −∂H

∂x
(12.11)

The first equation is the definition of the group velocity, and the second describes the time evolution of the
wavepacket. In general, these are ~vg = ~∇kω and dk

dt = − ~∇ω.

12.3 Legendre Transformation

A Legendre transformation allows us to describe a (necessarily convex) curve in terms of an intercept as a
function of a slope.Consider the curve y(x) = ex. At some point x, the slope is ∂y

∂x = ex = m =⇒ x = lnm.
At that point, b = y−mx = y−m lnm. Therefore we get b(m) = m−m lnm as the Legendre representation.

Now, consider a function of two variables, and let the two parameterizing variables in the Legendre repre-
sentation be the function’s partial derivatives.

df =
∂f

∂x
dx+

∂f

∂y
dy = udx+ vdy (12.12)

Let g = f − ux. Then

dg = df − udx− xdu = (udx+ vdy)− ydx− xdu = vdy − xdu =
∂g

∂y
dy +

∂g

∂v
du (12.13)
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Then, define v = ∂g
∂y and x = − ∂g

∂u . This is akin to a transformation (q, q̇, t) → (q, p, t). From this
perspective, a two-variable Legendre transformation is the same as the transformation from generalized
positions to generalized momenta. We can do this explicitly in the Lagrangian,

dL =
∂L
∂q
dq +

∂L
∂q̇
dq̇ +

∂L
∂t
dt (12.14)

Set ∂L
∂q = ṗ and ∂L

∂q̇ = p. Then, we get

d(L − pq̇) =
∂L
∂q
dq +

∂L
∂t
dt− q̇dp (12.15)

This suggests a definition for the Hamiltonian,

dH = q̇dp− ṗdq − ∂L
∂t
dt =

∂H

∂q
dq +

∂H

∂p
dp+

∂H

∂t
dt (12.16)

Equating the coefficients on each differential element gives us the Hamiltonian equations of motion.

12.4 Solving a problem with Hamiltonian dynamics

1. Choose coordinates qi and construct a Lagrangian.

2. Set p = ∂L
∂qi

.

3. H(q, q̇, p, t) = q̇p− L(q, q̇, t).

4. Invert p = ∂L
∂q to get q̇(q, p, t).

5. Eliminate q̇ from H to get H(q, p, t).

6. Use the Hamiltonian equations of motion to solve.

For example, consider the case of a particle moving in gravity.

L = T − V =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
−mgz (12.17)

By taking partial derivatives, we find that px = mẋ and the same for the other two coordinates.

H = pq̇ − L =
p2
x

m
+
p2
y

m
+
p2
z

m
−

(
1

2
m

(
p2
x

m2
+
p2
y

m2
+
p2
z

m2

)
−mgz

)
(12.18)

which can be simplified to
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H(q, p) =
1

2m

(
p2
x + p2

y + p2
z

)
+mgz (12.19)

The Hamiltonian equations give us ẋ = px
m and the same in y, and Fz = ṗz = −∂H∂q = −mg.

12.5 Hamiltonian Phase Space

Consider a space parameterized by independent coordinate q and dependent coordinate p, and look at a box
between (p, q) and (p+ ∆p, q + ∆q). The phase space density ρ is the density of points in this region. This
allows us to find a number of particles crossing in a specific region in phase space. Consider the left and right
faces, respectively going from (p, q) to (p+ ∆p, q) and from (p, q + ∆q) to (p+ ∆p, q + ∆q). The number of
particles crossing is dN = ρ∆q∆p, where ∆q = dq

dt dt = q̇dt. At faces 1 and 2, we can subtract this quantity,
to get

∂

∂q
(ρq̇) =

ρq̇|q+∆q − ρq̇|q
∆q

(12.20)

or

dN12 = − ∂

∂q
(pq̇)∆q∆pdt (12.21)

We can translate this to a continuity equation,

∂ρ

∂t
+

∂

∂q
(pq̇) +

∂

∂p
(ρṗ) = 0 (12.22)

This is the Liouville theorem

In phase space, the continuity equation becomes

∂ρ

∂t
+

∂

∂x
(ρvx) +

∂

∂y
(ρvy) = 0 (12.23)

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (12.24)

which, applying the Hamiltonian equations, becomes

∂ρ

∂t
+
∂H

∂p

∂ρ

∂q
− ∂H

∂q

∂ρ

∂p
= 0 (12.25)
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13.1 Coordinate Transforms

We are searching for coordinates that lead to a cyclic (i.e. conserved) coordinate. More concretely, we want
to find Qi(pi, qi, t) and Pi(qi, pi, t) that make H cyclic in Q, so that H = H(P ). The pair (q, p) is called
canonically conjugate if Hamilton’s equations hold and (q, p) ⇐⇒ (Q,P ) is the canonical transform.

Hamilton’s Principle states that δ
∫
L(q, q̇, t)dt = δ

∫
L(Q, Q̇, t), therefore

δ

∫
(L− L)dt = 0 (13.1)

Therefore L and L differ by some differential in time. Call this dF
dt , where F = F (qi, pi, Qi, Pi, t) is the

generating function. Then, using the Fundamental Theorem of Calculus, we get

δ

∫ t1

t0

dF

dt
dt = δ(F (t1)− F (t0)) = 0 (13.2)

There are four kinds of generating functions, by taking pairwise each of pi, qi, Pi, Qi and specifying the others
as functions of these:

F1 = F1(qi, Qi, t)

F2 = F2(qi, Pi, t)

F3 = F3(pi, Qi, t)

F4 = F4(pi, Pi, t)

For a type 1 function, for example,

L = L+
dP

dt
=
∑

pq̇ −H =
∑

PQ̇−H +
dF

dt
(13.3)

Based on the form of F , we can expand the derivative,

dF

dt
=
∂F

∂q
q̇ +

∂F

∂Q
Q̇+

∂F

∂t
(13.4)
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Therefore we get

∑
pq̇ −

∑
PQ̇−H + H =

∑ ∂F

∂q
q̇ +

∂F

∂Q
Q̇+

∂F

∂t
(13.5)

By matching terms, we get

pi =
∂F

∂qi
(13.6)

Pi = −∂F
∂Q

(13.7)

H = H +
∂F

∂t
(13.8)

13.2 Simple Harmonic Oscillator

We can apply this transformation to the case of an SHO. The Lagrangian is

L =
1

2
mq̇2 − 1

2
kq2 (13.9)

Using the Hamiltonian equations, we get p = ∂L
∂q̇ = mq̇. Therefore we can write down the Hamiltonian,

H =
1

2m
(p2 +m2ω2q2) (13.10)

where ω2 = k
m . Now, we want to apply a coordinate transformation. We know that the solution is oscillating,

so we try p = f(P ) cosQ and q = f(P )
mω sinQ. We get

p2 +m2ω2q2 = f(P )2 cos2Q+ f(P )2 sin2Q = f(P )2 (13.11)

So

H =
f(P )2

2m
(13.12)

to which we apply the Hamiltonian equations again to get p = ∂F
∂q = mωq cotQ Therefore
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F =
mωq2

2
cotQ (13.13)

P = −∂F
∂Q

=
mω2q2

2

1

sin2Q
(13.14)

q =

√
2P

mω
sinQ (13.15)

p = mω

√
2P

mω
cosQ (13.16)

Finally, we can write down the Hamiltonian in the new coordinates,

H =
1

2m

(
p2 +m2ω2q2

)
=

1

2m

(
2Pmω cos2Q+mω · 2P sin2Q

)
(13.17)

The total energy is then E = H = ωP . Therefore P = E
ω , and the Hamiltonian equations give us the

time-evolution of Q simply as

Q̇ =
∂H

∂P
= ω =⇒ Q = ωt+Q0 (13.18)

Therefore, substituting in known values, we finally get

p = f(P ) cosQ =
√

2mE cos(ωt+Q0) (13.19)√
2E

mω
sin(ωt+Q0) (13.20)

13.3 Rigid Body Motion

A rigid body is a collection of mass elements fixed with respect to each other, i.e. for all elements i, j, it is
given that ~ri − ~rj is constant.

Consider a rigid body rotating about some axis with angular velocity ω. Pick a point P on the axis. Then,
the motion of the body can be described by the translation of P combined with a rotation about ~ω through
P .

The main relationship describing rigid body motion is ~v = ~ω × ~r. This describes the tangential velocity of
P . Each mass element δm has an angular momentum ~L = ~r × ~p. Summing these up, we get

~L =

∫
dm(~r × (~ω × ~r)) (13.21)

or in a system of discrete masses, we get
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~L =
∑
i

mi~ri × (ω × ~ri) (13.22)

Explicitly, the cross product being summed or integrated is

~r × (~ω × ~r) = (ω1(y2 + z2)− ω2xy − ω3xz)x̂

+ (ω2(x2 + z2)− ω3yz − ω1xy)ŷ

+ (ω3(x2 + y2)− ω1zx− ω2yz)ẑ

(13.23)

which can be translated into a matrix relationship,

L1

L2

L3

 =

∫ y2 + z2dm −
∫
xydm −

∫
zxdm

−
∫
xydm

∫
z2 + x2dm −

∫
yzdm

−
∫
zxdm −

∫
yzdm

∫
x2 + y2dm

ω1

ω2

ω3

 (13.24)

Compactly, we write this as ~L =
←→
I · ~ω, where Li = Iijωj . We note that the inertia tensor

←→
I is symmetric

and positive definite. It depends on geometry and not on
∫
ω. It is only specified after choosing an origin

and coordinate system.

For example, a point mass in a plane has ~ω = (0, 0, ω3), and z = 0. Since the first two components of
ω are zero, only the rightmost column matters, of which two of the components are zero. Therefore the
relationship reduces to

~L =

 0
0

ω3

∫
r2dm

 (13.25)

which is the familiar resut ~L = mr2ω3ẑ = mvrẑ.

The kinetic energy of a rigid body is given by T = 1
2ω

T←→I ω = 1
2ω · ~L by definition of the angular momentum

vector.

We can write everything in terms of center of mass coordinates, ~r = ~R+ ~r′. We get

~L =

∫
dm(~r × ~v) =

∫
(~R+ ~r′)× (~v + (~ω′ × ~r′))dm (13.26)

which simplifies to

~L =

∫
(~R× ~V )dm+

∫
~r′ × (~ω × ~r′)dm = M ~R× ~V + ~LCM (13.27)

Therefore the kinetic energy is
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T =
1

2
MV 2 +

1

2
~ω′ · ~LCM (13.28)

We want to find special basis vectors that diagonalize the inertia tensor. These are referred to as the principal
axes, and the diagonal elements are called the principal moments. We do this by diagonalization.
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14.1 Rigid Body Motion

We can write the kinetic energy of a rotating rigid body by the sum of its CM kinetic energy and that due
to rotation,

T =
1

2
MV 2

C +
1

2

∑
α,β

Iαβωαωβ =
1

2
MV 2

C +
1

2
~ωÎ~ω (14.1)

where the components of the inertia tensor are given by

Iα,β =

∫∫∫
ρ(~r)(r2δαβ − xαxβ)d3~r (14.2)

We can write the Lagrangian for this system,

L = T − V (~rCM , θ, ϕ, ψ) (14.3)

We can use conservation of angular momentum to gain more information about this system.

~L =
∑
i

~ri × ~pi =⇒ ~̇L =
d~L

dt
=
∑
i

~ri × ~Fi = ~N (14.4)

We can write ~Fi = mi × (~ω × ~ri), so the angular momentum is

~L =
∑
i

mi

(
~ω~r2

i − ~ri(~ω~ri)
)

(14.5)

Comparing this to the definition Lα = Iαβωβ , we see that the above is the definition of the components of
the inertia tensor.

14.2 Calculating the Inertia Tensor and Rotational Dynamics

To translate the inertia tensor from being centered around a point O to being centered around a point C,
with position vector ~R between them, the formula is
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I
(O)
ij = I

(C)
ij +M(R2δij −XiXj) (14.6)

Consider a rectangle in the x− y plane with width a and height b, rotating about its positive-slope diagonal.
In this case, we can compute the components of the inertia tensor,

Ixy = Iyx =

∫
dxdyσ0(r2δxy − xy) = 0 (14.7)

Ixz = Izx =

∫
dxdzσ0(r2δxz − xz) = 0 (14.8)

Ixx =

∫
dxdyσ0(r2 − x2) = σ0

∫
dxdyy2 =

1

12
Mb2 (14.9)

Iyy =
1

12
Ma2 (14.10)

Izz =

∫
σ0(x2 + y2)dxdy = Ixx + Iyy =

1

12
M(a2 + b2) (14.11)

In general, for any rigid body with principal axes along x, y, z, if a body rotates about any of these principal
axes (say x) then its inertia tensor is diagonal, so Lx = Ixxωx and if there is rotation only along x, then
Ly = Lz = 0.

Returning to the case of the rectangle, we write

Lx = Ixxωx = Ixxω cos θ =
1

12
Mb2ω cos θ (14.12)

Ly = Iyyωy = Iyyω sin θ =
1

12
Ma2ω sin θ (14.13)

Lz = 0 (14.14)

We can use this definition and ~ω = (ω cos θ, ω sin θ, 0) to write ~N = d~L
dt as

~N = (Ixx − Iyy)ωxωy ẑ(t) =
1

12
M(b2 − a2)ω2 ab

a2 + b2
(14.15)

Consider a cube of side a with the origin at a corner. The components of the inertia tensor can be calculated
by shifting relative to the center, ~R =

(
a
2 ,

a
2 ,

a
2

)
. (Get details later)

Cone:

~N =

(
d~L

dt

)
L

=

(
d~L

dt

)
B

+ ~ω × ~L (14.16)

From this, we find the components of ~N ,
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N1 = I1
dω1

dt
+ (I3 − I2)ω2ω3 (14.17)

N2 = I2
dω2

dt
+ (I1 − I3)ω3ω1 (14.18)

N3 = I3
dω3

dt
+ (I2 − I1)ω1ω2 (14.19)

These equations describe the rotational dynamics of the system. We can solve these as a coupled system of
differential equations to get

~ω = (A cos(Ωt+ ϕ), A sin(Ωt+ ϕ), ω3) (14.20)
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τ1 = I1ω̇1 + (I3 − I2)ω2ω3 (15.1)

τ2 = I2ω̇2 + (I1 − I3)ω1ω3 (15.2)

τ3 = I3ω̇3 + (I2 − I1)ω1ω2 (15.3)

For small perturbations around the I1 axis, we say ω2 and ω3 are small, so ω2ω3 ≈ 0. From the Euler
relations, we get ω̇1 ≈ 0, so ω1 is approximately a constant. This gives us a frequency of small oscillations
relationship in the ωs.

ω̈2 +

(
I1 − I3
I2

)
ω1ω̇3 = 0 (15.4)

ω̈2 +

(
I1 − I3
I2

)(
I1 − I2
I3

)
ω1ω2 = 0 (15.5)

Therefore we can define

Ω1 = ω1

√(
I1 − I3
I2

)(
I1 − I2
I3

)
(15.6)

which admits the solution

ω2 = AeiΩ1t +Be−iΩ1t (15.7)

We can define rotation in terms of space coordinates ~r′ and body coordinates ~r that rotate with the top. We
define angles of rotation θ, ϕ, ψ to describe this. To change the coordinate system, we first rotate about the
ẑ axis by some angle ϕ, then around the α axis (the rotated x) by some angle θ, then finally around the γ′

axis (the doubly rotated z) by some angle ψ.

x1

x2

x3

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

xy
z

 (15.8)

The overall transformation matrix is

 cosψ cosϕ− sinψ sinϕ cos θ cosψ sinϕ+ sinψ cosϕ cos θ sin θ sinψ
− sinψ cosϕ− cosψ sinϕ cos θ − sinϕ sinψ + cosψ cosϕ cos θ sin θ cosφ

sin θ sinφ − cosϕ sin θ cos θ

 (15.9)
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Recall that we previously had two sets of coordinates: space coordinates ~r′ which are fixed, and body
coordinates ~r that rotate with the body. We call the transformation between them U , so that ~r′ = U~r or
~r = U−1~r′ = Ũ~r′.

By the product rule, the velocity in space coordinates is

d~r′

dt
=
dU

dt
~r + U

d~r

dt
(16.1)

i.e. the frame rotation plus the body velocity in space coordinates. This can be rewritten as

~v′space = ~v′body + U̇~r = ~v′body + U̇ ŨU~r (16.2)

Let A = U̇ Ũ . We know that UŨ = I, so

U̇ + Ũ + U ˜̇U = 0 (16.3)

which tells us that A is antisymmetric. In terms of A, the space rotation velocity is

~v′space = ~v′body +A~r′ (16.4)

where the A~r′ term is ~ω× ~r. Using the fact that it is antisymmetric and the definition of the cross product,
we can write

A =

 0 −ω′3 ω′2
ω′2 0 −ω′1
−ω′2 ω′1 0

 (16.5)

In the Euler coordinates, with ωspace = (ω′1, ω
′
2, ω
′
3) = (A′32, A

′
13, A

′
21) and ωbody = (A32, A13, A21), we get

~ωbody =

 ω̇ cosφ+ ϕ̇ sinψ sin θ
−ω̇ sinψ + ϕ̇ cosψ sin θ

ψ̇ + ϕ̇ cos θ

 (16.6)

~ωspace =

θ̇ cosϕ+ ψ̇ sinϕ sin θ

θ̇ sinϕ− ψ̇ cosϕ sin θ

ϕ̇+ ψ̇ cos θ

 (16.7)
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Now, we can write down the kinetic energy T = 1
2~ω · (I · ~ω). Consider a symmetric top with I1 = I2 = I and

a distinct I3, so that we get

T =
1

2
I(ω2

1 + ω2
2) +

1

2
I3ω

2
3 (16.8)

Substituting in the ωi values from above and simplifying, we get

T =
I

2
(θ̇2 + ϕ̇2 sin2 θ) +

I3
2

(ψ̇ + ϕ̇ cos θ)2 (16.9)

Also, assume we have gravity, so that V = mgl cos θ. This gives us a Lagrangian. We calculate the generalized
momenta in terms of the coordinates θ, ϕ, ψ. Since the potential energy only has θ dependence, ϕ and ψ are
ignorable so their momenta are conserved.

pψ =
∂L
∂ψ̇

= I3(ψ̇ + ϕ̇ cos θ) = I3ω3 (16.10)

pϕ =
∂L
∂ϕ̇

= Iϕ̇ sin2 θ + I3(ψ̇ + ϕ̇ cos θ) cos θ (16.11)

Define a = I3ω3

I and b =
pϕ
I = ϕ̇ sin2 θ + a cos θ. Both of these are conserved.

The total energy is

E = T + V =
I

2
(θ̇2 + ϕ̇2 sin2 θ) +

I3ω
2
3

2
+mgl cos θ (16.12)

which we can express in terms of the parameters we introduced by substituting in ϕ̇ = b−a cos θ
sin2 θ

, and by
dropping the I3ω

2
3/2 term (because it is constant, equal to angular momentum). We get

E′ =
I

2
θ̇2 +

I

2

(b− a cos θ)2

sin2 θ
+mgl cos θ (16.13)

Call the second and third terms combined Veff (θ). We can solve for θ in the same way as the central force,

but it may be easier to introduce a quantity u = cos θ =⇒ u̇ = − sin θθ̇. The energy equation then gives us

α(1− u2) = u̇2 + (b− au)2 + βu(1− u2) (16.14)

where α = 2E′

I and β = 2mgl
I .
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Consider the simple case of a Lagrangian with one coordinate,

L =
1

2
mẋ2 − V (x) (17.1)

Solving the Euler-Lagrange equations, we get (by now predictably)

mẍ = −∂V
∂x

(17.2)

Consider a stationary point x0. A stationary point is one at which if ẋ0 = 0 then ẋ = 0. At x0, ∂V
∂x = 0.

We can also consider stability around a stationary point. Consider a point x1 in a potential well, and x2 at
a potential peak. We can analyze stability by perturbing a coordinate and plugging it into the Lagrangian,

x = xi + δx (17.3)

L =
1

2
mδẋ2 − V (xi + δx) (17.4)

Expanding, we get

L =
1

2
mδẋ2 − V (xi)−

(
∂V

∂x

)
x=xi

δx− 1

2

(
d2V

dx2

)
x=xi

δx2 (17.5)

We drop the V term as it is a constant, and we drop the first derivative in V because it is 0 by definition.

L =
1

2
mδẋ2 − 1

2

(
d2V

dx2

)
x=x2

δx2 (17.6)

This is the form of a harmonic oscillator, with a solution δx = Ae−iωt where ω2 = 1
m

(
d2V
dx2

)
x=xi

.

We can consider a more complicated case, with generalized coordinates q = {qi}i=1,...,N . The kinetic energy
is

T =
1

2

∑
Tikq̇iq̇k (17.7)
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This can be derived from the known expression for kinetic energy,

T =
1

2

∑
i

mi
~̇ri(qk) (17.8)

T =
1

2

∑
i,α,β

mi
∂~ri
∂qα

∂~ri
∂qβ q̇αq̇β

(17.9)

T =
1

2

∑
α,β

(∑
i

mi
∂~ri
∂qα

∂~ri
∂qβ

q̇αq̇β

)
(17.10)

From the kinetic energy, we subtract a generic V (q) to make a Lagrangian. Solving the E-L equations in
each qα, we get

∑
k

Tαkq̈k =
∂L
∂qα

= − ∂V
∂qα

(17.11)

For a point to be stationary, you need ∂V
∂qα

= 0 for all α. (Notes: Tik = Tki, and Tik = Tik(q)). The above
expression assumed Tik constant, so the expression changes slightly with the coordinate dependence,

d

dt

[∑
k

Tαkq̇k

]
=

1

2

∑
i,k

∂Tik
∂qα

q̇iq̇k −
∂V

∂qα
(17.12)

We can expand the left side as
∑
k,p

∂Tα,k
∂qp

q̇pq̇k +
∑
k Tαkq̈k, and cause a first-order perturbation in qi to get

L =
1

2

∑
i,k

mikq̇iq̇k −
1

2

∑
ik

Vikqiqk (17.13)

mik, Vik are constants. The equations of motion that we get out of this Lagrangian are
∑
kmαkq̈k =

−
∑
k Vαkqk. This is essentially a generalization of mẍ = −kx.

Using this, we can solve systems like the double pendulum. Consider a double pendulum with masses m on
both arms and a length l of both. We describe the positions of both masses and the kinetic energy from
that,

~r1 = 〈l sinϕ1,−l cosϕ1〉 (17.14)

T1 =
1

2
mẋ2

1 =
1

2
ml2ϕ̇2

1 (17.15)

~r2 = 〈l sinϕ1 + l sin(ϕ1 + ϕ2),−l cosϕ1 − l cos(ϕ1 + ϕ2)〉 (17.16)

T2 =
1

2
m
(
l2ϕ̇2

1 + l2(ϕ̇1 + ϕ̇2)2 + 2l2ϕ̇1(ϕ̇1 + ϕ̇2) cosϕ2

)
(17.17)

and we also write the gravitational potential energy,
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V = −mgl(2 cosϕ1 + cos(ϕ1 + ϕ2)) (17.18)

The only stable stationary points, from the equation ∂V
∂ϕi

= 0, are ϕ1 = ϕ2 = 0. We can see this mathemat-
ically by expanding the expression for kinetic energy to get linear combinations of pairs of coordinates. We
get

T =
1

2
ml2

(
(3 + 2 cosϕ2)ϕ̇2

1 + ϕ̇2
2 + 2ϕ̇1ϕ̇2(1 + cosϕ2)

)
(17.19)

We see that T11 = (3 + 2 cosϕ2)ml2, T12 = T21 = (1 + cosϕ2)ml2, T22 = ml2. Similarly we write out the
potential energy in terms of paired coordinates, V = 1

2mgl(3ϕ
2
1 + 2ϕ1ϕ2 + ϕ2

2). At the stationary point,
we can simplify the kinetic energy to T = 1

2ml
2
(
5ϕ̇2

1 + 4ϕ̇1ϕ̇2 + ϕ̇2
2

)
. Finally, this allows us to write out a

Lagrangian,

L =
1

2

(
5ϕ̇2

1 + 4ϕ̇1ϕ̇2 + ϕ̇2
2

)
− 1

2

g

l
(3ϕ2

1 + 2ϕ1ϕ2 + ϕ2
2) (17.20)

Using this, we can write out matrices specifying the system’s mass and potential constants,

mik = m

[
5 2
2 1

]
(17.21)

Vik = mgl

[
3 1
1 1

]
= ml2ω2

0

[
3 1
1 1

]
(17.22)

We can solve this as a system of differential equations. Recall that the solutions for stable coordinates were
completely oscillatory, qk = Ake

−iωt. From the equation we derived for the generic case previously, we get
(−ω2mαk + Vαk)Ak = 0. In a matrix form this is ||V̂ − ω2m̂|| = 0. This has N solutions for ω2, which we
will call ωs. We get

∑
k

(−ω2
smik + Vik)A

(s)
k = 0 (17.23)

ω2
s =

VikA
(s)
i

mikA
(s)
i A

(s)
k

(17.24)

Having found these eigenvalues, we make a generic linear combination to get the coordinates,

qk =

N∑
s=1

CsA
(s)
k e−i(ωst+ϕs) (17.25)

From the earlier determinant relation, we get
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∣∣∣∣3ω2
0 − 5ω2 ω2

0 − 2ω2

ω2
0 − 2ω2 ω2

0 − ω2

∣∣∣∣ = 0 (17.26)

We get ω2
1 = (2+

√
2)ω2

0 and ω2
2 = (2−

√
2)ω2

0 . These are eigenvalues, for which we can find the corresponding
eigenvectors. For ω1, this is

[
A

(1)
1

A
(1)
2

]
=

[
1−
√

2
1

]
(17.27)

and for ω2, this is

[
A

(2)
1

A
(2)
2

]
=

[
1 +
√

2
1

]
(17.28)
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Recall that last time, we expressed the Lagrangian of any system in terms of generalized coordinates and
wrote a generic component-wise expression for it in terms of kinetic and potential energy components:

L =
1

2

∑
i,k

mikq̇iq̇k −
1

2

∑
i,k

Vikqiqk (18.1)

We can write down the Hamiltonian,

H =
∑

pj q̇j − L =
∑
j

∂L
∂q̇j

qj − L (18.2)

which requires that we write down the generalized momenta,

∂L
∂q̇j

=
∂

∂q̇j

1

2

∑
i,k

Tikq̇iq̇k

 =
1

2

∑
Tikδij q̇k +

1

2

∑
Tikq̇iδkj (18.3)

This can be simplified to

pj =
1

2

∑
Tjiq̇i +

1

2

∑
Tij q̇i =

∑
i

Tij q̇i (18.4)

Then the Hamiltonian is

H =
∑

Tij q̇iq̇j −
1

2

∑
Tij q̇iq̇j + V (q) =

1

2

∑
Tik(q)q̇iq̇k + V (q) (18.5)

Then the Hamiltonian is just the sum of kinetic and potential energies, H = T + V = 1
2

∑
mikq̇iq̇k +

1
2

∑
Vikqiqk.

To examine stability of a start point q(0), perturb each individual coordinate by some ηi. The condition for
stability, i.e. for oscillation or decay of the perturbation, turns out to be

∑
Vikqiqk > 0.

By solving the previous eigenvalue equation, i.e. (V̂ − ω2m̂) ~A = 0, we get the normal-mode frequencies,

ω2
s =

∑
VikA

∗(s)
i A

(s)
k∑

mikA
∗(s)
i A

(s)
k

(18.6)
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Again we cause a perturbation in each coordinate. If Vikηiηk > 0∀ηi where ||η|| 6= 0 then the stability
condition is met. (why?)

For any ω2
s 6= ω2

α, we should get
∑
i,kmikA

(α)
i A

(s)
k = 0.

Having found the normal-mode frequencies, we can write down the normal modes,

qk =
∑
s

CsA
(s)
k e−iωst (18.7)

where Cs may be complex, Cs = |Cs|eiϕs . We can apply this normal-mode construction to physical systems.
Consider two springs of spring constant K, with masses m at the extreme ends and a mass M connecting
the two in the middle. The Lagrangian for this system is

L =
1

2
(mẋ2

1 +Mẋ2
2 +mẋ2

3)− 1

2

(
K(x2 − x1)2 +K(x3 − x2)2

)
(18.8)

which allows us to write the m and V matrices,

mik =

m 0 0
0 M 0
0 0 m

 (18.9)

Vik = K

 1 −1 0
−1 2 −1
0 −1 1

 (18.10)

The determinant equation is then

∣∣∣∣∣∣
K − ω2m −K 0
−K 2K − ω2M −K

0 −K K − ω2m

∣∣∣∣∣∣ = 0 (18.11)

which admits the solutions ω = 0, ω2 = K
m , ω

2 = K
m

(
1− 2mM

)
. We can substitute these back in to find the

corresponding eigenvectors (but they’re on the far board and I’m too lazy to do it myself.) Eventually we
get the amplitudes A1 = A3 and A2 = −2mMA1.

Consider N masses in a line separated by equilibrium distance d and with tension τ pulling each mass

up or down by an amount yi. The force in x is Fx = τ cosα − τ cosβ ≈ τ
(
α2

2 −
β2

2

)
, and that in y is

Fy = τ sinα+ τ sinβ. The angles can be found geometrically by

sinαk−1 =
yk−1 − yk√

d2 + (yk − yk−1)2
≈ yk − yk−1

d
(18.12)

sinβk−1 ≈
yk−1 − yk−2

d
(18.13)
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The final Lagrangian is

L = T − V =
1

2
m
∑
k

ẏ2
k −

N∑
k=0

τ

2d
(yk − yk+1)

2
(18.14)
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Consider the Lagrangian from last time,

L =
1

2

∑
i,k

mikẏkẏi −
1

2

∑
i,k

Vikyiyk (19.1)

where mik = mδik, i.e. the identity matrix, and Vik = τ
d


−2 −1 0 . . . 0
−1 2 −1 . . . . . .
. . . . . . . . . . . . . . .
0 . . . 0 −1 2

 k.

We get this matrix by taking derivatives on the k-th part of the potential,

V =
1

2

(τ
d

(yk − yk+1)2 +
τ

d
(yk − yk−1)2

)
(19.2)

V =
1

2

τ

d
(2y2

k − 2ykyk+1 − 2ykyk−1 + y2
k+1 + y2

k−1) (19.3)

∂V

∂yk
=

1

2

τ

d
(4yk − 2yk+1 − 2yk−1) (19.4)

∂2V

∂y2
k

= 2
τ

d
(19.5)

∂2V

∂yk∂yk+1
= −τ

d
(19.6)

Then, we want to solve the eigenvalue equation ||V̂ − ω2m̂|| = 0. We end up getting 2 − ω2

ω2
0

all along the

diagonals, −1 in the positions one place off from the diagonal, and 0 everywhere else.

For the case N = 2 this ends up giving us ω = ω0 and ω =
√

3ω0. For the case N = 3 this gives us ω = ω0

√
2

and ω = ω0

√
2±
√

2. Here ω2
0 = τ

md .

In general, for the Nth-order eigenfrequencies, we can compute the determinant Λn denoting the determinant

||V̂ − ω2m̂||. We get Λ1 = x (where we take x = 2− ω2

ω2
0
) and ΛN = xΛN−1 − ΛN−2.

In general we can solve the equation of motion for the k-th mass with the assumption yk = Ak cos(ωt+ ϕ)
where we assume Ak = ei(kγ+δ) where γ is a constant. Then we get

mÿk =
∂L
∂yk

= −τ
d

(yk − yk+1)− τ

d
(yk − yk−1) (19.7)

ω2Ak = ω2
0(Ak −Ak+1) + ω2

0(Ak −Ak−1) (19.8)

ω2 = ω2
0(1− eiγ) + ω2

0(1− e−iγ) (19.9)

ω2 = 4ω2
0 sin2 γ

2
(19.10)
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We further constrain this at the endpoints, y0 = yN+1 = 0. To fit both of these we get γ = πn
N+1 where

n = 1, . . . , N , and δ = π
2 ,

3π
2 . Then we get ωn = 2ω0

∣∣∣sin( πn
2(N+1)

)∣∣∣.
In the limit where there is an infinite number of particles, N →∞ and d,m→ 0. Here the eqation for the k-
th mass becomes a continuous equation y(x, t). In the limit, we can rewrite the difference yk−yk+1 ≈ yk+ 1

2
d;

we get

∂2y

∂t2
= ω2

0 ·
∂yk+1/2

∂x
d− ω2

0

∂yk−1/2

∂x
d (19.11)

∂2y

∂t2
= ω2

0d
2 ∂

2y

∂x2
(19.12)

This is the wave equation with c2s = τ
m/d .

To solve this, we assume separable solutions y = A(x) cos(ωt+ ϕ). Substituting into the equation, we get

A′′(x) + ω2

c2s
A(x) = 0. With the boundary conditions y(x = 0) = y(x = L) = 0, we get a sinusoidal form for

A, namely A = asin
(
ω
cs
x
)

where ω = nπ
L cs.

These are standing wave solutions to the wave equation. It is also possible to have traveling-wave solutions
of the form y = Aei(ωt−kx).

It is also possible to write down a Lagrangian in this continuous case,

L[y] =
1

2

∫ L

0

ρ(x)

(
∂y

∂t

)2

dx− 1

2

∫
dxτ(x)

(
∂y

∂x

)2

(19.13)

or, as a function of the discrete case,

L[y] =

∫
dxL(y, ∂xy, ∂ty, x, t) (19.14)

L =
1

2
ρ(x)

(
∂y

∂t

)2

− 1

2
τ(x)

(
∂y

∂x

)2

(19.15)

We refer to L here as the Lagrange density. From the principle of least action we know that δ
∫ t2
t1
Ldt = 0,

from which we can say that

δ

∫ t2

t1

L[y]dt = 0 (19.16)

δ

∫ t2

t1

∫
D

L(x, t, y, ∂xy, ∂ty) = 0 (19.17)∫ t2

t1

∫
D

dxdt [L(x, t, y + δy, ∂xy + ∂xδy, ∂ty + ∂tδy)− L(x, t, y, ∂xy, ∂ty)] = 0 (19.18)

Taking partial derivatives, we get
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∫∫
dxdt

∂L
∂y

δy −
∫∫

dxdt
∂

∂x

(
∂L
∂∂xy

)
δy −

∫∫
dxdt

∂

∂t

(
∂L
∂∂ty

)
δy = 0 (19.19)

Using integration by parts, we can simplify this case (somehow) to

ρ(x)
∂2y

∂t2
=

∂

∂x

(
τ(x)

∂y

∂x

)
(19.20)

Similarly to the Lagrangian density, we can define a Hamiltonian density. Recall that H = p∂ty − L =
∂L
∂∂ty

∂ty − L. We differentiate this in time to get

∂H
∂t

=
∂

∂t

(
∂L
∂∂ty

)
∂ty +

∂L
∂∂ty

∂2y

∂t2
− ∂L
∂t
− ∂L
∂y

∂y

∂t
− ∂L
∂∂xy

∂t

(
∂y

∂x

)
− ∂L
∂∂ty

∂2y

∂t2
(19.21)

Simplifying significantly, we get a density in time,

∂H
∂t

= −∂L
∂t
− ∂

∂x

[
∂L
∂∂xy

∂y

∂t

]
(19.22)

In the case with no time dependence, we get ∂H
∂t = −∂S∂x where S = ∂L

∂∂xy
∂y
∂t = ρ(x) ∂y∂x

∂y
∂t is the Poynting flux.
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Let ζ = x− cst and let η = x+ cst represent the perturbations to y(x, t) → y(ζ, η). Taking derivatives, we
get that

∂2y

∂x2
=
∂2y

∂ζ2
+ 2

∂2y

∂ζ∂η
+
∂2y

∂η2
(20.1)

and

∂2y

∂t2
= c2s

∂2y

∂ζ2
− 2cs

∂2y

∂ζ∂η
+ c2s

∂2y

∂η2
(20.2)

Therefore, substituting into the wave equation, we see that ∂2y
∂ζ∂η = 0, i.e. y =

∫
f(η)dη
f(η) + g(ζ). We get a

solution that is of the form of a traveling wave,

y(x, t) = f(x− cst) + g(x+ cst) (20.3)

These are arbitrary functions determined by intial conditions. At t = 0, y0(x) = f(x) + g(x) and dg
dx −

df
dx =

1
cs
ẏ0(x). These give us

g(x)− f(x) =
1

cs

∫ x

x0

y0(x′)dx′ + g(x0)− f(x0) (20.4)

which allows us to isolate for both perturbations individually,

f(x) =
1

2
y0(x) +

1

2cs

∫ x

x0

y0(x′)dx′ −A0 (20.5)

g(x) =
1

2
y0(x) +

1

2cs

∫ x

x0

y0(x′)dx′ (20.6)

So the general solution ends up being

y(x, t) =
1

2
[y0(x− cst) + y0(x+ cst)] +

1

2cs

∫ x+cst

x−cst
ẏ0(x′)dx′ (20.7)

In general, for an arbitrary number of dimensions, the wave equation generalizes to the Helmholtz equation,
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~∇
2
A(~r) +

ω2

c2s
A(~r) = 0 (20.8)

for a standing wave of the form ψ(~r, t) = A(~r)e−iωt. The wave can be expanded into a Fourier series; we
find the cosine and sine coefficients are

an =
2

L

∫ L

0

ψ(x, 0) sin
(πn
L
x
)
dx (20.9)

bn =
2

Lωn

(
∂ψ

∂t

)
t=0

sin
(πn
L
x
)
dx (20.10)

For the magnitude, assume it is separable into A(x, y) = X(x)Y (y), and taking derivatives gives us

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
+
ω2

c2s
= 0 (20.11)

Let’s say X ′′(x) = −λX(x) and Y ′′(y) = −µY (y). This gives us ω2

c2s
= λ+µ, so ωnm = cs

π
L

√
n2 +m2 where

n,m = 1, . . . ,∞.

In two-dimensional polar coordinates, it turns out we only have radial dependence and we can explicitly
solve for the ϕ dependence:

A(r, ϕ) = R(r)× e−imϕ (20.12)

Substituting into the Helmholtz equation and using the del operator for polar coordinates, we get

R′′(r) +
1

r
R′(r) +

(
ω2

c2s
− m2

r2

)
R = 0 (20.13)

This is the Bessel equation. Its solutions are represented as R = Jm

(
ω
cs
r
)

. Therefore we get

ψnm = Jm

(
ωnm
cs

r

)
×
[
cos(mϕ)
sin(mϕ)

]
× e−iωnmt (20.14)

(the above is not a matrix, it means that either one can be selected. It’s weird notation.)

We generalize this to having r and z dependence; we get

R′′ +
1

r
R′ − m2

r2
R+

ω2

c2s
R−

(πn
L

)2

R = 0 (20.15)

where we found using the assumption of a constant Z ′′/Z that Z = sin
(
πn
L z
)
.
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Consider a system of two springs, one attached at a wall at y = −l and one attached at a wall at y = l, and
both attached to a mass on the x axis. The springs’ relaxed length is l0, so we can write down a potential.

U =
1

2
k
(√

x2 + l2 − l0
)2

× 2 (21.1)

We Taylor expand this to fourth order,

U(x) = U(0) +
∂U

∂x

∣∣∣∣
x=0

x+
1

2

∂2U

∂x2

∣∣∣∣
x=0

x2 +
1

6

∂3U

∂x3

∣∣∣∣
x=0

x3 +
1

24

∂4U

∂x4

∣∣∣∣
x=0

x4 (21.2)

Computing each term, we get

U(0) = k(l − l0)2 (21.3)

∂U

∂x
= 2k

(
x− xl0√

l2 + x2

)
(21.4)

∂2U

∂x2
= 2k

(
1− l0l

2

(l2 + x2)3/2

)
(21.5)

∂3U

∂x3
= 6kl0l

2(x2 + l2)−3/2x (21.6)

∂4U

∂x4
= 6kl0l

2

(
−5

2
(x2 + l2)3/2(2xk) + (x2 + l2)−5/2

)
(21.7)

Therefore, substituting in x = 0 to each of these, we get

U(x) ≈ U(0) + k

(
1− l0

l

)
x2 +

1

4

kl0
l3
x4 + . . . (21.8)

and the force is

F = −∂U
∂x

= −2k

(
1− l0

l

)
x− kl0

l3
x3 + . . . (21.9)

The equation of motion is therefore

mẍ+ 2βmẋ+ 2k

(
1− l0

l

)
x+

kl0
l3
x3 = f(t) (21.10)
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This allows us to construct phase-space plots of the energy E = 1
2 ẋ

2 + 1
2x

2 + 1
4x

4. For a hard spring, with

keff = 2k
(
1− l0

l

)
> 0, the phase-space energy plots of ẋ against x with contours as the fixed energy states,

we approximately get rounded squares. For a soft spring, we try and analytically find equilibrium states; we
get

x0 = ±
√

2
l3/2

l0

(
1− l0

l

)1/2

(21.11)

Therefore we get phase-space plots of roughly intersecting circles centered around these two points on the x
axis with ẋ = 0, eventually creating figure-eight type constant-energy contours.

We can try a Fourier expansion of the differential equation, with quality and nonlinearity constants replacing
the physical constants in the problem. We look for solutions to ẍ + ẋ

Q + x + εx3 = f(cosωt), in the limit

Q→∞ so that there is no damping, of the form x(t) =
∑
nAn(ω) cosnωt.

Solving for the Fourier coefficients, we get (1−ω2)A1 + ε 3
4A

3
1 = f and (1− 9ω2)A3 + ε 1

4A
3
1 = 0. This allows

us to define a phase-space plot for A1 against ω.

We do the same thing for the case of finite Q, which gives us

a

(
1− ω2 +

3ε

4
(a2 + b2)

)
+
bω

Q
= f (21.12)

b

(
1− ω2 +

3ε

4
(a2 + b2)

)
− aω

Q
= 0 (21.13)

In both r ≡
√
a2 + b2 against ω and A1 against ω, there is a region with one solution per ω and there is a

region with three solutions per ω at higher frequencies.
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22.1 Extending an Oscillator Model

Consider a pendulum with arbitrarily distributed mass under gravity, with its CM at a length d and angle θ
relative to the y axis (straight down). The torque is τ = mgd sin θ. The position vector to any point on the
distributed mass is

~r = r(ŷ cos(θ + ϕ) + x̂ sin(θ + ϕ)) (22.1)

The velocity is

~v =
dθ

dt

dr

dt
= θ̇r(−ŷ sin(θ + ϕ) + x̂ cos(θ + ϕ)) (22.2)

The angular momentum is

~L = −θ̇ẑ
∫
r2dm (22.3)

Therefore, we can write the equation of motion as

θ̈ +
mgd

I
sin θ = 0 (22.4)

We can define the radius of gyration r0 =
√

I
m to reduce this to something like the usual form of a pendulum,

θ̈ +
gd

r2
0

sin θ = 0 (22.5)

Under the small-angle approximation, this is just the form of a simple harmonic oscillator. Consider the
third-order term, so that the equation of motion is

θ̈ +
gd

r2
0

(
θ − 1

6
θ3

)
= 0 (22.6)
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We can write down the energy of the system,

E =
1

2
Iθ̇2 +mgd(1− cos θ) (22.7)

and for a fixed value of energy we can write down θ̇,

θ̇ = ±
√

2

I
(E −mgd(1− cos θ)) (22.8)

At the peak, the system energy is entirely potential, so we can substitute in for E and use trig identities to
get

dθ

dt
= ±

√
4

I
mgd

(
sin2 θ0

2
− sin2 θ

2

)
(22.9)

This allows us to solve for θ(t),

∫
dt =

∫
dθ

θ̇
(22.10)

t =
2r0√
gd

∫ θ0

0

dθ(
sin2 θ0

2 − sin2 θ
2

)1/2 (22.11)

This is an elliptic integral, which we try solving by substituting k = sin θ0
2 and kz = sin θ

2 . Then expanding

out (1− k2z2)−1/2 we get

t =
4r0√
gd

∫ 1

0

dz√
1− z2

+
1

2
k2

∫ 1

0

z2dz√
1− z2

+ . . . (22.12)

We get

t =
2πr0√
gd

(
1 +

1

4
sin2 θ0

2
+ . . .

)
(22.13)

22.2 Perturbation Theory

Consider a force of the form

F = −kx+ λmx2 (22.14)
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where λ is a small perturbation. We want an x(λ, t) that satisfies ẍ + ω2
0x − λx2 = 0. We say x(λ, t) =

x0(t) + λx1(t) + λ2x2(t).

We get

ẋ = ẋ0 + λẋ1 + . . . (22.15)

ẍ = ẍ0 + λẍ1 + . . . (22.16)

ẍ0 + λ1ẍ1 + ω2
0(x0 + λx1)− λ(x0 + λx1)2 = 0 (22.17)

ẍ0 + ω2
0x0 + λẍ1 + ω2

0λx1 − λx2
0 − 2λ2x0x1 − λ3x2

1 = 0 (22.18)

We split this up and eventually get

x(t) = A cosω0t−
λA2

6ω2
0

(cos(2ω0t)− 3) (22.19)

22.3 Fluid Turbulence

To first order, the eigenvalues of a fluid mechanical system can be approximated by a system of oscillators,
but this does not take into account the different length scales of fluid motion. We can plot power against
k, the spatial frequency, and use the fact that the energy transfer ratio is constant in the inertial regime to

define ε = δv2

τ . Based on further conservation laws, we get ω1 = ω2 + ω3 and ~k1 = ~k2 + ~k3.
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Consider a transformed Hamiltonian H̃ = H+ ∂F
∂t . Then we define momenta pi = ∂F

∂qi
and Pi = − ∂F

∂Qi
. Let F

be the generating function for this transformation. For example, say S = qP is the generating function. Then
p = ∂S

∂q = P and Q = ∂S
∂P = q. This is the identity transformation. Perturb this to create an infinitesimal

transformation,

S = qP + εG(q, P, t) (23.1)

H̃ = H+
∂S

∂t
(23.2)

Then the momenta are

p =
∂S

∂q
(23.3)

Q =
∂S

∂P
(23.4)

We want to find P (ε) ≈ P (0) + ε ∂P∂ε
∣∣
ε=0

and Q(ε) = Q(0) + ε ∂Q∂ε

∣∣∣
ε=0

.

p =
∂S

∂q
= P + ε

∂G

∂q
(23.5)

dp

dε
≈ dP

dε
+
∂G

∂q
+ ε

d

dε

(
∂G

∂q

)
(23.6)

At ε = 0, this gives us

dP

dε

∣∣∣∣
ε=0

= −∂G
∂q

(23.7)

This suggests that we let our generating function G(q, p, t) be the Hamiltonian. Then we get

P ≈ p− ε∂H
∂q

(23.8)

Q ≈ q + ε
∂H
∂p

(23.9)

This ends up propagating the system through time:
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Pεp+ εṗ = p+
dp

dt
dt = p(t+ dt) (23.10)

Q ≈ q + εq̇ ≈ q +
dq

dt
dt ≈ q(t+ dt) (23.11)

Consider a function u(Q,P, t) under infinitesimal canonical transformations.

du

dε

∣∣∣∣
ε=0

=

(
∂u

∂Q

∂Q

∂ε
+
∂u

∂P

∂P

∂ε

)
ε=0

(23.12)

Therefore, for a first-order Taylor expansion of u, we get

u(t) = u(q, p, t) + ε

(
∂u

∂q

∂G

∂p
− ∂u

∂p

∂G

∂q

)
(23.13)

The bracketed term is called the Poisson bracket [u,G]. We get this by replacing q̇ and ṗ in the chain rule
expansion of du

dt by derivatives of the Hamiltonian, using Hamilton’s equations of motion. In a simplified
form, we get

du

dt
= [u,H] +

∂u

∂t
(23.14)

Poisson brackets have the properties that [u, v] = −[v, u], that [u, u] = 0, and that [u, c] = 0 for any constant
c. Poisson brackets are linear:

[(u1 + u2), v] = [u1, v] + [u2, v] (23.15)

[u1u2, v] = u1[u2, v] + [u1, v]u2 (23.16)

There is also the Jacobi identity on Poisson brackets:

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 (23.17)

We can use Poisson brackets to show that something is a conserved quantity: if du
dt = [u,H] = 0 for some

quantity u, then u is conserved over time. Suppose there are two such conserved quantities u, v. Then

d

dt
([u, v]) = [[u, v], H] = −[[v,H], u]− [[H,u], v] = 0 (23.18)

so [u, v] is another conserved quantity!


