
Physics 110A: Electromagnetism and Optics Spring 2019

Lecture 1: Introduction
Lecturer: Matthias Reinsch January 23 Aditya Sengupta

Note: LATEX format adapted from template courtesy of UC Berkeley EECS dept.

Note: these lecture notes follow the Griffiths conventions of representing vectors instead of the typical ones,
for example, the use of x instead of ~x for a vector. This is because the homework uses this notation as well
as the book.

1.1 Logistics

Pages 1-30 of Griffiths are to be done by Friday (Jan 25), Homework 1 is due two Mondays from now (Feb
4), but every other homework assignment will be due on Friday at 3:15.

Midterm 1 is on March 1, and Midterm 2 is on April 12. Both are during the lecture time. Office hours are
Monday 11-12 and Thursday 9-10.

1.2 Cross product and curl

These are fundamental to describing magnetic fields. We will show that if you take a small parcel of fluid,
over a short time interval, it will have some angular momentum about its center of mass. Divide that by its
moment of inertia and that is its curl (after correcting for a to-be-explained factor of 2).

1.2.1 Notation

We start with the classical notion of a vector field,

v = (vx, vy, vz) = vxx̂ + vyŷ + vz ẑ (1.1)

where the typical convention of right-handed Cartesian coordinates is followed, and where subscripts are
components instead of partial derivatives.

For the cross product, the explicit formula is slightly complicated, so the following abuse of notation is often
used:

v ×w =

∣∣∣∣∣∣
x̂ ŷ ẑ
vx vy vz
wx wy wz

∣∣∣∣∣∣ (1.2)

This is a mnemonic. (Much like the word mnemonic, the cross product is not commutative.) This is an
abuse of notation because vectors are not supposed to be elements of a determinant. This is interpreted as
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the typical determinant algorithm. Essentially, it forms a linear combination of the top-row vectors. This
notation makes sense if we assume that the result of the determinant will be dotted with a third vector,

u · (v ×w) =

∣∣∣∣∣∣
ux uy uz
vx vy vz
wx wy wz

∣∣∣∣∣∣ (1.3)

This is the scalar triple product of three vectors.

To appreciate the curl, we first consider the del operator:

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(1.4)

This is an operator, which means we should probably give it something to operate on. Consider the gradient
of T (x, y, z), ∇T . This is a vector field. Two new operations arise due to the del operator: divergence and
curl. The divergence is denoted by the dot product,

∇ · v =
∂

∂x
vx +

∂

∂y
vy +

∂

∂z
vz (1.5)

and the curl by the cross product,

∇× v =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

vx vy vz

∣∣∣∣∣∣ (1.6)

1.2.2 Examples

1.2.2.1 Rigid rotation

Define a velocity vector field,

v(r) = ω × r (1.7)

The vector ω gives us the axis of rotation and the angular velocity. Choose the axis of rotation to be parallel
to the z axis, i.e. ω = (0, 0, ωz). Taking the cross product with (x, y, z), we get v = (−yωz, xωz, 0). Then,
take the curl, and we get

∇× v = 2ω (1.8)
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Physics 110A: Electromagnetism and Optics Spring 2019

Lecture 2: Math Review
Lecturer: Matthias Reinsch January 25 Aditya Sengupta

2.1 The Del Operator

The del operator is defined as

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(2.1)

Both of these representations are used in the book.

2.2 Product Rules

Consider the single-variable product rule,

d(f(x)g(x))

dx
= f(x)

dg(x)

dx
+ g(x)

df(x)

dx
(2.2)

This can be easily extended to multiple dimensions, where we consider functions f(r) and g(r):

∇(fg) = f∇g + g∇f (2.3)

When we consider cross products, the expression we want to simplify becomes ∇× (A×B), the curl of the
cross-product vector field. The result is

∇× (A×B) = (B ·∇)A + A(∇ ·B)− (A ·∇)B−B(∇ ·A) (2.4)

The (A ·∇) terms can be considered directional derivatives, where the weights of ∂
∂x ,

∂
∂y ,

∂
∂z are given by the

vector A. The other type of term involves finding the divergence of a vector, and multiplying the resultant
scalar by a different vector. Therefore we get a sum of vectors as the result, as we expect for the curl of a
vector.

2.3 Application

We know that
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v(r) = ω × r (2.5)

Note that ω does not have to be a constant vector. To make use of the product rule, in order to find the
curl of v, we need to extend this to give some credence to the notion of a derivative of ω. To do this, we
make ω(r) = (ωx, ωy, ωz)∀r ∈ R3, changing it slightly from a constant vector to a constant vector field.

∇× v = ∇× (ω × r) = ω(∇ · r)− (ω ·∇)r = 3ω − (ωx, ωy, ωz) = 2ω (2.6)

Note that the two terms involving divergence and curl of ω vanish because it is a constant vector field. Also
note that we used the fact that ∇ · r = 3, which gives us the first term. More explicitly, the second term is
given by

(ω ·∇)r =

(
ωx

∂

∂x
+ ωy

∂

∂y
+ ωz

∂

∂z

)
(x, y, z) = (ωx, ωy, ωz) = ω

2.4 Parameterizing Integrals

The Fundamental Theorem for Gradients helps us to parameterize integrals. Consider an integral

∫ b

a

(∇T ) · dl = T (b)− T (a) (2.7)

where a and b are position vectors identifying points, with some arbitrary path between them. Subdivide
this path into a set of small displacements dl. Each of these is a vector that is the same as dr, that is,
(dx, dy, dz).

2.4.1 Parameterized Curves

We select a parameter λ as the input to a function (the parameterization) describing the curve, r(λ). This
defines a λ axis that is only logically, and not spatially, connected, to the 3D space graph.

As an example, consider the unit circle in the x − y plane, r(λ) = (cosλ, sinλ, 0). For every value of λ, we
get a point in space. In this way we can translate a multivariate integral into a single-variable integral along
the λ axis,

∫ λ2

λ1

(∇T )
dr

dλ
dλ (2.8)

4



Physics 110A: Electromagnetism and Optics Spring 2019

Lecture 3: Fundamental Theorems of Vector Calculus
Lecturer: Matthias Reinsch 28 January Aditya Sengupta

3.1 Fundamental Theorem for Gradients

The Fundamental Theorem for Gradients can be stated as follows:

∫ b

a

(∇T ) · dl = T (b)− T (a) (3.1)

Consider an arbitrary path through 3D space (that may intersect itself). Integrating a vector field along
this path requires a differential element of that vector field, which can be found via a scalar product with a
differential element of the path,

dT = (∇T ) · dl (3.2)

This is the first term in a higher-dimensional Taylor series.

Figure 1.39 on page 41 of Griffiths provides an example of a 3D object over which an integral can be done:
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Note that the north pole of the sphere, i.e. where the z axis punctures the sphere, is not quite at the same
point as the horizon. The equator passes through the points where the x and y axes puncture the sphere,
and the meridians go radially down from the north pole to the south pole (the two ends where the z axis
punctures the sphere).

This surface is orientable, i.e. it has a clear inside and outside, meaning we can parameterize its area for an
integral. Here the normal vector to the surface points radially outwards, n̂ = r̂. A differential area element
da1 is a vector with the orientation n̂ = r̂ and with magnitude equal to its area. da1 can also be constructed
as a cross product of the two vectors (length and width) that specify the differential area element. These
two vectors are differential displacements due to θ (from the north pole (θ = 0) to the equator (θ = π

2 ) - it
is 90 degrees minus the latitude) and φ respectively. Then,

da1 = dlθ × dlφ (3.3)

The surface is parameterized by

r(θ, φ) = R (sin θ cosφ, sin θ sinφ, cos θ) (3.4)

“Parameterized” means that for any choice of the two parameterizing variables, the function r returns a
point on the sphere. Explicitly, the vectors representing the differential area element are then
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dlθ =
∂r

∂θ
dθ (3.5)

dlφ =
∂r

∂φ
dφ (3.6)

3.2 Fundamental Theorem for Divergences

The Fundamental Theorem for Divergences states that

∫
V

(∇× v) dτ =

∮
S

v · da (3.7)

where dτ is a differential volume element. This can be stated succinctly as the boundary of a boundary is
zero. For example, consider a 3D shape whose boundary is a circle. (The fish net example from that one
53 final.) Then, by the Fundamental Theorem of Gradients, the boundary of the boundary is zero because
the end points meet up. The volume V is a three-dimensional region in a three-dimensional space, and the
theorem states that this is equivalent to an integral over the 2D closed surface S that is the boundary of V.

The right-hand integral is the flux out of the region.

3.3 Fundamental Theorem for Curls

∫
S

(∇× v) · da =

∮
P

v · dl (3.8)

where P is the perimeter of the 2D surface in 3D space S. For the perimeter integral, an orientation consistent
with the right-hand rule must be selected.

Note that in physics, the term sphere refers to the surface of a solid sphere.
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Physics 110A: Electromagnetism and Optics Spring 2019

Lecture 4: Vector Calculus Conclusion
Lecturer: Matthias Reinsch January 30 Aditya Sengupta

4.1 Fundamental Theorem for Curls

An example of the Fundamental Theorem for Curls can be seen in the definition v = ω×r, with ω = (0, 0, ω).
Taking the cross product gives us

v = ω(−y, x, 0) (4.1)

This vector field can be drawn, and we find that it is a series of concentric circles in the x-y plane, oriented
counterclockwise. We can integrate around the boundary of this circle. Here the normal vector is n̂ = ẑ,
which defines the area element; da = (da)n̂.

We can take the curl to find

∇× v = 2ω (4.2)

and therefore

∫
S

(∇× v) · da = 2ωπR2 (4.3)

We can do the integral over the boundary to match. To do this, we parameterize the curve by

r(λ) = R(cosλ, sinλ, 0) (4.4)

Based on this parameterization, we go around the curve and find that the integral
∮
v · dl is the same as the

surface integral.

4.2 2D parameterization

In 3D space, there are two parameters in a parameterization of a surface. We can use x and y for a surface
parameterization r(x, y) = (x, y,

√
R2 − x2 − y2). Now, we want to find the differential area element, which

is not quite as easy in two dimensions. In one dimension, this was simply the derivative of the single
parameter, dl

=
dr
dλdλ. This is because the element over which an integral was being defined was a small part

of the space, and summing over a lot of them gave us the whole space. The equivalent here is a tiny area
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with dimensions dx and dy. Therefore, in one direction, the vector required is ∂r
∂x and in the other it is ∂r

∂y .

The combination of these two gives us a tiny parallelogram (the curvature goes to zero), and the sum over
a lot of these gives us the area.

The vector representing this tiny area is the cross product of the parallelogram arms:

da =
∂r

∂x
× ∂r

∂y
dxdy (4.5)

4.3 Spherical Coordinates

A more natural way to parameterize a sphere is in terms of its r vector and the two angles θ and φ, which
are respectively due south and due east. We can translate between spherical and Cartesian coordinates by

xy
z

 = r

sin θ cosφ
sin θ sinφ

cos θ

 (4.6)

The r̂ vector is just these components without the r,

r̂ =
∂r

∂r
= (sin θ cosφ, sin θ sinφ, cos θ) (4.7)

and the other partial derivatives give us

∂r

∂θ
= r (cos θ cosφ, cos θ sinφ,− sin θ) (4.8)

and similarly for the φ derivative. We can get the unit vector by normalizing this derivative,

θ̂ =
∂r
∂θ∣∣ ∂r
∂θ

∣∣ (4.9)

4.4 The Dirac Delta Function

The Dirac delta is a function introduced to formalize the notion of a point object, such as a charge. In one
dimension, it is defined as

δ(x) =

{
0 x 6= 0

“∞” x = 0
(4.10)
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and it has the property that

∫ ∞
−∞

δ(x)dx = 1 (4.11)

It helps to think about the Dirac delta as an operator, rather than its own function; it samples another
function under an integral, rather than itself being integrated.
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Physics 110A: Electromagnetism and Optics Spring 2019

Lecture 5: The Dirac Delta
Lecturer: Matthias Reinsch 1 February Aditya Sengupta

The Dirac delta can be shifted,

δ(x− a) =

{
0 x 6= a

“∞” x = a
(5.1)

This is in contrast to the Kronecker delta, a discrete function that is well defined,

δij =

{
0 i 6= j

1 i = j
(5.2)

5.1 The Dirac delta as the limiting value of a sequence of functions

(that’s a mouthful)

Define the following function:

Rn(x) =

{
0 |x| > 1

2n

n |x| ≤ 1
2n

(5.3)

We can see that the area under each of these curves is 1. Then, we take a limit as n→∞ to get the Dirac
delta.

We can see the effect of the Dirac delta by multiplying it with a different function. Let f(x) be our arbitrary
test function, and let it be continuous and generally well-behaved. Then, integrate both of them together:

∫ ∞
−∞

f(x)δ(x)dx = lim
n→∞

∫ ∞
−∞

f(x)Rn(x)dx = lim
n→∞

∫ 1/2n

−1/2n
f(x)dx = f(0) (5.4)

This is called the sampling property.

5.2 Dirac Delta Properties

Consider the field
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A(r, θ, φ) =
1− cos θ

r sin θ
φ̂ (5.5)

∇×A =
r̂

r2
(5.6)

We take the divergence of this field.

∇ ·
(

r̂

r2

)
= 4πδ3(r) (5.7)

Define r = r− r′. We can say the same about this vector,

∇ ·
( r̂

r 2

)
= 4πδ3(r ) (5.8)

This suggests a three-dimensional delta function. We can define this as follows:

δ3(r) = δ(x)δ(y)δ(z) (5.9)

Returning to the divergence, we notice the 4π on the expression. We can show this by taking the integral
around a spherical surface and letting the radius go to 0.

Theorem 5.1. In curl-less fields, ∇×F = 0 everywhere,
∫ b

a
F · dl is path-independent,

∮
F · dl = 0 for any

loop, and there exists a V (r) such that F = −∇V .
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Physics 110A: Electromagnetism and Optics Spring 2019

Lecture 6: Divergence-less Fields, Coulomb’s Law
Lecturer: Matthias Reinsch 4 February Aditya Sengupta

Theorem 6.1. In divergence-less fields, ∇ ·F = 0 everywhere,
∫
F · da is surface-independent,

∮
F · da = 0

for a closed surface, and there exists an A(r) such that F = ∇×A.

An example of a divergence-less field is A(r, θ, φ) = m0
1−cos θ
r sin θ φ̂ defined on R3 − {0}− negative z axis, and

an example of a curl-less field is B(r, θ, φ) = m0
r̂
r2 defined on R3 − {0}.

All of the statements in the above two theorems are true if any one of them is true. For instance, suppose∮
F · dl = 0 for some F and some closed path parameterized by dl. Consider any two arbitrary points on

the closed curve given by position vectors a and b, and set up a path integral between them along one path,
then along the other end of the closed curve. We claim that

∫ b

a,path 1

F · dl =

∫ b

a,path 2

F · dl (6.1)

which we can show by moving the path 2 term to the other side. We flip the minus sign thus generated by
switching the start and end points of the path, to get

∫ b

a

F · dl +

∫ a

b

F · dl (6.2)

which is zero, because we know that the integral over a closed loop (from a to a) is 0. Therefore all integrals
of a curl-less field are path independent.

Similarly, we can make statements about a divergence-less field based on any one fact stated above.

Theorem 6.2. For any F there exists a scalar potential V (r) and a vector potential A(r) such that

F = −∇V + ∇×A (6.3)

where the first component has vanishing curl and the second has vanishing divergence.

Note that for any G such that ∇ ·G = 0 and ∇ ×G = 0, then the scalar and vector potentials can be
shifted by G or its gradient because the potential still satisfies the curl-less and divergence-less properties if
G is added to it. For example, the following is still valid:

F = (−∇V +G) + (∇×A−G) (6.4)

Another example of a valid G is G = ∇(x2 − y2). This is a nonconstant vector field with zero div and zero
curl.
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6.1 Coulomb’s Law

Note that we will be using MKS units throughout.

Coulomb’s law describes a force vector between any two charged species with charge q and Q,

F =
1

4πε0

qQ

r 2
r̂ (6.5)

where r is defined by r = r− r′. Component-wise, we can say

r =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 (6.6)

Start by thinking of both charges as positive; then, we can draw an arrow between the tips of the two position
vectors that give q and Q. The force is directed along this line, and is repulsive in both directions.

6.2 Superposition principle

Consider a system with multiple particles of charge qi and position vectors r′i. Then, the electric field at a
certain point is given by

E(r) =
1

4πε0

n∑
i=1

qi
r 2
i

r̂ i (6.7)

where the electric field is the force over the charge at the point given by r. (We assume there is a test charge
at r.)

6.3 Continuous Charge Distributions

We can apply the principle of superposition to specific continuous cases, where we integrate over a lot of
infinitesimal charges specifically arranged (i.e. we have some constraint on r ):

E(r) =
1

4πε0

∫
1

r 2
r̂dq (6.8)

Usually, we can parameterize r by some variable. For example, a linear charge distribution is dq = λ(r′)dl′,
an area distribution is dq = σ(r′)da′, and a volumetric distribution is dq = ρ(r′)dτ ′.
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Lecture 7: Parameterizations, Electric Fields
Lecturer: Matthias Reinsch 6 February Aditya Sengupta

7.1 Parameterizations

7.1.1 1D Parameterizations

We previously saw that we could parameterize a curve in one dimension by r(λ), where the components of
r are all functions of λ, and the line varies along a new λ axis from some λ1 to some λ2. We integrate along
λ,

∫
F · dr =

∫ λ2

λ1

F · dr
dλ
dλ (7.1)

7.1.2 2D Parameterizations

We use the same idea, except with a two-dimensional parameter space. We construct a surface along axes
α, β, and parameterize the curve by r(α, β). Then the integral becomes

∫ ∫
F · da =

∫ ∫
F ·
(
∂r

∂α
× ∂r

∂β

)
dαdβ (7.2)

7.1.3 3D Parameterizations

In three dimensions, consider the example of a tetrahedron with its vertices at (0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1).
To integrate over its volume, other than slicing along any particular axis and integrating a number of surfaces,
e.g. V =

∫ ∫
zdydx, we can parameterize the tetrahedron by parameters α, β, γ.

∫ 1

0

∫ ?

?

∫ ?

?

(7.3)

where the question marks can be filled in via geometry. The rest of the integral is yet to be filled in. We
can get this by defining the transformation between coordinates and the parameter space, which we do as
follows,

r =

xy
z

 =

0 1 1
1 0 1
1 1 0

αβ
γ

 (7.4)
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and the volume element becomes

dτ = (detM)dαdβdγ (7.5)

When you define a linear mapping, such as above, the columns of the matrix are the images of the unit
vectors. The unit vector along the α axis should be mapped onto one of the given vertices, and the same
goes for β and γ.

7.2 Integrating Over Electric Fields

Consider the case from the previous lecture where we wanted to integrate over a charge distribution,

E(r) =
1

4πε0

∫
1

r 2
r̂dq (7.6)

This integral can go over all of space. We can compute the divergence and the curl of this field. Using the
previous result on the divergence, namely that

∇ ·
(

r̂

r2

)
= 4πδ3(r) (7.7)

we show that

∇ ·E =
1

ε0
ρ(r) (7.8)
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We can also show that the curl is zero, by ∇× r̂r 2 = 0.

7.3 Volume/Velocity

Volume can be related to velocity, as a way of visualizing divergence:

∇ · v =
1

V

dV

dt
(7.9)

Intuitively, we can think of this as shrinking the volume that encloses a velocity field. We can check
dimensions to convince ourselves that this is true.

7.4 Superposition

Consider two charges q on the x−axis. One charge is located at a distance 3
4d from the origin on the positive

x−axis, and the other is located at −43 d, on the negative x−axis. We can define r′ vectors based on these,

(
−4

3
d, 0, 0

)
= r′1,

(
3

4
d, 0, 0

)
= r′2 (7.10)

Then, consider a test point at r = (0, d, 0). We can define r vectors as the difference between these,

r 1 =

(
4

3
d, d, 0

)
, r 2 =

(
−3

4
d, d, 0

)
(7.11)

Now, the Pythagoreans come in and save the day.

r 2
1 =

25

9
d2, r 2

2 =
25

16
d2 (7.12)

Therefore, we get

E1 =
q

4πε0

(36, 27, 0)

125d2
(7.13)

7.5 Types of symmetry

Spherical symmetry Cylindrical symmetry Planar symmetry
Picture picture picture
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Lecture 8: Feeling sick today so this won’t be detailed enough
Lecturer: Matthias Reinsch 8 February Aditya Sengupta

8.1 Integrable singularities

Suppose there is a potential function V (r) ∝ 1
r . At the origin, r blows up to infinity, causing a so-called

“singularity”. Consider the integral of 1
x over the bounds x = [0, 1]. It turns out that this has infinite area.

However, for the case 1√
x

, the area is actually finite. We can see this via an integral,

∫ 1

0

1√
x
dx = 2

√
x
∣∣1
0

= 2 (8.1)

8.2 Electric field from charge distribution

There are six arrows on the three-node diagram between ρ,E,V. To go from the charge distribution to the
electric field, we use

E =
1

4πε0

∫ r̂
r 2
ρdτ (8.2)

Having the squared magnitude of the script-R in the denominator is dangerous. We can define a charge
density on a volume such as a sphere of radius R,

ρ(x, y, z) =

{
0 x2 + y2 + z2 > R2

Q
4
3πR

3 x2 + y2 + y2 ≤ R2 (8.3)

To go from a charge distribution like this one to a potential, we say

V (r) =
1

4πε0

∫
ρ(r′)

r dτ ′ (8.4)

For a field point outside the sphere, something happens. When ρ(r′)

To get from a field to a potential, we integrate the field along a line:

V (r) = −
∫ r

O

E(r′) · dl (8.5)
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8.3 Poisson’s Equation

∇2V = −−ρ
ε0

(8.6)

This takes us from V to ρ. This is a partial differential equation and it is difficult to solve in general.
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Lecture 9: Boundary Conditions, Energy
Lecturer: Matthias Reinsch 11 February Aditya Sengupta

9.1 Boundary Conditions

When there are two different solutions to a differential equation in different regions, we need boundary
conditions to connect them. Consider a two-dimensional surface with some curvature in a three-dimensional
space. There are regions above and below this surface. At every point on the surface, there is a normal
vector, and this is oppositely oriented depending on the position (above or below); say above, n̂ = û and
below n̂ = −û. We can analyze the perpendicular component of the electric field on this surface,

E⊥above = û ·Eabove (9.1)

E⊥above − E⊥below =
σ

ε0
(9.2)

Above and below the surface, there are vector fields representing the electric field. We define û to be the
same above and below the surface. Immediately below the surface, we would use the same normal vector as
just above, when using û. n̂ is the outward pointing normal vector.
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9.2 Gaussian Pillbox

Consider a “pillbox” with very thin edges, whose upper surface is above the plane and lower surface is below.
We can invoke Gauss’s law on this box.

We can draw a regular outward-pointing normal for the Gaussian pillbox, with the upper surface having n̂
straight upwards, the lower surface having n̂ downwards, and the normal vector along the sides pointing out
of those sides.

∮
E · da =

Qenc
ε0

(9.3)

The differential area element is

da = (da)n̂ (9.4)

Now, we let the sides of the pillbox go to zero, so that the upper surface represents E⊥above and the lower
surface represents E⊥below. We use Gauss’s law; dq = σda is the differential charge enclosed by the pillbox.
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Therefore the integral over E · da becomes just the infinitesimal E · n̂da, so dividing by da and employing
Gauss’s law, we can get the above result.

9.3 Tangential Components

The above analysis only deals with one part of the electric field, that perpendicular to the surface. To deal
with the parallel component, we write

E
‖
above = E

‖
below (9.5)

To get this, we consider a family of closed loops in the plane, from a to b. Consider a structure similar to
the Gaussian pillbox with curves in space, where two possible paths from a to b are either above or below
the surface. We can add these together to make a closed loop,

∮
E · dl = 0 (9.6)∫ b

a

Eabove · dl +

∫ b

a

Ebelow · (−dl) = 0 (9.7)

9.4 Energy in Electric Charge Configurations

This argument will have several stages. We will start with a point charge at rest, and we will bring a second
point charge in from an infinite distance to into close proximity with the first charge.

Eventually, we will find that the work required to assemble a configuration of charges is

W =
1

2

n∑
i=1

qiV (ri) (9.8)

where V (ri) describes the potential at ri due to the other charges (those with index not equal to i.)

Let q2 be infinitely far away from q1. Then, we bring it to some location close to q1, along an arbitrary path.
By Coulomb’s law, we know that the work done (and therefore the energy required) is

1

4πε0

q1q2
r12

(9.9)

We can see this arise from Coulomb’s law by realizing that work is the path integral of force,

W =

∫ b

a

F · dl (9.10)
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There is no reference to the time, velocity, or kinetic energy of the particle, so in theory this could be done
infinitely slowly with a vanishingly small kinetic energy.

Now, we can bring in a third particle q3. Then, the work to be done is, by superposition,

1

4πε0

(
q1q3
r13

+
q2q3
r23

)
(9.11)
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10.1 Work to assemble a configuration of point charges

We know that the work required to move a charge q2 near q1 is

W =
1

4πε0

q1q2
r

= q1V (r1) (10.1)

where r1 is the potential at r1 due to r2. By superposition, we can say that

W =
1

2

n∑
i=1

qiV (ri) (10.2)

The factor of 1
2 comes from removing double-counting. For example, if we explicitly write out the summation

for the case of three charges, we have

1

2

(
1

4πε0

(
q1q2
r12

+
q1q3
r13

+
q2q1
r12

+
q2q3
r23

+
q3q1
r13

+
q3q2
r23

))
(10.3)

We see that every term appears twice, so we have to divide by 2 to compensate.

10.2 Continuous Charge Distributions

We can naturally generalize this summation to an integral,

W =
1

2

∫
ρV dτ (10.4)

We can integrate this by parts and rewrite the charge density as ρ = ε0∇ ·E, to get

W =
ε0
2

∫
allspace

E2dτ (10.5)

This integral suggests we can define the energy density of an electric field as ε0
2 E

2.
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10.3 Conductors

Conductors have the property that E = 0 inside them; they allow charge to flow and so no field “accumulates”.
We can investigate the electric field around a conductor. We do this by employing boundary conditions.
Immediately outside the conductor, the electric field is given by the surface charge,

Eoutside =
σ

ε0
n̂ (10.6)
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11.1 Capacitors

Consider a configuration of conductors with charges Qi on them. We can find the potential difference between
any of them by computing a line integral of the electric field between them.

The special case we are interested in is a parallel-plate capacitor, which consists of two conductors parallel
to one another. Suppose they have an area A, and a distance between them d. We get a simple path integral
between these two, which gives us a ratio between charge and potential difference C = Q

V ,

C = ε0
A

d
(11.1)

11.2 Concentric Spherical Shells

We know that for concentric spherical shells, the electric field goes as 1
r2 and the potential goes as 1

r . In the
special case where the inner radius a and the outer radius b are very close, we will end up reproducing the
result for parallel plates:

a ≈ b =⇒ C = 4πε0
ab

b− a
≈ ε0

A

d
(11.2)

where the area is approximately A = 4πa2 and the distance is b− a. This approximation holds if A >> d2.

11.3 Potentials

Consider the general scalar field V (r), which assigns a scalar to every point in space. We can connect this
to a charge distribution by solving Poisson’s equation,

∇2V = − ρ

ε0
(11.3)

In one dimension, consider the case of a parallel-plate capacitor with ρ = 0 between the plates. We get

d2V

dx2
= 0 (11.4)

V (x) = mx+ b =⇒ V (x) = −Ex (11.5)
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In two dimensions, this becomes more complicated. The PDE to be solved is

∂2V

∂x2
+
∂2V

∂y2
= 0 (11.6)

which gives us a solution that is given by a path integral,

V (x, y) =
1

2πR

∮
V dl (11.7)

We can parameterize the path around this circle by (x, y) = (x0, y0)+R(cos θ, sin θ). We get dl = |dl| = dr
dθdθ

and can set up the integral.
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Consider a sphere centered around the origin, and a charge q at a point (0, 0, z). We want to find the average
value of the potential due to this charge over the sphere. To do this, it is useful to shift the solution.

12.1 Shifting a solution

Consider a point charge at (0, 0, 0). The potential drops off with the inverse distance from the origin,

V (r) =
1

4πε0

q√
x2 + y2 + z2

(12.1)

We can shift this to being centered around (0, 0, z0) just by shifting the z coordinate,

V (r) =
1

4πε0

q√
x2 + y2 + (z − z0)2

(12.2)

To average over the sphere, we can compute a surface integral,

Vave =
q

4πε0

∮
1

r da (12.3)

Here, the sphere is just a surface for convenience. Suppose the situation were reversed; the sphere now carries
a surface charge, and we want to find the potential at (0, 0, z) due to this sphere. The integral becomes

V ((0, 0, z)) =
q

4πε0

∮
1

r da (12.4)

12.2 Laplace’s Equation

In two dimensions, Laplace’s equation states

∂2V

∂x2
+
∂2V

∂y2
= 0 (12.5)

A surface that satisfies this equation is a circle, and we can average the potential over this circle,

28



V (x0, y0) =
1

2πR

∮
V dl (12.6)

In three dimensions, Laplace’s equation becomes

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0 (12.7)

and the equivalent averaged potential is

V (x0, y0, z0) =
1

4πR2

∮
sphere

V da (12.8)

12.3 Uniqueness Theorems

The first uniqueness theorem states that V (r) is unique in a volume V if V is specified on the boundary
S. This can be proved using the principle of superposition. Assume the existence of V1(r) and V2(r), two
solutions that are not the same. Define V3 = V1−V2. Since V1 and V2 both satisfy the boundary conditions,
V3 must be zero on the boundary. Since V at any point in space is proportional to its surface integral, which
is zero, we conclude that V3 is identically zero, V3(r) ≡ 0. Therefore V1 = V2.

The second uniqueness theorem involves conductors. Consider a boundary of conductors S, surrounding a
volume V with a specified ρ. The Q on each conductor is also specified. The second uniqueness theorem
claims that these are enough to specify V (r).

12.4 Image Charges

Consider a charge q on the z axis, above the x− y plane. We are interested in the volume V, z ≥ 0. This is
equivalent to the problem that has a charge −q on the other end of the z axis.
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13.1 Image Charges

Suppose there is a charge q at a position (0, 0, d). We want to solve Laplace’s equation over the half-space
z ≥ 0 (say there is a conductor for all space z ≤ 0 - the potential over space is affected by the surface charge
on this conductor). We can construct a system in which there is a charge −q at (0, 0,−d) replacing the
conductor. It turns out that these two systems have the same potential, so we get

V (x, y, z) =
1

4πε0

(
q

r+
− q

r−

)
(13.1)

We can make the distance vectors more explicit by performing a vector subtraction,

V (x, y, z) =
q

4πε0

(
1√

x2 + y2 + (z − d)2
− 1√

x2 + y2 + (z + d)2

)
(13.2)

This is defined over all space except for the points where the two charges are located, which are singularities.

If we set z = 0, we get V = 0, so the x− y plane is an equipotential.

Physically, we expect some distribution of negative charge over the conductor at z = 0. We can find this
distribution by

σ = −ε0
∂V

∂n
(13.3)

In this case, this becomes

σ(x, y) = −ε0
∂V

∂z

∣∣∣∣
z=0

=
−qd

2π(x2 + y2 + d2)3/2
(13.4)

If we integrate this over all space, we get −q, as we expect.

13.2 Solving PDEs

13.2.1 Separation of Variables

Suppose there is a three-dimensional problem defined as follows: we have a region defined by three planar
conducting surfaces: the x − z plane, a wall on the y − z plane, and an upper surface parallel to the x − z
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plane. This extends to infinity for positive x, and for positive and negative z. We want to solve Laplace’s
equation in this region. Since this is completely z symmetric, we can draw a trace in the x − y plane to
simplify. We can use the two-dimensional Laplacian,

∂2V

∂x2
+
∂2V

∂y2
= 0 (13.5)

We use boundary conditions to find a specific solution. We know that the potential vanishes on all boundaries,
so V (x, 0, z) = 0, i.e. the potential vanishes when y = 0. Additionally, V (x, a, z) = 0, describing the upper
surface. The third surface boundary condition can be compactly described by V (0, y, z) = V0(y). Finally,
we can say that lim

x→∞
V = 0.

Now, we can introduce the method of separation of variables. Consider the following form for the solution:

V (x, y) = X(x)Y (y) (13.6)

Note that many functions cannot be written in this form, for example x+ y.

We take a second-order derivative in x and another in y, and we get

X ′′

X
+
Y ′′

Y
= 0 (13.7)

We conclude that the two terms must be equal and opposite constants,

X ′′

X
= C,

Y ′′

Y
= −C (13.8)
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15.1 In Spherical Coordinates

For problems with azimuthal symmetry, we can set up the general variable-separable form of the potential,

V (r, θ) = R(r)Θ(θ) (15.1)

This is an ansatz, an assumption about the form a solution will take which will be verified later. We apply
Laplace’s equation to this general form to get

1

R

d

dr

(
r2
dR

dr

)
+

1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
= 0 (15.2)

The derivatives in r and θ can be expanded out using the product rule, but this form is sufficient. The
general solution in R is

R(r) = Arl +
B

rl+1
(15.3)

We get this by assuming that the first term in Laplace’s equation is l(l + 1), for some constant l. In Θ, we
can assume the term is equal to −l(l + 1), which gives us

Θ(θ) = Pl cos θ (15.4)

where Pl is the lth Legendre polynomial.

15.2 Legendre Polynomials

The Legendre polynomials are defined as follows,

Pl(x) =
1

2ll!

(
d

dx

)l
(x2 − 1)l. (15.5)

For example, P0(x) = 1, P1(x) = x, P2(x) = 3x2−1
2 . Note that rlPl(cos θ) is a polynomial in x, y, z.
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The general solution to Laplace’s equation in spherical coordinates for problems with azimuthal symmetry
can be written as

V (r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl cos θ (15.6)

If we plug in r = R in the asymptotic case where V → E0z, we get

V (r, θ) = −E0

(
r − R3

r2

)
cos θ (15.7)
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16.1 Dipole expansion

With a multipole expansion, you get a much better qualitative understanding of the field due to a system of
multiple charges. To motivate this, consider a dipole aligned along the y axis, with its positive charge at 1

2d
and its negative at − 1

2d. The position vector of the test point is r relative to the origin, and we can define
position vectors r+ and r− which are defined as we would expect (the position vectors from the positive
and negative charges.)

The potential is

V (r) =
q

4πε0

(
1

r+
− 1

r−

)
(16.1)

And we can explicitly write out the position vectors,

r± = r∓ 1

2
d (16.2)

Now, we need the length:

r± =

√(
r∓−1

2
d

)
·
(
r∓−1

2
d

)
=

√
r2 ∓ d · r +

d2

4
(16.3)

r± =

(
r2 ∓ dr cos θ +

d2

4

)1/2

(16.4)

Therefore, we substitute this back into the potential expression to get

V (r) =
q

4πε0

 1(
r2 − dr cos θ + d2

4

)1/2 − 1(
r2 + dr cos θ + d2

4

)1/2
 (16.5)

This expression is exact, but this does not help us understand the physics at all. One of the most important
dipoles in nature is that in a water molecule, which has a d of a few angstroms. Just about always, our
length scales are going to be bigger than that. So, at least in this case, the approximation r >> d can be
considered to be valid.
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What sorts of approximations might be valid on r± with this assumption? We look at r−1± :

r−1± =

(
r2 ∓ dr cos θ +

d2

4

)−1/2
= r−1

(
1∓ d

r
cos θ +

d2

4r2

)−1/2
(16.6)

The d2 term is tiny here, so we drop it.

r−1± = r−1
(

1∓ d

r
cos θ

)
(16.7)

Here, we can use a binomial expansion to first-order: f(x) = (1 + x)p ≈ 1 + px. If we drop the px term in
addition to dropping terms in x2 and higher, we just end up with f(x) = 1, so the potential is zero. We’ve
moved so far away that we can’t say anything about the physics. With this approximation, we get

r−1± = r−1
(

1 +
1

2

d

r
cos θ

)
(16.8)

So, the potential is

V (r) ≈ q

4πε0

1

r

((
1 +

d

2r
cos θ

)
−
(

1− d

2r
cos θ

))
+O

(
d2

r2

)
≈ qd cos θ

4πε0r2
+O

(
d2

r2

)
(16.9)

We can write the numerator in terms of the dipole moment,

V (r) ≈ r̂ · p
4πε0r2

+O

(
d2

r2

)
(16.10)

16.2 Arbitrary distribution of charge

Consider a body with a completely arbitrary distribution of charge ρ(r). From Gauss’s law, we know that
the potential is

V (r) =

∫
1

4πε0

ρ(r′)

r dτ ′ (16.11)

This is an exact formula, based on breaking up the body into lots of little charge elements dq and summing
up the potential due to each one. It is also useless; we don’t know what the potential looks like, and
differentiating it does not give us the electric field. So we apply the same method, a multipole expansion.
This allows us to talk about the overall behaviour of a system, and deviations from this overall behaviour.

The charge distribution is finite, and so it has some notion of a length scale. r′, the distance from the
center to each individual dq, will be less than this length scale. This is not an exact definition, but an exact
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definition is not necessary. We consider the case r >> D, cases where the charge distribution is reasonably
far away from the test point. This implies that r >> r′, because for every possible r′, D > r′ by definition.

r = r− r′ (16.12)

r−1 =
(
r2 − 2rr′ cos(α(r′)) + r′2

)−1/2 ≈ r2(1− 2
r′

r
cosα+

(
r′

r

)2
)−1/2

(16.13)

Let ε =
(
r′

r

)2
− 2 r

′

r cosα. Then we use a binomial approximation to get

r−1 ≈ 1

r

(
1− ε

2
+

3

8
ε2 +O(ε3)

)
(16.14)

r−1 =
1

r

1− 1

2

(
−2

r′

r
cosα+

(
r′

r

)2
)

+
3

8

(
−2

r′

r
cosα+

(
r′

r

)2
)2

+O(ε3)

 (16.15)

This is annoying, but we can expand it systematically. We get

r−1 =
1

r

(
1 +

r′

r
cosα− 1

2

(
3 cos2 α− 1

)(r′
r

)2

+O

[(
r′

r

)3
])

(16.16)

and we can realize that these terms are Legendre polynomials:

(1 + ε)−1/2 =
∑
i

Pi(cosα)

(
r′

r

)n
(16.17)

This is because 1
r is the solution to Laplace’s equation for a delta function (read up more), and all solutions

to Laplace’s equation can be written in terms of the Legendre polynomials.

Then, we can write the potential,

V (r) =
1

4πε0

∫
1

r

∞∑
n=0

(
r′

r

)n
Pn(cosα)ρ(r′)dτ ′ (16.18)

and integrate term by term,

V (r) =

∞∑
n=0

1

4πε0

1

rn+1

∫
(r′)nPn(cosα)ρ(r′)dτ ′ (16.19)

This is the multipole expansion. We can isolate the integral and write it as mn, which is nice because the
integral is independent of r, and so it is entirely determined by the system’s geometry. We get

36



V (r) =

∞∑
n=0

1

4πε0

mn

rn+1
(16.20)

We can find the first few values of mn.

m0 =

∫
ρ(r′)dτ = Q (16.21)

m1 =

∫
r′ cosαρ(r′)dτ (16.22)

m2 =

∫
(r′)2P2(cosα)ρ(r′)dτ ′ (16.23)

m0 is the total charge, m1 is the dipole moment, m2 is the quadrupole moment, and so on.
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Previously, we found

V (r, θ) =

∞∑
l=0

(Alr
l +Blr

−l−1)Pl(cos θ) (17.1)

based on which we can find the inverse of the script-R vector. Let there be an angle α between vectors r
and r′, with the script-R vector between them. Then

1

r =
1

r

∞∑
n=0

(
r′

r

)n
Pn(cosα) (17.2)

The first few terms of the expansion define the monopole, dipole, quadrupole, octopole, and hexadecapole.
These have l = 0 through l = 4 and have radial dependence r−1 through r−5. The first few poles look like
this:
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Although these are the components of a solution that has azimuthal symmetry, they do not in themselves
have that symmetry. A superposition of them has that symmetry, which we can find through Fourier series
methods as in the homework.

17.1 Matter

Matter can be broadly categorized into conductors and insulators. Conductors have 1 or 2 electrons per
atom, which are free to move. Insulators (dielectrics) have all of their electrons bound. These can have
induced dipoles due to an applied electric field, which we denote by p. This points in the same direction as
the applied electric field. If Q = 0 then p does not depend on your choice of origin.
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18.1 Superposition in Solutions to Laplace’s Equation

Consider a sphere on which there is some surface charge density, in a region where the potential is known.
Say Vfar = −E0r · ẑ. Under rotation, Vfar = −E0r · n̂. These are the l = 1 Legendre polynomial terms, that
define the boundary conditions for far fields (far away from the sphere with charge, we expect the potential
to go to its known value).

18.2 Induced Dipoles

Consider a charge within a conducting metal sphere. Under no applied field, the field due to the charge is
uniform in the sphere. When there is an applied electric field, the charge moves over to a new equilibrium
point. The electric field thus induced is given by

Ee =
1

4πε0

qd

a3
(18.1)

where d is the distance from the center and a is the radius. The dipole moment is given by

qd = 4πε0a
3E (18.2)

The dipole moment is therefore proportional to the electric field, with a constant of proportionality α =
4πε0a

3 = 3ε0V . This is a vector relationship, so if the dipole moment and electric field have components pi
and Ei respectively, then pi = αEi. In some materials, this has the structure of a matrix multiplication,

pi = αijEj (18.3)

Define P to be the dipole moment per unit volume.

18.3 Superposition contd.

Recall that for one dipole, the potential is

V (r) =
1

4πε0

p · r̂
r 2

(18.4)
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With a superposition of dipoles, we get

V (r) =
1

4πε0

∫
V

P(r′) · r̂
r 2

dτ ′ (18.5)

We use integration by parts. Recall that ∇
(

1r
)

= r̂r 2 , therefore

V (r) =
1

4πε0

∫
V
P · ∇′

(
1

r
)
dτ ′

=
1

4πε0

∮
S

1

r P · da′ −
∫
V

1

r (∇′ ·P)dτ ′
(18.6)

This allows us to define the surface charge density as P · n̂, and the bulk charge density as ρb = −∇ ·P.
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19.1 Torque on a dipole

The torque on a dipole can be found by integrating differential force elements crossed with the position
vector,

N =

∫
r′ × dF′ =

∫
r′ ×Edq′ (19.1)

We can exchange the order of the differential dq and r′, and for a constant electric field, we can pull it out.
We get

N =

(∫
r′dq′

)
×E (19.2)

Then, we can recognize the remaining factor as the dipole moment. Note that this is dependent on the
origin; if the total charge is zero, then this dependence does not matter.

19.2 Potential energy

We can extract this information about torques from a scalar, namely the potential energy,

U(r, n̂) = −pn̂ ·E(r) (19.3)

The inputs to the potential energy can be represented in configuration space, R3 × S2. The R3 is the
three-dimensional space we live in, and S2 is the surface of a solid sphere.

If we know the angle between the dipole and electric field vectors, we can simplify the scalar equation to

U = −p ·E = −pE cos θ (19.4)

Recall for one-dimensional linear motion, we have dW = Fdx. Similarly, we get dW = |N|dθ.

We can differentiate the potential energy to get a relationship looking like this,

dU

dθ
= pE sin θ = |p×E|. (19.5)
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19.3 Force on dipole

To first order, the change in electric field in the x direction due to a displacement d is

∆Ex = (∇Ex) · d

=

(
dx

∂

∂x
+ dy

∂

∂y
+ dz

∂

∂z

)
Ex = (d ·∇)Ex

(19.6)

In general, we get

∆ε0cE = (d ·∇)E (19.7)

and so

F = (p ·∇)E (19.8)

19.4 Polarization

Let P be the dipole moment per unit volume of a charge configuration. Then, by superposition, we can find
the potential,

V (r) =
1

4πε0

∫
P(r′) · r̂

r 2
dτ ′ (19.9)

and by analogy, we can define surface and bulk charge densities,

σb ≡ P · n̂ (19.10)

ρb ≡ −∇ ·P (19.11)

19.5 Electric Displacement

The electric displacement is defined as follows,

D = ε0E + P (19.12)

This accounts for the effects of both bound and free charge, ρ = ρb + ρf . We take the divergence of E, and
by Gauss’s law we get
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ε0∇ ·E = ρ = −∇ ·P + ρf (19.13)

∇ ·D = ρf (19.14)

This appears to resemble Gauss’s law, but here, the curl of D could be nonzero.
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20.1 Boundary Value Problems with Linear Dielectrics

Recall that the following equations govern linear dielectrics:

P = ε0χeE (20.1)

D = εE = ε0(1 + χe)E (20.2)

P =
χe

1 + χe
D (20.3)

ρb = −∇ ·P = − χe
1 + χe

ρf (20.4)

We can use this to solve boundary value problems using linear dielectrics. Consider a linear dielectric
spanning the extent of the xy plane, with a point charge q on the z axis at some height d. This setup allows
us to say n̂ = ẑ for the dielectric. Therefore

σb = P · n̂ = Pz (20.5)

Now we invoke the fundamental property of the linear dielectric: that P is proportional to E.

ρb = Pz = ε0χeEz|z=0− (20.6)

Recall that in a small patch of charge, meaning that its length scale is less than σ
∂σ/∂x , the electric field is σ

2ε0
.

Therefore we can say Ez z=0− is the sum of this surface charge contribution and a point charge contribution
from Coulomb’s law. We get

σb = − 1

2π

(
χe

χe + 2

)
qd

(r2 + d2)3/2
(20.7)

and the total bound surface charge comes out to

qb = − χe
χe + 2

q (20.8)

We can also solve this as an image charge problem. Place a charge qb at −d on the z axis; then the potential
is
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V (r) =
1

4πε0

{
qr+

+ qbr− z > 0
q+qbr+

z < 0
(20.9)
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21.1 Linear Dielectrics

By definition, D = εE. Consider the quantity 1
2∆(D ·E), which simplifies to 1

2ε∆E
2. (With a susceptibility

tensor, in general D is not parallel to E. The relationship is still linear.)

1

2
∆(D ·E) =

1

2
∆(εE2) =

1

2
ε
(
2E ·∆E + ∆E2

)
(21.1)

In the approximation where the change is small, we get

1

2
∆(D ·E) ≈ ε(∆E) ·E (21.2)

21.2 Bring in free charge

We are interested in the amount of work ∆W necessary to bring in a small amount of free charge.

∆W =

∫
(∆ρf )V dτ (21.3)

We know that ρf = ∇ ·D, so ∆ρf = ∇ · (∆D). Therefore the work is

∆W =

∫
(∇ · (∆D))V dτ (21.4)

It is a great day, because we can use Product Rule Five:

∇ · ((∆D)V ) = (∇ · (∆D))V + (∆D) ·∇V (21.5)

Therefore

∆W =

∫
V
∇ · ((∆D)V ) dτ +

∫
V

(∆D) ·Edτ (21.6)
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Skip to the grand conclusion.

W =
1

2

∫
allspace

D ·Edτ (21.7)

21.3 Capacitor

Consider a parallel plate capacitor with a dielectric slab partially inserted. There is an electric field going
from one plate to the other, with fringing fields coming out the sides making loops. The capacitance we get
is

C =
ε0W

d
(εrl − χex) (21.8)
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We know that the equation for the field due to an electric dipole is

Edip(r, θ) =
p

4πε0r3

(
2 cos θr̂ + sin θθ̂

)
(22.1)

and the equivalent magnetic dipole equation is

Bdip(r, θ) =
µ0m

4πr3

(
2 cos θr̂ + sin θθ̂

)
(22.2)

Berkeley is at 37 degrees north, so the magnetic field is approximately proportional to r̂ + 4
5 θ̂.

22.1 Surface Current Density

Consider a surface of charge moving with a velocity v. Over a time dt, the total charge that exists in the
slice that is moved through is dq = σ(vdt)L⊥, so I = dq

dt = σvL⊥ and the current density K = I
L⊥

= σv.

The vector version of this can generalize the one-dimensional motion to any direction, K = σv.

22.2 Volume Current Density

By similar reasoning, we get

dq = ρA⊥(vdt) (22.3)

J = ρv (22.4)

and more generally J = ρv. In general ρ and J are independent quantities.

22.3 Biot-Savart Law

B(r) =
µ0

4π

∫
J(r′)× r̂

r 2
dτ ′ (22.5)

We take the divergence of this under the integral sign,
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∇ ·B =
µ0

4π

∫
∇ ·

(
J(r′)× r̂

r 2

)
dτ (22.6)

Then we use one of our favourite product rules, ∇ · (A×B) = −A · (∇×B) for a constant A. I don’t see
where we went with that, but sure.
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The vector potential A is defined as

A(r) =
µ0I

4π

∮
1

r dl
′ (24.1)

which can be expanded,

A(r) =
µ0I

4π

[
1

r

∮
dl′ +

1

r2

∮
r′ cosαdl′ + . . .

]
(24.2)

plus some higher-order terms. The first term goes away because the loop is closed, and the second term can
be computed. To do this, we compute the following,

a =

∫
S

da =
1

2

∮
r× dl (24.3)

Then, define V(r) = c(e ·r) where c and e are constant vectors. Using product rule 7, we get ∇×V = e×c.
Then, we use Stokes’ Theorem to get a nice result from this. If we integrate the curl of V over an arbitrary
surface, we get

∫
S

(e× c) · da =

∮
(e · r)(c · dl) (24.4)

We can consider boundary conditions, taking a Gaussian pillbox which allows us to find Babove −Bbelow =
µ0K× n̂. We use B = ∇×A to relate these two,

Babove −Bbelow =

(
−∂A

(above)
y

∂z
+
∂A

(below)
y

∂z

)
x̂ +

(
∂A

(above)
x

∂z
− ∂A

(below)
x

∂z

)
ŷ (24.5)

Using the multipole expansion, we can write out the A vector potential for a dipole,

µ0I

4πr2

∮
(r̂ · r′)dl′ =

µ0

4π

m× r̂

r2
(24.6)
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Consider a rectangular loop inclined at an azimuthal angle θ, with normal magnetic dipole vector m and
current flowing counterclockwise. This exists in a magnetic field B = Bẑ. The torque on this dipole, in
general, is given by N = m×B, the counterpart in magnetism to p×E.

In general, we can solve for the force by taking the cross product, in terms of the Levi-Civita tensor,

Ci =

3∑
j,k=1

εijkAjBk (25.1)

We calculate the force by Taylor expanding for the magnetic field,

B(r) = B(0) +
←→
C r + · · ·+ B(0) +

[
Cik = ∂Bi

∂rk

]
r + . . . (25.2)

Note that because the divergence of B is 0, the matrix has a zero trace. We set up the integral for force,

F = I

∮
dl× (

←→
C r) (25.3)

where we drop the constant term because it goes to 0 when being integrated.

Fi = I
∑
j,k

εijk

∮
dlj(
←→
C r)k (25.4)

I
∑
j,k,m

εijk

∮
dljCkmrm (25.5)

Using a convenient product rule (BAC-CAB), we simplify this to just F = ∇(m ·B).

∆m = −e
2R2

4me
B (25.6)
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Magnetic field lines cannot terminate on any kind of magnetic charge because those do not exist.

In general, the magnetization of something is a function of position. We define it completely in analogy with
polarization of an electric field. This suggests that there is an analogy to bound charges.

A =
µ0

4π

∫
M(r′)× r̂

r 2
dτ ′ =

µ0

4π

∫
1

r
[
∇′ ×M(r′)

]
dτ ′ +

µ0

4π

∮
1

r M(r)× da′ (26.1)

A(r) =
µ0

4π

∫
Jb(r

′)

r dτ ′ +
µ0

4π

∮
Kb(r

′)

r da′ (26.2)

This gives us a bound volume current density Jb = ∇×M, and a bound surface current density Kb = M×n̂.

Consider a spinning spherical shell with a surface charge density σ. We write K = σv = σωR sin θφ̂. We
use the bound current denstiy formula.
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Consider a cylinder with conductivity σ and with its axis aligned to the z−axis, with V = V0 at z = −L
and V = 0 at z = 0. Inside, the potential varies linearly, by V (x, y, z) = −V0 zL .

This gets more complicated for more boundaries or where the boundaries are not just surfaces of constant
potential. For example, consider a cylinder of conductivity σ and radius a, around which is a perfect
conductor ranging from radial distances a to b. By solving the boundary value problem, with the same
conditions on endpoints as before(?), we get

V = − Iz

πa2σ

ln s
b

ln b
a

(27.1)

where a ≤ s ≤ b.

27.1 Electrodynamics

The electromotive force (emf), which is not a force, is defined as

ε ≡
∮

f · dl (27.2)

This is not the Lorentz force law. Here, f is the force per unit charge, such as E. We see that emf has units
of volts. emf is relatex to magnetic flux by

ε = −dΦ

dt
(27.3)

We can compute the emf of an electrodynamic setup by computing a loop integral. For an arbitrary loop in
a magnetic field, that may be varying with time, consider a total velocity w = v+u, the sum of the velocity
of the loop and the velocity of a charge relative to the loop.
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φ =

∮
A · dl (28.1)

We can write down all of Maxwell’s equations!

∇ ·E =
1

ε0
ρ (28.2)

∇×E = −∂B
∂t

(28.3)

∇ ·B = 0 (28.4)

∇×B = µ0J + µ0ε0
∂E

∂t
(28.5)

and we take the divergence of the magnetic curl equation to get a continuity equation,

∇ · J = −∂ρ
∂t

(28.6)
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Φ =

∫
B · da =

∮
A · dl (29.1)

Dirac’s formula for the vector potential in spherical coordinates:

A±(r, θ, φ) = m0
±1− cos θ

r sin θ
φ̂ (29.2)

We compute the curl of this,

∇×A± = m0
r̂

r2
(29.3)

This field is called a magnetic monopole.

The vector potential for a pure magnetic dipole is given by

Adip(r) =
µ0

4π

m sin θ

r2
φ̂ (29.4)

The magnetic monopole vector potential suggests the existence of a so-called Dirac string. Look at A+

defined on R3 − {z-axis ≤ 0}. Here θ = π so the small angle approximation does not allow us to resolve the
denominator going to zero.

Consider the expression r sin θφ̂ from the dipole vector potential. Using spherical coordinate identities, we
can say

Adip(r) =
µ0

4π

m

r3
(xŷ − yx̂) (29.5)

Consider a loop oriented counterclockwise as viewed from above. Then there does not exist an A defined on
R3 − {(0, 0, 0)} that uniquely specifies the magnetic field on any surface bounded by this. We can see this
by drawing northern and southern hemispheres with this loop as the equator:

∫
B · da > 0 on the northern

hemisphere, and
∫
B · da < 0 on the southern hemisphere. But both of them have to be equal to

∮
A · dl.

Poynting’s theorem: u = 1
2ε0E

2 + 1
2µ0

B2. From this we get

dW

dt
=

∫
V

(E · J)dτ (29.6)
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We use product rule 6 on the curl of E×B to get

∇ · (E×B) = B · (∇×E)−E(∇×B) (29.7)

From this and Maxwell’s equations, we get

dW

dt
= − d

dt

∫
V
udτ −

∮
S
S · da (29.8)
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