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Lecture 1: Introduction 5

Physics 137A: Quantum Mechanics Fall 2019

Lecture 1: Introduction
Lecturer: Irfan Siddiqi 29 August Aditya Sengupta

Note: LATEX format adapted from template for lecture notes from CS 267, Applications of Parallel Comput-
ing, UC Berkeley EECS department.

1.1 Small Stuff is Hard to Figure Out

Quantum mechanics came about because classical mechanics stopped working. Around 1900, physicists were
super happy because electricity and magnetism were unified; mechanics seemed to make sense; and statis-
tical mechanics existed as a nice theory to explain thermodynamics. However, there were some unresolved
problems.

In 1792, Wedgewood discovered that the emitted colour of a heated substance depends only on the temper-
ature to which it is heated. Based on this, Kirchoff came up with a theory of blackbody radiation, which
gave us a theoretical infinite energy density which didn’t make sense. Blackbody radiation from a solid is
continuous, whereas atomic emission from a gas yielded discrete line spectra.

This led to some problems with the classical model of an atom, in which an electron orbited a nucleus; if an
oscillating electron creates light, then it also carries away energy which has to come from the orbital energy
of the electron. This would cause the orbit of an electron to decay and crash into the nucleus. Quantum
mechanics arose from wanting to resolve this.

1.2 Blackbodies

Consider a blackbody held at a certain temperature. This blackbody emits light. The energy for this emission
comes from thermal energy. In the early 1900s, scientists figured out how to characterize the light in terms of
emitted power per unit area, R(λ, T ). R over λ is usually an askew bell curve (add in tikzpicture). The area
under that curve represents the total power, which we intuitively see is finite. Experimentally, astronomers
found that this energy goes as T 4,

R(T ) =

∫ ∞
0

R(λ, T )dλ = σT 4 (1.1)

where σ = 5.67× 10−8 W
m2K4 .

We also see from the graph that there is a wavelength at which the energy peaks, which gives us Wien’s law,

λmaxT = 2.898× 10−3m ·K (1.2)

and the slope of the curve in the high-λ region gives us the classical formulation in Rayleigh-Jeans’ law,
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R(λ, T ) =
8πkBT

λ4
(1.3)

This theory caused an unbounded amount of energy at low wavelengths, which was considered unphysical. To
resolve this, we turn to (what else) harmonic oscillators. Consider a cube containing a network of harmonic
oscillators and a slit for light to come out. The blackbody approximation states that this system is at
equilibrium, for all frequencies.

The total power scales as the number of oscillation modes multiplied by the energy of each of the modes.

1.3 Standing Waves

All the oscillation modes are solutions to the wave equation. The classical wave equation is

∇2ψ(~r, t) =
1

c2
∂2

∂t2
ψ(~r, t) (1.4)

ψ is the thing that oscillates, that’s the technical term. Solving this differential equation requires boundary
conditions. Suppose the blackbody is a cube with side L; then, the boundary coonditions are

ψ(x = 0, y, z, t) = ψ(x = L, y, z, t) = 0 (1.5)

and the same along y and z. One possible solution to this is a sine wave,

ψ(~r, t) = A(t) sin(k1x) sin(k2y) sin(k3z) (1.6)

where ki = niπ
L . This is an ansatz, from which we can get further constraints on the coefficients by substi-

tuting into the wave equation.

−(n2
1 + n2

2 + n2
3)
π2

L2
A(t)B(x, y, z) =

1

c2
B(x, y, z)

∂2

∂t2
A(t) (1.7)

As another ansatz, set A(t) = A0 cos(ωt) + ϕ. THen, we get

ω2 =
c2π2

L2
(n2

1 + n2
2 + n2

3) (1.8)

To count the number of modes, we integrate over a density function (number of modes per frequency) g,

N(ω) =

∫ ω

0

g(ω′)dω′ (1.9)



Intuitively, we want to find all the n1, n2, n3 that satisfy

n2
1 + n2

2 + n2
3 ≤

ω2L2

c2π2
(1.10)

which is a phase-space sphere. Therefore, the solution corresponds to the volume of a sphere,

N(ω) =
1

8

(
4

3
π
ω3L3

c3π3

)
=

ω3V

6c3π2
(1.11)

Then, by the fundamental theorem of calculus, we can recover g,

g(f) =
dN(f)

df
=

4πf2V

c3
(1.12)

Also, there are two polarization directions, which gives us

g(f) =
8πf2

c3
V (1.13)

Classically, each of these modes has energy kBT , therefore we get

ρ(f) =
8π

c3
f2kBT (1.14)

and f = c
λ =⇒ df = −cdλλ2

Therefore, we get

ρ(f) =
8πkBT

λ4
(1.15)

which is Rayleigh-Jeans’ law from before. This is a problem (some would say a catastrophe) because not
every mode can have energy kBT .

7
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Physics 137A: Quantum Mechanics Fall 2019

Lecture 2: Basics of quantum theories (using the word “ansatz” a lot)
Lecturer: Irfan Siddiqi 3 September Aditya Sengupta

2.1 Planck’s quantum postulate

Planck postulated that an oscillator could not take all values of energy. Instead, he supposed that energy
was quantized in steps E ∼ nhf . The average energy can then be given by the sum of all the energies
multiplied by the probability of each one, which is a normalized weighting factor:

Ē =

∞∑
n=0

nhf
e−nhf/kBT∑∞
n=0 e

−nhf/kBT
(2.1)

To solve this, let x = e−hf/kBT . Then

Ē = hf

∞∑
n=0

n
xn∑
n=0 x

n
= hf

x

1− x
= hf

e−hf/kBT

1− e−hf/kBT
(2.2)

This gives us an overall ρ,

ρ(f, T ) =
g(f)

V
Ēn =

8πhf3

c3
1

ehf/kBT − 1
(2.3)

2.2 Bohr’s atomic model

In parallel, Bohr found a problem with a purely electromagnetic-orbital model of an atom; if every orbital
were allowed, the electron would spiral into the nucleus. Therefore, he proposed that not all orbits were
stable or allowed. Instead, only radii rn were allowed. Each orbital has an associated energy, so if an electron
transitioned between levels, it would absorb or emit light.

Each orbital has an associated angular momentum, and quantizing the radius quantizes the angular momen-
tum:

~L = ~r × ~p =⇒ Ln = mvrn = n~ (2.4)

2.3 de Broglie wavelengths

Based on the discovery of the wave nature of light, de Broglie suggested that everything could have wave
properties.
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λmatter =
h

p
(2.5)

f =
E

h
(2.6)

2.4 Discrete-Orbitals Model of the Atom

In a simplified version of an atom in which the electron and nucleus are equally and oppositely charged,

there is a Coulomb force ke2

r2 balancing a centripetal force mv2

r . The total energy is the sum of the kinetic
and potential energies, which gives us

E = T + V =
ke2

2r
+

(
−ke

2

r

)
= −ke

2

2r
(2.7)

Solving for the discrete radii, we get

rn =
n~
mev

=
n2~2

mke2
(2.8)

This reduces to just a proportionality constant on n2,

rn = n2a0 = n2 · 0.529Å (2.9)

and the discrete energies are given by

En = −ke
2

2a0

1

n2
=
−13.6 eV

n2
(2.10)

2.5 Shortcomings of Bohr’s atom

• fails to predict the intensity of emitted light

• limited success with multi-electron atoms

• fails to produce time dynamics

Overall, it did not produce a general scheme for quantization. More fundamentally, quantum theory needs
to be able to produce equations of motion to be useful.



2.6 Wave Mechanics

Waves have characteristic amplitudes and wavelengths. They can interfere and superpose with one another.
If matter is inherently waves, as postulated by de Broglie, these wave properties should be present for regular
matter.

Quantum mechanics supposes that everything can be described in terms of a wavefunction, ψ(x, t). It is
not possible to directly measure the wavefunction, but we can measure |ψ(x, t)|2. In theory, any property
Âψ(x, t) can be measured.

10
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Physics 137A: Quantum Mechanics Fall 2019

Lecture 4: Wave description of matter
Lecturer: Irfan Siddiqi 10 September Aditya Sengupta

4.1 Goal

We want to come up with a mathematical construction of how to describe matter as waves. Specifically, we
will try and construct a wavefunction ψ that contains all the information about matter in terms oof wave
properties. We cannot directly measure the wavefunction, but we can interact with it through operators.

4.2 Classical waves

Classically, the equation for a plane wave encodes the direction of propagation and its variations in space.
The direction of propagation is encoded in a vector k, whose magnitude is the spatial frequency of the wave.
The distance over which a part of the wave repeats is called the wavelength λ. Temporal variations are also
encoded in the period T and angular frequency ω.

All of this is encoded in a field equation of the form ~E(~r, t):

~E = ~E0e
i(~k·~r−ωt+ϕ) (4.1)

The ~k · ~r component represents the spatial behaviour of the wave, and the ωt component represents its
temporal behaviour. ϕ represents the starting condition.

Consider a one-dimensional wave propagating in the x̂ direction. It can be represented by

E = E0xe
i(kx−ωt+ϕ) (4.2)

We can superpose waves to create effects such as interference (cf. Young’s double-slit experiment).

| ~E|2 = ~E · ~E∗ = ( ~E01e
iδ1 + ~E02e

iδ2) (4.3)

The phase difference creates the interference term. Note that only a phase difference shows up; the absolute
phase is not physically significant.

The takeaway from this is that to carry out superposition, we add their wavefunctions even though these
wavefunctions are not directly measurable.

Max Born in 1926 considered identical copies of a system in which a measurement of ~r within volume d~r is
made. This gave us Born’s rule, relating a probability density to a wavefunction,



P (~r, t)d~r = |ψ(~r, t)|2d~r (4.4)

This gives us that P (~r, t) = ψ∗(~r, t)ψ(~r, t). If we integrate the wavefunction magnitude over all space, we
expect to get 1, because it is a probability.

∫
all space

|ψ(~r, t)|2d~r = 1 (4.5)

4.3 Particle Wavefunction: Single Plane Wave

Consider a free particle of mass m moving in the x̂ direction. It has an energy and a momentum that are
related by

E =
p2
x

2m
(4.6)

We want to describe this using plane waves, i.e. using the form

ψ(x, t) = Aei(kxx−ω(k)t) (4.7)

If we take the squared magnitude of this, we just get |ψ(x, t)|2 = |A|2. Integrating this over all space causes
the integral to go to infinity, not 1 as is physically required.

The plane wave approximation is still useful, as long as we normalize the wavefunction properly. Specifically,
the wavefunction of a free particle can be written as

ψ(x, t) = Aei(pxx−E(px)t/k) (4.8)

By taking a derivative, we can get

i~
∂ψ

∂t
= Eϕ (4.9)

−i~∂ψ
∂x

= pxψ (4.10)

This is a preliminary to the Schrodinger equation.

4.4 Particle Wavefunction: Sum of Plane Waves

ψ(x, t) =

∫ ∞
−∞

ei[pxx−E(px)t]/~φ(px)dp(x) (4.11)

13
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5.1 Recap

Recall that we introduced the idea of a wavefunction, which is a function ψ(x, t) whose amplitude squared
is a pdf, and on which operators can extract energy and momentum:

Ê = i~
∂

∂t
(5.1)

p̂ = −i~~∇ (5.2)

This gives us the eigenvalue equations

Êψ = Eψ (5.3)

p̂ψ = pψ (5.4)

5.2 Free particle model

Last time, we saw that a plane wave representation of a particle would cause the wavefunction amplitude
squared to go to infinity. The intuitive issue with this is it constrained x completely, meaning no information
about k and therefore about p could be derived (Heisenberg uncertainty.) To resolve this, we consider a
wavepacket model, where a particle is the sum of a number of plane waves of differing k. Allowing some
spread in x makes the spread in p more calculable.

Mathematically, we consider

ψ(x, t) =
1√
2π~

∫ ∞
−∞

ei[pxx−E(px)t]/~φ(px)dpx (5.5)

This depends on a weighting function φ(px). We will consider two different φs; a narrow peak function (in

a limit this will become the Dirac delta) and a Gaussian-like spread function that goes as e−p
2

.

5.3 The Peak Function

Suppose we have a φ(px) centered at some p0 with a full-width at half-maximum of 2∆px. For notational
convenience, let β(px) = pxx− E(px)t.
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ψ(x, t) =
1

2π~

∫ ∞
−∞

eiβ(px)/~φ(px)dpx (5.6)

Far away from p0, we get ψ → 0 because φ → 0. Also, we consider that β varies very little, otherwise it
would be like an integral over a sine which would average out to zero.

We also apply the so-called stationary phase condition,

dβ(px)

dpx

∣∣∣∣
px=p0

= 0 (5.7)

If we apply this to the given β, we get

x−
(
dE(px)

dpx

)
t = 0 (5.8)

This allows us to solve for something with the dimensions of velocity, which turns out to be the group
velocity:

vg =
dE(px)

dpx

∣∣∣∣
px=p0

(5.9)

Each component in the wavepacket moves at vphase = x
t = E(p0)

p0
.

Going back to the free particle, we want the group velocity to match the actual velocity of the particle:

vg = v =
p0

m
=⇒ dE(px)

dpx
=
px
m

=⇒ E(px) =
p2
x

2m
(5.10)

We know that at px = p0, the energy is given by E(p0) =
p2

0

2m . For points in momentum-space around that,
we write a Taylor expansion:

E(px) =
p2

0

2m
+
p0

m
(px − p0) +

(px − p0)2

2m
+ . . . (5.11)

= E(p0) + vg(px − p0) +
(px − p0)2

2m
+ . . . (5.12)

We drop the second-order term and integrate to get the wavefunction,

ψ(x, t) =
1√
2π~

∫ ∞
−∞

ei[pxx−E(p0)t−vgtpx+vgtp0]/~ψ(px)dpx (5.13)
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We pull out the part that is independent of px, and we get

ψ(x, t) =
1√
2π~

ei[p0x−E(p0)t]/~
∫ ∞
−∞

ei(px−p0)(x−vgt)/~φ(px)dpx (5.14)

The exponential term is a single plane wave moving at the group velocity, so a weighted integral over a
number of them represents an envelope. For convenience, we refer to the integral component as F (x, t). With
appropriate normalization on φ(px), we can absorb the 1

2π~ constant factor and say that |ψ|2 = |F (x, t)|2.

5.4 Fourier Transforms

The Fourier transform provides a general way to derive the coefficients of sines and cosines that make up
any function.

Consider f : R → R that is 2π periodic, i.e. it has the property that f(x+ 2π) = f(x)∀x ∈ R. This means
we only have to specify the values that f(x) takes on over an interval [−π, π] to fully specify it.

Since sines and cosines with argument nx are periodic with period 2π (or 2π
n , but for integral n that implies

periodicity over 2π), we suppose there exist coefficients Ai, Bi such that

f(x) =
1

2
A0 +

∞∑
n=1

(An cos(nx) +Bn sin(nx)) (5.15)

To find these, we use the property of orthogonality of sines and cosines, i.e. that
∫ π
−π cos(mx) cos(nx)dx = 0

if m 6= n, and the same for sines or for one sine one cosine. Therefore, we can derive the coefficients by
integrating the whole function with the corresponding sine or cosine,

Am =
2

π

∫ π

−π
f(x) cos(mx) (5.16)

(check against the textbook for this, I missed the exact expression and i’m too lazy to normalize anything
myself)

and similarly for Bm with the corresponding sine.

We could also use complex exponentials,

f(x) =
1√
2π

∞∑
n=−∞

cne
inx (5.17)

Cm =
1√
2π

∫ π

−π
f(x)e−imxdx (5.18)

The Fourier transform is a natural way to represent a wavepacket, because fundamentally the FT carries out
a sum of complex exponentials weighted by some function. In general, we have



f(x) =
1√
2π

∫ ∞
−∞

g(k)eikxdk ↔ g(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikxdx (5.19)

This gives us φ(px) in terms of ψ.

5.5 The Dirac Delta

The Dirac delta is the function whose FT is a single complex exponential:

δ(x− x′) =
1

2π

∫ ∞
−∞

eik(x−x′)dk (5.20)

17



Lecture 6: Wavepacket Fourier Analysis 18

Physics 137A: Quantum Mechanics Fall 2019

Lecture 6: Wavepacket Fourier Analysis
Lecturer: Irfan Siddiqi 17 September Aditya Sengupta

6.1 Position-Momentum Spread

Previously, we discussed the idea of a wavepacket, which has a representation
∑
ei(kx−ωt). Wavepackets in

space can be formally written as

ψ(x, t) =
1√
2π~

∫ ∞
−∞

ei[pxx−E(px)t]/~φ(px)dpx (6.1)

and particle and wave properties are related by E = ~ω, p = ~k. Now, we try to apply Fourier transform
properties; from combining the expressions for the Fourier transform and the inverse Fourier transform, we
can write

f(x) =
1

2π

∫ ∞
−∞

(
f(x′)e−ikx

′
dx′
)
eikxdk (6.2)

=

∫ ∞
−∞

f(x′)δ(x− x′)dx′ (6.3)

where the Dirac delta is formally defined as the Fourier transform of a single notch,

δ(x− x′) =
1

2π

∫ ∞
−∞

eik(x−x′)dk (6.4)

Some spread ∆k in φ(px) causes an envelope around a wavepacket, with a width that we can call ∆x. If we
restrict ∆x to be small, that causes increased spread in ∆k; if x is a Dirac delta, φ(px) becomes a completely
sine-like wave. This is intuitively why Heisenberg uncertainty has to be true.

6.2 Gaussian Wavepackets

Consider a Gaussian φ,

φ(px) = Ce
−(px−p0)

2(∆px)2 . (6.5)

Suppose we want to find φ(x, t = 0) (t is a constant term relative to φ so this doesn’t matter anyway but
for convenience we’ll say t = 0.) We can just substitute into the Fourier transform:
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φ(x) =
1√
2π~
· C
∫
e
ipxx

~ e
−(px−p0)2

2(∆px)2 dpx (6.6)

Using the result

∫
e−αu

2

e−βudu =

√
π

α
eβ

2/4α (6.7)

we can evaluate this wavefunction to get

φ(x) =
π−1/4

√
~

(∆px)1/2eip0x/~e−
(∆px)2x2

2~2 (6.8)

Hey look that’s a Gaussian. Match the negative-real-exponential part of this to a Gaussian in x:

− (∆px)2x2

2~2
= − x2

2∆x2
=⇒ ∆x∆p = ~ (6.9)

Heisenberg’s uncertainty principle (which we’ll get to later) states that this is the minimal valaue of ∆x∆p.
This makes Gaussian wavepackets a good approximation to classical physics.

6.3 Time Dependence

If we propagate the Gaussian wavepacket forward in time, it starts to spread. We can evaluate this, starting
from the general wavepacket ψ:

ψ(x, t) =
1√
2π~

∫ ∞
−∞

e
i[pxx−E(px)t]

~ e
−(px−p0)2

2(∆px)2 dpx (6.10)

We consider the case of a free particle, E =
p2
x

2m , and evaluate the integral:

ψ(x, t) = π−1/4

[
∆px/~

1 + i(∆px)2t/m~

]
exp

 ip0x/~−
(

∆px
~

)2
x2

2 − ip
2
0t/2m~

1 + i(∆px)2t/m~

 (6.11)

To verify this, we can set t = 0 and confirm we get the previous expression.

Now, we can find modulus ψ squared:



|ψ(x, t)|2 =
1√
π

∆px/~[
1 + (∆px)4t2

m2~2

]1/2 exp

[
−(∆px/~)2(x− vgt)2

1 + (∆px)4t2/m2~2

]
(6.12)

We match the exponential to a Gaussian to get

∆x(t) =
~

∆px

[
1 +

(∆px)4

m2~2
t2
]1/2

(6.13)

Consider t1 = m~
(∆px)2 . For an electron, we have an allowed ∆x ∼ 10−10 m. This gives us a ∆px = ~

∆x ∼ 10−24.

Consider a 1g mass localized to within ∆x ≈ 10−6 m. The corresponding t1 ∼ 1019s. This suggests that on
human timescales, quantum mechanics is equally well suited to describe macroscopic objects and microscopic.

6.4 Interpreting the Conjugate Wavefunction

The function φ(px, t) can be interpreted as its own wavefunction:

φ(px, t) =
1√
2π~

∫ ∞
−∞

e−ipxx/~ψ(x, t)dx (6.14)

6.5 Uncertainty in Experiments

Recall the double-slit experiment, in which there are two slits with a distance d between them and a length
L to a screen. If we fire an electron through one of the slits, we will get a sine-like interference pattern.
But if we look through one of the slits and either detect an electron or don’t, we change the outcome of the
experiment and don’t see the interference pattern. The slits are resolved if λ < d.

The momentum spread of the electron is

∆pe ≈
h

λ
>
h

d
(6.15)

and therefore d∆pe > h. Through geometry, we get

∆θ ≈ ∆p

p
=

h

pd
=
λe
d

(6.16)

Therefore, we get L∆θ = λe
L
d . This gives us a description of the uncertainty in the experiment.

Similarly, ∆E∆t ' ~. In time, the size of a wavepacket should be approximately the lifetime of a particle.
If we consider a wavepacket with ∆t ∼ some τb, we can say the energy spread is known only to within
∆Eb = ~

τb
.

20
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7.1 Motivation

Previously, we saw that a Gaussian wavepacket had an uncertainty ∆x∆px = ∆E∆t = ~. It is generally
true that ∆x∆px & ~. But we still don’t know how to actually find ψ; all we’ve got is some solutions that
work (the plane wave and the Gaussian wavepacket).

We want some way to determine ψ such that it is linear, it agrees with classical physics in limiting cases,
and such that we can determine time-evolution once we know ψ(x, t0). This means we should only have one
derivative in time, ∂ψ

∂t .

7.2 “Ansatz” is my favourite word

Consider a 1D nonrelativistic particle of mass m and momentum ~p = pxx̂. We previously saw that the
corresponding wavefunction is

ψ(x, t) = Aei(pxx−E(px)t)/~ (7.1)

We’re allowed one derivative in time:

∂

∂t
ψ(x, t) =

−iE
~

ψ(x, t) (7.2)

To match the E term, which we know is equal to p2
x/2m, we take two derivatives in space:

∂2

∂x2
ψ(x, t) =

−p2
x

~2
ψ (7.3)

Therefore, a plane wave satisfies

i~
∂

∂t
ψ(x, t) =

−~2

2m

∂2

∂x2
ψ(x, t) (7.4)

This is the time-dependent Schrödinger equation for a free particle.

We can simplify the notation a bit by introducing the notion of operators,

Ê = i~
∂

∂t
; p̂x = −i~ ∂

∂x
(7.5)
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7.3 Behaviour of Free Particles

Consider a force ~F (~r, t) acting on a free particle. Suppose this force is conservative, i.e. there exists some
scalar function V (~r, t) such that

~F (~r, t) = −~∇V (~r, t) (7.6)

Let’s introduce a potential energy operator V̂ (~r, t)ψ(~r, t) = V (~r, t)ψ(~r, t). This is an eigenvalue equation
with eigenvalue V (~r, t) and eigenfunction ψ(~r, t). To agree with classical physics, we’re going to require that
the eigenvalue is real. Therefore, we have to consider Hermitian operators, i.e. operators such that Ĥ = Ĥ∗.

Thus,

Êψ(~r, t) =

[
p̂2

2m
+ V̂ (~r, t)

]
ψ(~r, t) (7.7)

Replacing Ê and p̂ with the operators,

i~
∂

∂t
ψ(~r, t) =

[
−~2

2m
∇2 + V̂ (~r, t)

]
ψ(~r, t) (7.8)

This is the equation for life a generalized energy-balance equation that we can solve for specific cases. If we
tried to solve this for actual matter, we wouldn’t be able to, because we have no idea what V̂ is.

We’re going to specify V̂ and solve for ψ based on that. First, we look at standing wave solutions that are
variable-separable, ψ(~r, t) = ψ(~r)A(t). These are stable solutions that correspond to measurements.

Next, we exploit the fact that the norm-squared of the wavefunction is a probability density:

∫
allspace

|ψ(~r, t)|2d~r = 1 (7.9)

∂

∂t

∫
|ψ(~r, t)|2d~r = 0 (7.10)∫

V

[
ψ∗
(
∂ψ

∂t
+

(
∂ψ∗

∂t

)
ψ

)]
d~r (7.11)

Rewriting this, we get

0 =
i~
2m

∫
V

~∇ · [ψ∗(∇ψ)− (∇ψ∗)ψ] d~r (7.12)

Call everything in the square brackets ~j. Then we have an integral over a volume of a divergence, so we can
rewrite this as a surface integral:



−
∫
~j · d~s =

∂

∂t

∫
V

|ψ(~r, t)|2d~r (7.13)

where

j =
~

2mi
[ψ∗(∇ψ)− (∇ψ∗)ψ] (7.14)

is the probability current.

I missed something, but we got the equation

0 =
1

i~

∫ [
ψ∗(Ĥψ)− (Ĥψ)∗ψ

]
d~r (7.15)

Therefore, the inside of the integral must be zero. We get that Ĥ = Ĥ∗, meaning that Ĥ is Hermi-
tian.

23
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8.1 Recap

So far, we have described reality using the wavefunction ψ, and more directly through a probability density
|ψ|2 or through operators applied to the wavefunction. For example, i~ ∂

∂t gives the energy, and −i~~∇ gives
the momentum vector of the system. We also derived the Schrödinger equation, which we can encode in an
operator:

i~
∂ψ

∂t
=

[
−~2

2m
∇2 + V̂ (~r, t)

]
ψ = Ĥψ (8.1)

8.2 Measurements and Eigenvalues

Making a measurement can be considered to be applying an operator M̂ , from which we recover its eigen-
values,

M̂ψm = mψm (8.2)

This collapses the wavefunction to ψm, and you measure “m”. This suggests that m takes on discrete values,
although it is sometimes continuous. Specifically, m is continuous if we do not have boundary conditions,
i.e. in the limit of large length scales.

8.3 Expectations

It can be useful to consider the expected value of a certain measurement, so that we get some idea of what
m is likely to be. This can be found by integrating all the possible outcomes over its probability:

〈~r〉 =

∫
~rP (~r, t)d~r =

∫
ψ∗(~r, t)~rψ(~r, t)d~r (8.3)

The ~rψ(~r, t) in this is an eigenvalue equation, so we can say

〈f(~r, t)〉 =

∫
ψ∗f̂(~r, t)ψ(~r, t)d~r (8.4)
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Similarly, in momentum space, we can say

g(~p, t) =

∫
ψ∗(~r, t)ĝ(−i~~∇, t)ψ(~r, t)d~r (8.5)

For a concrete example, take

〈xp̂x〉 =

∫
ψ∗(~r, t)x̂p̂xψ(~r, t)d~r (8.6)

=

∫
ψ∗(x, t)x

(
−i~ ∂

∂x

)
ψ(x, t)dx (8.7)

Then, by integration by parts where we let u = ψ∗x and v = ψ, we get

〈xpx〉 = −i~xψ∗(x, t)ψ(x, t)|∞−∞ + i~
∫
ψ

[
∂

∂x
(xψ∗(x, t))

]
dx (8.8)

= i~
∫
ψ(x, t)x

∂ψ∗(x, t)

∂x
dx+ i~

∫
ψ∗ψdx (8.9)

= 〈xpx〉∗ + i~ (8.10)

Through a similar process, we get 〈pxx〉 = 〈pxx〉∗ − i~.

8.4 Commutators

We just saw that px does not commute with x. In more generality, we can say that two operators commute
if its commutator is identically zero, where the commutator is defined by

[
Â, B̂

]
= ÂB̂ − B̂Â (8.11)

If this is zero, then the two operators commute, meaning that they share eigenfunctions and can be measured
simultaneously. If this is nonzero, they do not commute, meaning there are no common eigenfunctions and
that they are related by an uncertainty relation.

Let’s compute the commutator of x̂ and p̂:

[x̂, p̂x] = [x̂p̂x − p̂xx̂] = x

(
−i~ ∂

∂x

)
+ i~

(
∂

∂x

)
x (8.12)

To make this clearer, we apply this commutator to a dummy ψ̂:

[x, px]ψ̂ =

(
−i~x∂ψ

∂x
+ i~

[
ψ + x

∂ψ

∂x

])
= i~ψ (8.13)



Therefore [x, px] = i~. This tells us that x and px do not commute and do not have common eigenfunctions.

8.5 Time-Independent Schrödinger Equation

To get time independence, we want to find separable solutions:

ψ(~r, t) = ψ(~r)f(t) (8.14)

From this, we can eventually construct the general solution as a linear combination of these separable
solutions. We substitute this separated form into the time-dependent Schrödinger equation:

i~
∂ψ(~r, t)

∂t
=

[
−~2

2m
∇2 + V̂ (~r, t)

]
ψ(~r, t) (8.15)

i~ψ(~r)
df(t)

dt
=

[
−~2

2m
∇2ψ(~r) + V̂ (~r)ψ(~r)

]
f(t) (8.16)

Divide by ψ(~r)f(t) to get

i~
1

f(t)

df(t)

dt
=

1

ψ(~r)

[
−~2

2m
∇2ψ(~r) + V (~r)ψ(~r)

]
(8.17)

These both have to equal a constant (cf. separation of variables), say E, so we get

i~
df(t)

dt
= Ef(t) =⇒ f(t) = Ce−iEt/~ (8.18)

Therefore, we get

[
−~2

2m
∇2 + V̂ (~r)

]
ψ(~r) = Eψ(~r) (8.19)

We can write this compactly as Ĥψ = Eψ, which is very visibly an eigenvalue equation whose eigenval-
ues are the allowed energies (eigenenergies) and whose eigenfunctions are the allowed associated wavefunc-
tions.
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9.1 Graphically Solving the Schrödinger Equation

We’ve seen the Schrödinger equation a few times now and we know it can be expressed as an eigenvalue
equation where the eigenvalues are the allowed energies. To construct a basis of solutions, we use a spatial
representation, ψ = ψ(~r, t). The x̂ operator is just multiplication by x, and the p̂x operator is −i~ ∂

∂x .

Suppose V (x) is such that it has asymptotes at V± (finite values) at ±∞, and it has a minimum at x0. We
want to solve the Schrödinger equation for this case.

[
−~2

2m

∂2

∂x2
+ V (x)

]
ψ(x) = Eψ(x) (9.1)

Rearranging gives us

d2ψ(x)

dx2
=

2m

~2
[V (x)− E]ψ(x) (9.2)

9.1.1 Classical

We split this into four regions: E < Vmin, Vmin < E < V−, V− < E < V+, E > V+. Classically, we expect
no solutions at E < Vmin. For Vmin < E < V−, the classical solution is confined between the x values with
total energy less than or equal to E. The same logic applies for V− < E < V+, with the exception that the
solution is not bounded to the left because the energy never exceeds E to the left of the intersection with
V+ or any energy V− < E < V+. Finally, if E > V+, there are solutions everywhere.

9.1.2 Quantum

Quantum mechanically, we want ψ(x) to be finite and continuous, and ψ′(x) to be continuous. In the region

E < Vmin, the second derivative of ψ curves up because ∂2ψ
∂x2 has the same sign as x; in the region E > V+,

the second derivative curves down; in the intermediate regions, the second derivative alternates its curvature
(crosses 0). We see that quantum mechanically as well as classically, no solution exists.

In the second region, ψ′′ and ψ only have opposing signs within the classical solution region, i.e. the
intersections x1, x2 where V (x) = E. Within this allowed region, the solutions are sinusoidal. However, for
the continuity of the wavefunction and its derivative, we have to allow the wavefunction to decay outside the
classical region to zero, meaning that there is some region of nonzero probability that would not be classically
allowed. This is exponential decay, so in the limit of physically macroscopic distances, this probability looks
like a step directly to zero, but it does this continuously but very fast.
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Figure 9.1: Quantum and classical solutions to the Schrödinger equation for an interesting potential
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As V (x)→∞, we want this to decay even faster. We will later see that the decay constant is proportional
to the energy difference between V (x) and E.

9.2 Eigenfunctions and the general solution

If two eigenfunctions ψE , ψE′ have E 6= E′, they are orthogonal.

∫
ψ∗E′(~r)ψE(~r)d~r = δEE′ (9.3)

We can show this using the eigenvalue property.

ĤψE = EψE (9.4)

ψ∗E′(ĤψE) = Eψ∗E′ψE (9.5)

(ĤψE′)
∗ = E′ψ∗E′ (9.6)

(ĤψE′)
∗ψE = E′ψ∗E′ψE (9.7)

(9.8)

By algebra on the above things (I’m too lazy to do labels) we get

(E − E′)
∫
ψ∗E′ψEd~r =

∫
ψ∗E′(ĤψE)− (ĤψE′)

∗ψEd~r (9.9)∫
ψ∗E′HψE − ψ∗E′H∗ψE = 0 (9.10)

∴ (E − E′)
∫
ψ∗E′ψEd~r = (E − E′)

∫
ψ∗E′(~r)ψE(~r)d~r = δEE′ (9.11)

We postulate that {ψE} represent all possible energy states and span the space of wavefunctions. Then, any
valid wavefunction should be of the form

ψ(~r, t) =
∑
E

CE(t)ψE(~r) (9.12)

To find these coefficients, we use the Fourier trick from, like, everything:

∫
ψ∗E′(~r)ψ(~r, t)d~r =

∑
E

CE(t)

∫
ψ∗E′(~r)ψ(~r)d~r = CE′(t) (9.13)

We also know that all time dependence is rotations clockwise on the wavefunction. Therefore, the general
solution is



ψ(~r, t) =
∑
E

CE(t0)eiE(t−t0)ψE(~r) (9.14)
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10.1 Zero Potential

For the simplest case of a 1D free particle, V (x) = 0, so the differential equation that we get is just a regular
second-order equation.

− ~2

2m

∂2ψ(x)

∂x2
= Eψ(x) =⇒ k =

√
2mE

~
(10.1)

The general solution to this is φ(x) = Aeikx + Be−ikx. Further, we require that k is real. We can observe
that

1. E = ~2k2

2m ≥ 0 and p = ~k.

2. E can be considered continuous; we don’t need to bring in quantization yet.

3. E is doubly degenerate, because both eikx and e−ikx are present.

4. e±ikx are also eigenfunctions of th momentum opeerator: p̂ = −i~ ∂
∂x , and p̂(eikx) = ~k(eikx).

We know what the general time-dependence of a solution to the Schrodinger equation looks like, so we can
set up the general time-dependent solution based on this:

φ(x, t) = (Aeikx +Be−ikx)e−iEt/~ = Aei(kx−ωt) +Be−i(kx−ωt) (10.2)

This is a sum of plane waves. To proceed, set B = 0 and we get φ(x, t) = Aei(kx−ωt). The intuition behind
this is a particle moving to the right with p = ~k = 2π~

λ . The velocity of this particle is ∂ω
∂k = ~k

m .

Note that the probability of finding the particle anywhere is |φ(x, t)|2 = |A|2, which is independent of x, t.
This is because this is an idealized solution for a particle of momentum ~k. To check this, we require that
the probability current density obey the classical relation j = Pv.

j =
~

2mi

[
ψ∗
∂ψ

∂x
− ψ∂ψ

∗

∂x

]
=

~
2mi

[A∗(Aik)−A(A∗(−ik))] (10.3)

j =
~

2m
|A|2 = Pv (10.4)

If we consider A = 0 instead, this is the same as the opposite case but with the particle moving in the −x
direction.



Next, consider the case A = B. We get

φ(x, t) = A(eikx + e−ikx)e−iωt = 2A cos(kx)eiωt (10.5)

This is a standing wave with modes xn =
±(π2 +nπ)

k .

Then, it’s natural to consider A = −B, which gives us φ(x, t) = 2iA sin kxe−iωt. This gives us modes
xn = ±nπ

k . And so on.

10.2 Nontrivial Potentials

Consider the step function, V (x) = V0u(x). Classically, if E < V0 the particle should bounce off the wall,
and under quantum mechanics, there is some finite probability of finding the particle in x > 0, which is
called tunnelling. We can construct solutions in the V = 0 and V = V0 regions, and stitch them together by
requiring the continuity of the wavefunction and its derivative.

Aeikx +Be−ikx = De−κx =⇒ A+B = D (10.6)

−ik(A−B) = −κD =⇒ A =
1 + iκ/k

2
D,B =

1− iκ/k
2

D (10.7)
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11.1 Potential Step

Consider the potential step function,

V (x) =

{
0 x < 0

V0 x ≥ 0
(11.1)

There are no solutions of Schrödinger’s equation for E < 0, so we can split this up into just two cases.

11.1.1 E < V0

Let’s first consider the case 0 < E < V0; then we get

d2ψ(x)

dx2
+ k2ψ(x) = 0, x < 0

d2ψ(x)

dx2
− κ2ψ(x) = 0

for k =
√

2mE
~ , and

[
2m
~2 (V0 − E)

]1/2
. The solutions to these are ψ(x) = Aeikx + Be−ikx for x < 0, and

ψ(x) = Ceκx +De−κx. To satisfy the wavefunction dying out as x→∞, we set C = 0, then we require that
the wavefunction and its derivative are continuous at x = 0. This gives us

A+B = D (11.2)

ik(A−B) = −κD (11.3)

We can use this to solve for B
A and D

A so that we only have one amplitude factor. This gives us

ψ(x) =

{
2Aeiα/2 cos(kx− α/2) x < 0

2Aeiα/2 cos
(
α
2

)
e−κx x ≥ 0

(11.4)

where α = 2 tan−1
[
−
(
V0

E − 1
)1/2]

. We’re interested in the probabilities that the particle shows up in the

left or right. We get this by calculating |ψ|2:
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P (x) =

{
4|A|2 cos2(kx− α/2) x < 0

|D|2e−2kx x ≥ 0
(11.5)

It’s interesting that the x < 0 case has oscillatory behaviour. This physically shows up due to an interference
pattern of a plane wave with its reflection off thee barrier. To the particle under thee barrier, ∆x ≈ 1

κ and
therefore

∆px &
~
δx
≈ ~κ = [2m(V0 − E)]1/2 (11.6)

Therefore the uncertainty in the energy is

∆E =
(∆px)2

2m
& V0 − E (11.7)

i.e. we can’t find the particle there.

11.1.2 E > V0

This is similar, but now the solution is oscillatory in both regions.

ψ(x) =

{
Aeikx +Be−ikx x < 0

Ceik
′x +De−ik

′x x > 0
(11.8)

We can discard D without loss of generality (assume the particle is left-incident) and we essentially end up
with the Fresnel equations:

A+B = C

k(A−B) = k′C

B

A
=
k − k′

k + k′
,
C

A
=

2k

k + k′

R =
|B|2

|A|2
=

[
1−

(
1− V0

E

)2]2[
1 +

(
1− V0

E

)2]2
R drops off gradually with E/V0 after E/V0 > 1 (which is the case we’re assuming). Further, we get the
transmission coefficient,

T =
v′|C|2

v|A|2
=

4
(
1− V0

E

)2(
1 +

(
1− V0

E

)1/2)2 (11.9)



11.2 The Potential Barrier

Consider

V (x) =

{
V0 0 < x < a

0 otherwise
(11.10)

(he didn’t center it about 0 I’m disgusted)

The process here is similar to above, except now we have three places to enforce boundary conditions:
x = 0, x = a, x→∞.

Here, we get

ψ(x) = Feκx +Ge−κx for x ∈ [0, a], κ =

(
2m

~2
(V0 − E)

)1/2

(11.11)

To the left we have the usual oscillating sum, and to the right we have one oscillating component (there’s
no reflection causing an e−ikx component on the right.)

A+B = F +G

ik(A−B) = κ(F −G)

algebra!

B

A
=

(k2 + κ2)(e2κa − 1)

e2κa(k + iκ)2 − (k − iκ)2
(11.12)

C

A
=

4ikκe−ikaeκa

e2κa(k + iκ)2 − (k − iκ)2
(11.13)

R =

(
1 +

4E(V0 − E)

V 2
0 sinh2(κa)

)−1

(11.14)

T =

(
1 +

V 2
0 sinh2(κa)

4E(V0 − E)

)−1

(11.15)

This is where quantum tunnelling comes from: we see that |ψ|2 is nonzero in the high-potential region as is
required for continuity. This is a totally non-classical effect.

T → 1 only when k′a = nπ; these are Fresnel resonances.

WHAT DOESSPECIALRELAT IVIT Y ′LOOK′LIKE?
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12.1 Infinite Square Well

Consider the potential V (x) =

{
0 |x| ≤ a
∞ |x| > a

. We can solve the Schrödinger equation in this region by

enforcing the continuity of ψ. We can’t enforce continuity of ψ′ because of the infinite potential. Within the

potential well, we have ψ(x) = Aeikx+Be−ikx where k =
√

2mE
~ . For continuity of ψ, we want A cos(ka) = 0

and B sin(ka) = 0.

If B = 0 then cos(ka) = 0, so kn = nπ
2a = nπ

L . Normalization gives us A = 1/
√
a, so we can write the even

solution,

ψn(x) =
1√
a

cos
(nπx

2a

)
(12.1)

for n = 1, 3, 5, . . . .

If A = 0 then sin(ka) = 0, which similarly gives us the odd solutions,

ψn =
1√
a

sin
(nπx

2a

)
(12.2)

The general solution is just a sum of these. The energy of each of these states is

En =
~2k2

n

2m
=

~2π2n2

2mL2
(12.3)

For a 1D even potential, we always have definite parity eigenstates.

12.2 Finite Square Well

Suppose

V (x) =

{
−V0 |x| ≤ a
0 |x| > a

(12.4)
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Solutions with E > 0 are the scattering states, and E < 0 are the bound states. For −V0 < E < 0, we get

d2ψ(x)

dx2
+ α2ψ(x) = 0, α =

[
2m

~2
(V0 + E)

]1/2

(12.5)

for |x| < a, and

d2ψ(x)

dx2
− β2ψ(x) = 0, β =

(
−2mE

~2

)1/2

(12.6)

for |x| > a. Therefore, the even solutions are ψ(x) = A cos(αx), x ∈ [0, a] and Ce−βx, x > a. Similarly, the
odd solutions, are ψ(x) = B sin(αx), x ∈ [0, a] and Ce−βx, x > a. We apply boundary conditions on both at
x = a. For the even solution, we get α tan(αa) = β, and for the odd one, we get α cot(αa) = −β.

We can’t solve this analytically, but we can do it graphically. Let ξ = αa, η = βa. Then the equations

become ξ tan ξ = η, ξ cot ξ = −η and ξ2 + η2 = γ2, where γ =
(

2mV0a
2

~2

)1/2

. In ξ − η phase space, this

represents intersections of tangent/cotangent curves with lines of constant radius (arcs of circles), so we can
find these points graphically.

Within the well, only discrete energies exist, and above it, energies can be said to exist in a continuous
spectrum.

12.3 Harmonic Oscillator

Recall that a normal harmonic oscillator is characterized by F = −Kx and V (x) = 1
2Kx

2. We can consider

the wavefunction of a particle in this potential. We claim that ψn ∼ e−x
2

Hn(x), where Hn(x) is the nth
Hermite polynomial.

Let Ĥ = −~2

2m
d2

dx2 + 1
2Kx

2. Further, we define dimensionless constants λ = 2E
~ω , ξ = αx, and α =

(
mω
~
)1/2

.
Then, we want to solve

d2ψ(ξ)

dξ2
+ (λ− ξ2)ψ(ξ) = 0 (12.7)

As |ξ| → ∞, the asymptotic solution is
(
d2

dξ2 − ξ2
)
ψ(ξ) = 0 =⇒ ψ(ξ) = e±ξ

2/2. Since the Gaussian decays

fast enough, we can say that this multiplied by any polynomial is also a solution asymptotically.

ψ(ξ) = H(ξ)e−ξ
2/2 (12.8)

If we substitute this into the original equation, we can get some constraints on what the polynomial H(ξ)
has to be.



d2H

dξ2
− 2ξ

dH

dξ
+ (λ− 1)H = 0 (12.9)

This is the Hermite equation. To solve it, we’ll first look for even solutions, of the form H(ξ) =
∑∞
l=0 clξ

2l,
where c0 6= 0. Substitute this into the Hermite equation, and we get

∞∑
l=0

[
2l(2l − 1)clξ

2(l−1) + (λ− 1− 4l)clξ
2l
]

= 0 (12.10)

We can rewrite this to have only ξ2l terms together, and require that each of those is 0. We get

cl+1 =
4l + 1− λ

2(l + 1)(2l + 1)
cl (12.11)

If you keep all the terms, you get an unphysical wavefunction, so we’ll need to terminate the series. Next
time, we’ll see how that works.
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Previously, we got a recurrence relation for the coefficients of the solution to the Hermite equation:

cl+1 =
4l + 1− λ

2(l + 1)(2l + 1)
cl (13.1)

For large l, cl+1cl ∼ 1
l , so cl is approximately geometric or exponential. Consider

ξ2peξ
2

= ξ2p

(∑
l

(ξ2)l

l!

)
(13.2)

Further, consider ψ ∼ e−ξ2/2H ∼ ξ2pe+ξ2/2. This blows up, so we can’t take this.

Suppose we want the series to terminate at some N , i.e. wee ar requiring that cN 6= 0, cN+1 = 0. Thereefore
the numerator in the recurrence relation has to be zero, i.e.

λ = 4N + 1 (13.3)

Since λ was a ratio of energies, we’ve required that the energy is quantized.

Similarly for the odd solutions, we get

H(ξ) =

∞∑
l=0

dlξ
2l+1, d0 6= 0 (13.4)

dl+1 =
4l + 3− λ

2(l + 1)(2l + 3)
dlλ = 4N + 3 (13.5)

Recall that λ = 2E
~ω , so solving for all the energies allowed, we get

En =

(
n+

1

2

)
~ω (13.6)

“If you become a journalist, you should remember this result; if you become a physicist, you should live by
this result.”

The 1
2~ω term means we never have zero energy, as this would result in simultaneously knowing the exact

position and momentum of the particle.
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13.1 General solutions to the Hermite equation

We previously saw that general solutions to the Hermite equations have the form

ψn(ξ) = e−
ξ2

2 Hn(ξ) (13.7)

The nth polynomial is given by the expression

Hn(ξ) = (−1)neξ
2 dn

dξn
e−ξ

2

= e
ξ2

2

(
ξ − d

dξ

)n
e−

ξ2

2 (13.8)

The first few Hermite polynomials are

H0(ξ) = 1

H1(ξ) = 2ξ

H2(ξ) = 4ξ2 − 2

H3(ξ) = 8ξ3 − 12ξ

Combining this with requiring that solutions are normalized in the sense that
∫
ψ∗n(x)ψn(x)dx = 1, we get

ψn(x) =

(
α√
π2nn!

)1/2

e−α
2x2/2Hn(αx) (13.9)

where α =
(
mω
~
)1/2

.

This is the time-independent solution; now, we’ll look at the time-dependent case. We’re interested in
creating solutions of the form ψ(~r, t) =

∑
E cE(t)ψE(~r), where ψE is an eigensolution; that is, ĤψE = EψE .

i~
∂

∂t
ψ(~r, t) = i~

∂

∂t

∑
E

cE(t)ψE(~r) = Ĥ
∑
E

cE(t)ψE(~r)

=
∑
E

cE(t)ĤψE(~r)

=
∑
E

cE(t)EψE(~r)

We multiply by ψ∗E′(~r) and use orthogonality to get

i~
∂

∂t

∑
E

cE(t)

∫
ψ∗E′(~r)ψE(~r)d~r =

∑
E

cE(t)E

∫
ψ∗E′(~r)ψE(~r)d~r (13.10)

i~
d

dt
cE(t) = EcE(t) (13.11)



i.e. we get

cE(t) = cE(t0)eiE(t−t0)/~ (13.12)

and so

ψ(~r, t) =
∑
E

cE(t0)e−iE(t−t0)/~ (13.13)

=
∑
E

(∫
ψ∗E(~r′)ψ(~r′, t0)d~r′

)
eiE(t−t0)/~ (13.14)

Taking the complex conjugate of this, we get

ψ∗(~r, t) =
∑
E′

cE′(t0)ψ∗E′(~r)e
iE(t−t0)/~ (13.15)

Then, we let cE = cE(t0)eiE(t−t0)/~ and require that ψ integrates to 1, to get

1 =
∑
E

∑
E′

c∗E′cEe
−i(E−E′)t/~

∫
ψ∗E′(~r)ψE(~r)d~r (13.16)

=
∑
E

∑
E′

c∗E′cEe
−i(E−E′)t/~δE′E (13.17)

1 =
∑
E

|cE |2 (13.18)

The sum of eigenstates has a non-trivial time dependence.

For example, let’s try and find the expectation of the Hamiltonian operator for a general state.

〈H〉ψ =

∫
ψ∗(~r, t)Ĥψ(~r, t)d~r (13.19)

=
∑
E

∑
E′

c∗E′cEe
−i(E−E′)t/~

∫
ψ∗E′(~r)ĤψE(~r)d~r (13.20)

=
∑
E

|cE |2E (13.21)
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14.1 Motivation

So far, it seems like waves are essential to quantum mechanics, so we’d like a more compact representation
of a wavefunction so that we don’t have to keep writing out integrals and the definitions of operators. This
will allow us to carry out more complicated operations; for example, the expectation value of x in the 48th
state of the harmonic oscillator.

〈x〉 =

∫
ψ∗x̂ψdx, ψ ∼ e−x

2/2H49(x) (14.1)

A more abstract representation would be helpful here. To do this, we use Dirac notation, or bra-ket notation.
This enables us to use matrix methods in quantum mechanics as well as carry out algebraic manipulations
more easily. We write down a wavefunction as a ket |ψ〉, and we’ll see how to apply operators to it later.
For now, we introduce some postulates, based on which we’ll build up to a full theory:

Postulate 1. An ensemble of physical systems can be expressed by a wavefunction containing all the knowable
information. If we have a system of N particles, then a wavefunction ψ(~r1, . . . , ~rn, t) completely
expresses the system; ψ∗ψ gives the probability of particle 1 at ~r1, 2 at ~r2, and so on.

Postulate 2. Superposition: we want our new formalism to reflect the fact that if ψ1, ψ2 are solutions to the
Schrödinger equation, then so is ψ = c1ψ1 + c2ψ2.

14.2 The Notation

Dirac notation is a way of denoting an inner product between an adjoint/“bra” on the left of the bracket,
and a vector/“ket” on the right.

〈ψ1|ψ2〉 =

∫
ψ∗1(~r)ψ2(~r)d~r (14.2)

Dirac brackets have the following properties:

1. Conjugate-symmetry:

〈ψ2|ψ1〉∗ = 〈ψ1|ψ2〉 (14.3)

2. Vector scaling:

〈ψ1|cψ2〉 = c 〈ψ1|ψ2〉 (14.4)
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3. Conjugate-adjoint scaling:

〈cψ1|ψ2〉 = c∗ 〈ψ1|ψ2〉 (14.5)

4. Superposition of vectors:

〈ψ3|ψ1 + ψ2〉 = 〈ψ3|ψ1〉+ 〈ψ3|ψ2〉 (14.6)

5. Orthonormality of ψs: if ψi, ψj are orthonormal (e.g. the first and second eigenstates of a harmonic
oscillator), then 〈ψi|ψj〉 = δij .

6. Momentum space normalization: 〈Φ|Φ〉 = 1.

Further, we can introduce Hermitian operators in Dirac notation, and say that they correspond to real
eigenvalues. We add the following postulates relating to operators:

Postulate 3. Dynamical variables correspond to linear operators, whose eigenvalues are the observable values.

Postulate 4. A precise measurement of some dynamical variable whose linear operator is Â corresponds to one
eigenvalue an, and ψ corresponds to some eigenstate ψn, i.e. Âψn = anψn.

Postulate 5. A series of measurements on an identical ensemble should give identical results.

In general,

〈
x
∣∣∣Âψ〉 =

〈
Âx
∣∣∣ψ〉 =

〈
x|Â

∣∣∣ψ〉 (14.7)

If ψ is an eigenfunction, then this allows us to say

〈
ψn|Â

∣∣∣ψn〉 = an 〈ψn|ψn〉 (14.8)

Postulate 5 can be simply written as 〈Â〉 =
〈ψ|Â|ψ〉
〈ψ|ψ〉 .

Suppose we have some eigenstuff (that’s the technical term) Â : ψn, an, and B̂ : φn, bn: if we measure Â
or B̂, we get an eigenstate of that operator. If Â and B̂ commute, then they share eigenstates. That is, if
you operate Â then B̂ on a state and you get the same result as if you’d operated B̂ then Â, the eigenstate
they’re operating on has to be the same.

14.3 Adjoint Operators

We define the adjoint operator to an operator as follows:

|φ〉 = Â |x〉 ⇐⇒ 〈φ| = 〈x| Â† (14.9)

This is equivalent to a dual space transformation. In general, A∗ 6= A†. The rules for taking the adjoint are
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1. Conjugate scaling: (cÂ)† = c∗Â†.

2. Superposition: (Â+ B̂)† = Â† + B̂†.

3. Anticommutativity: (ÂB̂)† = B̂†Â†.

4. Applying functions: [f(Â)]† = f∗(Â†).

14.4 Types and Examples of Operators

Identity operator Also called the unit operator, it satisfies Î |ψ〉 = |ψ〉.

Inverse operators Given Â, B̂, B̂ is the inveerse of Â iff B̂Â = ÂB̂ = Î.

Unitary operators A linear operator is unitary if Û−1 = Û†. A unitary operator can be written in the

form Û = eiÂ where Â is Hermitian.

Projection operators A projection operator has the property that Λ̂2 = Λ̂, i.e. if we project a state
twice, it’s the same as projecting it once. All projection operators are idempotent.

14.5 Applying Operators

To make it easier to act operators on states, we add another postulate:

Postulate 6. In the non-degenerate case, a general wavefunction can be eexpressed as a sum of eigenfunctions:

|ψ〉 =
∑
n

cn |ψn〉 (14.10)

Further, by orthonormality, we can separate the action of the operator into its action on each eigenstate.

Recall the following:

ψ(~r, t) =
∑
n

(∫
ψ∗n(~r′)ψ(~r′, t)d~r′

)
ψn(~r) (14.11)

=

∫ (∑
n

ψ∗n(~r′)ψn(~r)

)
ψ(~r′, t)d~r (14.12)

∴
∑
n

ψ∗n(~r′)ψn(~r) = δ(~r − ~r′) (14.13)

This is called the closure relation. We can use this to write out the application of an operator more easily:



〈x|ψ〉 =

∫
x∗(~r, t)ψ(~r, t)d~r (14.14)

=

∫ ∫
x∗(~r, t)δ(~r − ~r′)ψ(~r′, t)d~rd~r′ (14.15)

=
∑
n

∫
x∗(~r, t)ψn(~r)d~r

∫
ψ∗n(~r′)ψ(~r′, t)d~r′ (14.16)

=
∑
n

〈x|ψn〉 〈ψn|ψ〉 (14.17)

This gives us the relation

∑
n

|ψn〉 〈ψn| = Î . (14.18)

This is referred to as the outer product of ψn with itself.

14.6 Probability Amplitudes

Start with an operator, and have it act on ψ to the left and right (to find the expectation value):

〈Â〉 =
〈
ψ|Â

∣∣∣ψ〉 (14.19)

We can express the right ψ as a linear combination of eigenfunctions of Â, and similarly on the left but with
a different index and with a dagger:

〈Â〉 =

(∑
m

cm |ψm〉

)†
Â

(∑
n

cn |ψn〉

)
(14.20)

=

(∑
m

cm |ψm〉

)†(∑
n

cnan |ψn〉

)
(14.21)

Now, we apply orthonormality,

〈Â〉 =
∑
m

∑
n

c∗mcnan 〈ψm|ψn〉 =
∑
n

|cn|2an (14.22)

i.e. the expectation of an operator is the probabilistic weighted sum of all its eigenvalues (attainable val-
ues).
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15.1 Degenerate States

Recall that if we expand an operator in its eigenbasis, we get

〈Â〉 =
〈
ψ
∣∣∣Â|ψ〉 =

∑
m,n

c∗mcn

〈
ψm

∣∣∣Â|ψn〉 (15.1)

=
∑
n

|cn|2an (15.2)

for Â |ψn〉 = an |ψn〉.

If we observe a non-degenerate eigenvalue, then the state collapses into the corresponding eigenstate, but if
we have a degenerate eigenvalue, the state is a superposition of the degenerate states. For eexample, suppose
an is repeated α timees for ψnr , r = 1, . . . , α. Then

pn =

α∑
r=1

|cnr |2 (15.3)

and the state is

ψ =
1

pn

α∑
r=1

cnrψnr . (15.4)

This generalizes to continuous systems or mixed discrete/continuous systems, i.e.

〈Â〉 =
∑
n

|cn|2an +

∫
|c(x)|2axdx (15.5)

for eigenvalues ax of a continuous variable x.

15.2 Commuting Observables

The headline: if two observables commute, they share eigenfunctions, and vice versa.
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Let [Â, B̂] = ÂB̂ − B̂Â. The two operators commute if and only if [Â, B̂] = 0. Suppose both are observable,
and there exists a complete set of functions that are simultaneously eigenfunctions of both Â and B̂. Then
for each |ψn〉,

Â |ψn〉 = an |ψn〉 , B̂ |ψn〉 = bn |ψn〉 (15.6)

so we can easily see the commutator will be anbn − bnan = 0. The converse is also true but is harder to
prove.

15.3 Uncertainty Relations

Define σA =
(
〈(Â− 〈Â〉)2〉

)1/2

and σB similarly. Then the lower limit on the product of uncertainties is

given by

σAσB ≥
1

2

∣∣∣〈[Â, B̂]〉
∣∣∣2 (15.7)

If Â = x̂ and B̂ = p̂, this gives us the Heisenberg uncertainty relation: ∆x∆p ≥ ~
2 .

15.4 Unitary Operators

Unitary operators are the generators of symmetries. They must leave a physical system unchanged. That
is, if Â |ψ〉 = |x〉, and |ψ′〉 = Û |ψ〉, |x′〉 = Û |x〉, then we have Â′ |ψ′〉 = |x′〉. More explicitly, this is

Â′Û |ψ〉 = Û |x〉 = Û Â |ψ〉 . (15.8)

If Û is unitary, Û Û† = Û†Û = 1̂, so

Â′ = Û ÂÛ†. (15.9)

Under a unitary transformation, Hermitian operators remains Hermitian. Operator equations are unchanged,
and the operator has the same eigenvalues before and after the transformation. Matrix elements are also
unchanged:

〈
x
∣∣∣Âψ〉 =

〈
x′
∣∣∣Â′ψ′〉 (15.10)
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15.5 Infinitesimal unitary transforms

Consider an infinitesimal unitary transformation, Û = 1̂ + iεF̂ for a small ε and a Hermitian F̂ . This is
called the generator of Û . A state under this transformation is

|ψ′〉 = |ψ〉+ |δψ〉 = |ψ〉+ iεF̂ |ψ〉 , (15.11)

and an operator is

Â′ = Â+ δÂ = (1̂ + iεF̂ )Â(1̂− iεF̂ ) = Â+ iε[F̂ , Â] +O(ε2), (15.12)

so

δÂ = iε[F̂ , Â]. (15.13)

15.6 Matrix representations

Choose an eigenbasis {|ψn〉}. Then

|ψ〉 =
∑
n

cn |ψn〉 , cn = 〈ψn|ψ〉 . (15.14)

Also,

|x〉 =
∑
m

dm |ψm〉 , dm = 〈ψm|x〉 . (15.15)

Then |x〉 = Â |ψ〉, so we can derrive a relation between the dms and cns:

dm =
〈
ψm

∣∣∣Âψ〉 =
∑
n

〈
ψm

∣∣∣Âψn〉 cn (15.16)

Define Amn =
〈
ψm

∣∣∣Âψn〉, so we have the matrix representations we expect:

|x〉 =

d1

d2

...


{|ψn〉}

=

a11 a12 . . .
a21 a22 . . .

. . .


c1c2

...


{|ψn〉}

(15.17)



We denote this matrix representation by [Â]. The operator being Hermitian implies

[Â−1] = [Â]−1, [Â]† =
(

[Â]∗
)ᵀ
. (15.18)

15.7 Time evolution of a system

Time evolution is unitary, so it is generated by some Hermitian operator.

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 . (15.19)

We decompose Û into the composition of tiny time translations:

Û(t, t0) = Û(t, tn)Û(tn, tn−1) . . . Û(t1, t0). (15.20)

Also, Û(t0, t) = Û(t, t0)−1. Substituting this into the time-dependent Schrödinger equation, we get

Û(t− t0) = 1̂− i

~

∫ t

t0

ĤÛ(t′, t0)dt′ (15.21)

Expanding derivatives, we get Û(t0 + δt, t0) = 1̂ −
(
i
~Ĥ
)
δt. So the Hamiltonian generates time transla-

tion!
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A complete basis of functions (such as eigenfunctions of an operator) is all we need to express any state.
Every state is some combination of steady states for a system. Dynamics are governed by the TDSE,

ı~
∂ψ

∂t
= Ĥψ, (16.1)

the solution to which gives us time translation as the exponential of a Hermitian operator, the Hamiltonian:

ψ(t) = e(−i/~)Ĥ(t−t0)ψ(0), (16.2)

which can be expanded in a series as

Û(t, t0) =

∞∑
n=0

1

n!

(
−i
~

)n
Ĥn(t− t0)n (16.3)

Consider the time dependence of an expectation value:

d

dt
〈Â〉 =

d

dt

〈
ψ
∣∣∣Âψ〉 (16.4)

=
∂

∂t

〈
ψ
∣∣∣Âψ〉+

〈
ψ

∣∣∣∣ ∂∂tÂψ
〉

+

〈
ψ

∣∣∣∣Â ∂

∂t
ψ

〉
(16.5)

=
d

dt
〈Â〉 =

1

i~
〈[Â, Ĥ]〉+ 〈 ∂

∂t
Â〉 (16.6)

If 〈 ∂∂t Â〉 = 0, then Â commutes with Ĥ and Â is conserved.

We can use operators to re-solve the harmonic oscillator! See Problem Set 9 for that.
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17.1 Spooky angular momentum

Suppose we’ve measured x in a quantum system. Then, we can measure simultaneously with arbitrary
precision any quantity whose commutator with x̂ is zero. For example, [x̂, ŷ] = 0, and although [x̂, p̂x] 6= 0,
we can measure the y momentum as [x̂, p̂y] = 0.

Consider angular momentum, ~L = ~r × ~p. We can calculate the components according to

Lx = yPz − zPy
Ly = zPx − xPz
Lz = xPy − yPx

We can’t measure multiple components of angular momentum at once, because they don’t commute. L2

does commute with all the components of angular momentum, but it can’t be measured classically.

Based on the above definitions, we can explicitly write out each component of angular momentum,

L̂x = −i~
(
y
∂

∂z
− z ∂

∂y

)
(17.1)

and similarly by cyclically permuting x, y, z we can write out the other two.

[Lx, Ly] = [(yPz − zPy), (zPx − xPz)] = [yPz, zPx] + [zPy, xPz]− [yPz, xPz]− [zPy − zPx] (17.2)

We rewrite the first term as yPzzPx − zPxyPz = yPx[Pzz − zPz] = −i~yPx. Proceed similarly for the other
terms, and we get

[Lx, Ly] = i~(xPy − yPx) = i~Lz (17.3)

Based on this, we can show that L2 commutes, like we claimed above:

[L2, Lx] = [L2
x + L2

y + L2
z, Lx] = [L2

y + L2
z, Lx] = [L2

y, Lx] + [L2
z, Lx] (17.4)

We can pull out one of the squared factors like this:
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[L2
y, Lx] = Ly[Ly, Lx] + [Ly, Lx]Ly (17.5)

Therefore

[L2, Lx] = Ly[Ly, Lx] + [Ly, Lx]Ly + Lz[Lz, Lx] + [Lz, Lx]Lz = algebra = 0 (17.6)

17.2 Spooky spherical coordinates

This one actually is spooky because he says mathematicians use the wrong coordinate system. θ is the polar
angle and ϕ is the azimuthal angle. We can rewrite the component-wise angular momentum as follows:

Lx = −i~
(

sinϕ
∂

∂θ
− cot θ cosϕ

∂

∂ϕ

)
(17.7)

Ly = −i~
(

cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)
(17.8)

Lz = −i~ ∂

∂ϕ
(17.9)

and their squared sum:

L2 = −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
(17.10)

Note that r is absent from these expressions: this lets us write [Lx, f(r)] = 0 and also [L2, f(r)] = 0.

17.3 Eigenvalues and eigenfunctions of angular momentum

Consider the eigenfunctions of L̂z. Let’s say the eigenfunction with eigenvalue m~ is Φm(ϕ). To check this
ansatz, we operate L̂z on it:

L̂zΦm(ϕ) = m~Φm(ϕ) (17.11)

−i ∂
∂ϕ

Φm(ϕ) = mΦm(ϕ) (17.12)

∴ Φm(ϕ) =
1√
2π
eimϕ (17.13)

Further, we can require that Φm(2π) = Φm(0) which tells us that m can only take on 2π−integer values.
Therefore m is quantized - which agrees with the Bohr model of the atom!



The Φms are a complete orthonormal set, i.e.

∫ 2π

0

Φ∗m′(ϕ)Φm(ϕ)dϕ = δm′m (17.14)

Therefore if we say f(ϕ) =
∑∞
m=−∞ amΦm(ϕ) then am =

∫ 2π

0
Φ∗m(ϕ)f(ϕ)dϕ.

Further, since L̂z commutes L̂2, they share eigenfunctions. As an ansatz, let’s say the general eigenfunction
shared by both is Yl,m(θ, ϕ) and the L̂2 eigenvalue is l(l + 1)~2. Then

L2Yl,m(θ, ϕ) = l(l + 1)~2Yl,m(θ, ϕ) (17.15)

LzYl,m(θ, ϕ) = m~Yl,m(θ, ϕ) (17.16)

Let’s look for a separable solution, of the form Yl,m(θ, ϕ)Θl,m(θ)Φm)(ϕ). Act L2 on this, and we get

[
1

sin θ

d

dθ

(
sin

d

dθ

)
+

(
l(l + 1)− m2

sin2 θ

)]
Θl,m(θ) = 0 (17.17)

Let ω = cos θ. Then this equation becomes

[
(1− ω2)

d2

dω2
− 2ω

d

dω
+ l(l + 1)− m2

1− ω2

]
Flm(ω) = 0 (17.18)

If we set m = 0, this is the Legendre equation. We follow the same process that we used to find the Hermite
polynomials, to get the Legendre polynomials:

Pl(ω) = 2−l(l!)−1 dl

dωl
(ω2 − 1)l (17.19)

Based on this, we can write out the full solution:

Yl,m(θ, ϕ) = (−1)m
(

(2l + 1)(l −m)!

4π(l +m)!

)1/2

Pml (cos θ)eimϕ
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18.1 Raising and lowering angular momentum

To recap, ~L = ~r × ~p, and using known commutators, namely [p̂i, p̂j ] = 0, [r̂i, r̂j ] = 0, and [r̂i, p̂j ] = i~δij , we
can write down a commutation relation for angular momentum:

[L̂i, L̂j ] = i~L̂k, (18.1)

and [L̂2, L̂z] = 0, so we get simultaneous eigenfunctions Ylm(θ, φ), the spherical harrmonics. These have
eigenvalues l(l + 1)~2 for L̂2 and m~ for L̂z, where l ∈ N and m ∈ [−l, l] ∩ N. We can expand any state in
this eigenbasis:

ψ(θ, ϕ) =

∞∑
l=0

l∑
m=−l

almYlm(θ, ϕ), (18.2)

and by Fourier analysis, we can extract these coefficients,

alm =

∫
Y ∗lmψdΩ. (18.3)

This connects to chemistry: l = 0 are s orbitals, l = 1 are p orbitals, l = 2 are d orbitals, and so on.

Since we’ve enumerated the states with a constant l by an index m, it’s natural to think we can construct
them by iterating up and down m, and we can! Angular momentum states can be constructed using raising
and lowering operators. To construct these, consider

L̂± = L̂x ± iL̂y. (18.4)

These are conjugate pairs: L̂±
†

= L̂∓. Also, their commutator with L̂2 is 0. However, they do not commute
with each other, as can be seen by taking a product:

L̂±L̂∓ = L̂2 − L̂2
z ± ~L̂z =⇒ [L̂+, L̂−] = 2~L̂z. (18.5)

Also,
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[L̂z, L̂±] = ±~L̂±. (18.6)

Consider acting these operators on elements of the eigenbasis Ylm(θ, ϕ) = 〈θ, ϕ|lm〉:

L̂±L̂z |lm〉 = L̂±(m~) |lm〉 . (18.7)

Also, from the commutator,

L̂±L̂z |lm〉 = (L̂zL̂± ∓ ~L̂±) |lm〉 , (18.8)

so,

L̂zL̂± |lm〉 = (m± 1)~L̂± |lm〉 (18.9)

The L̂± operators have changed the z component of ~L by ~.

You can do a similar process with L̂2, but we would find no change: the operators can only change l, not m.

18.2 Other components of angular momentum

Consider the state |lm〉.

〈L̂x〉 =
〈
lm
∣∣∣L̂xlm〉 =

1

2

〈
lm
∣∣∣(L̂x + L̂−)lm

〉
= 0. (18.10)

Similarly, 〈L̂y〉 = 0. We can get the specific relation between a state and its raised or lowered counterpart,
as well:

L̂± |lm〉 = ~ (l(l + 1)−m(m± 1))
1/2 |l,m± 1〉 . (18.11)

The expectation values of the components-squared can be found as follows:

〈L̂x
2
〉 = 〈L̂y

2
〉 =

1

2
〈L̂2 − L̂z

2
〉 =

1

2

(
l(l + 1)−m2

)
~2. (18.12)

The l(l + 1) part adds some uncertainty. Suppose l = 2,m = 0. Then, we measure |L̂2| =
√

6~ > 2~, so
there must be some nonzero x and y components.



For example, a particle on a sphere of radius a has a Hamiltonian of L̂2

2I , where I is the moment of inertia.
The Hamiltonian is

Ĥ =
L̂2

2I
+ V̂ (θ, ϕ). (18.13)

If V̂ = 0, then the Hamiltonian is just a scaled version of the angular momentum, so we know we have

eenergies of l(l+1)~2

2I !
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The kinetic energy operator in spherical coordinates is

T̂ =
p̂2

2m
= − ~2

2m

(
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

)
(19.1)

= − ~2

2m

(
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L̂2

~2r2

)
(19.2)

If we consider a free particle on a surface (a good model for diatomic molecules), we can say V = 0 and r is
constant.

Let’s look at generalized angular momentum ~J (I’m not sure of the physical relevance of this, I’d have
to go back to the last lecture), satisfying the relation [Ĵx, Ĵy] = i~Ĵz (and the other two that we get by

cyclically permuting this one). Further, we construct Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z . Like we saw with the usual angular

momentum, [Ĵ2, Ĵx] = 0: the overall angular momentum squared commutes with each of its components.
This means that Ĵ2 and, say, Ĵz share eigenfunctions. Let’s say the quantum number associated with Ĵ2 is
j, and that associated with Ĵz is m. Then, we can place these in a ket |jm〉, satisfying

Ĵ2 |jm〉 = j(j + 1)~2 |jm〉 (19.3)

Ĵz |jm〉 = m~ |jm〉 (19.4)

We can then define and use the raising and lowering operators:

Ĵ+ = Ĵx + iĴy (19.5)

Ĵ− = Ĵx − iĴy (19.6)

Applying these to the ket we defined above gives us

Ĵ+ |jm〉 = [j(j + 1)−m(m+ 1)]1/2~ |j,m+ 1〉 (19.7)

Ĵ− |jm〉 = [j(j + 1)−m(m− 1)]1/2~ |j,m− 1〉 (19.8)

We can verify that Ĵ2 commutes with Ĵ±. Also, we can calculate the commutator between the two:

Ĵ±Ĵ∓ = Ĵ2 − Ĵz ± ~Ĵz (19.9)

[Ĵ+, Ĵ−] = 2~Ĵz (19.10)

[Ĵz, Ĵ±] = ±~Ĵ± (19.11)
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There is some maximum and some minimum value for m: say they’re mT and mB respectively. We don’t
know what these are, but we know that mT −mB has to be some nonegative integer n.

Ĵ+ (19.12)

ketjmT = 0 (19.13)

Ĵ−(Ĵ+ |jmT 〉) = (J2 − J2
z − ~Jz) |jmT 〉 (19.14)

= (j(j + 1)−m2
T −mT )~2 |jmT 〉 = 0 (19.15)

Therefore j(j + 1) = m2
T +mT . Annalogously, we can say that

Ĵ+Ĵ− |jmB〉 = [j(j + 1)−m2
B +mB ]~2 |jmB〉 = 0 (19.16)

Therefore j(j + 1) = m2
B −mB . Setting these two equal, we get that either mT = mB − 1 (rejected as we

can’t have the highest state lower than the lowest state) or mT = −mB . This tells us that mT = j and
mB = −j. Therefore mT −mB = 2j, which can take on any positive integer values. This gives us that the
allowed values of j are 0, 1

2 , 1,
3
2 , . . . . This structure is how we describe spin.

If we take the inner product of any state jm with any other state, we get 〈j′m′|jm〉 = δj′jδm′m by orthgo-
nality. I lost track of the motivation to look at the following quantity, but

[Ĵ2]j′m′ =
〈
j′m′|Ĵ2

∣∣∣jm〉 = j(j + 1)~2 〈j′m′|jm〉 = j(j + 1)~2δj′jδm′m (19.17)

This gives us the structure of a diagonal matrix.

Similarly, [Ĵz] = m~δj′jδm′m, and so

[J+] = [j(j + 1)−m(m+ 1)]1/2~δj′j, δm′,m+ 1 (19.18)

and from this we can construct the other components of generalized angular momentum: Ĵx = 1
2 (Ĵ+ + Ĵ−),

and Ĵy = 1
2i (Ĵ+ − Ĵ−).

We can calculate some components by fixing j and m: if j = 0,m = 0, then Jx = J2 = Jz = Jy = 0. This
isn’t too interesting.

If j = 1
2 , then m = − 1

2 ,
1
2 , anbd we get

J2 =
3

4
~2

[
1 0
0 1

]
, Jx =

~
2

[
0 1
1 0

]
Jz =

~
2

[
1 0
0 −1

]
, Jy =

~
2

[
0 −i
i 0

]

Therefore, in general, we can write J as the combination of Jordan blocks: down the diagonal, we first have
the matrix for j = 0, then the matrix for j = 1

2 , then the matrix for j = 1, and so on.
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Let’s replay all of the above while specifying that the generalized angular momentum we’re interested in is
spin. Elementary particles have an internal degree of freedom called spin, described as an angular momentum.
Call this ŝ. We know from the theory of generalized angular momentum that we built up that

[ŝx, ŝy] = i~ŝz (19.19)

and that we can find simultaneous eigenfunctions of ŝ2 and ŝz:

ŝ2 |sms〉 = s(s+ 1)~2 |sms〉 (19.20)

ŝz |sms〉 = ms~ |sms〉 (19.21)

The eigenvalue s can take on values 0, 1
2 , 1,

3
2 and ms has 2s+ 1 values: −s,−s+ 1,−s+ 2, . . . , s. Particles

with integer s are called bosons, and half-integer s are called fermions. We can write out the spin-one
matrices:

sz = ~

1 0 0
0 0 0
0 0 −1

 (19.22)

s2 = 2~2

1 0 0
0 1 0
0 0 1

 (19.23)

sx =
~√
2

0 1 0
1 0 1
0 1 0

 (19.24)

sy =
~√
2

0 −i 0
i 0 −i
0 i 0

 (19.25)

The eigenvectors corresponding to each value of ms are

ms = ~ : χ1,1 =

1
0
0

 (19.26)

ms = 0 : χ1,0 =

0
1
0

 (19.27)

ms = −~ : χ1,−1 =

0
0
1

 (19.28)

We can write down a wavefunction indicating the (uncertainty of the spin state?)



ψ(~r, t, σ) =

ms=+s∑
ms=−s

ψms(~r, t)χs,ms (19.29)

60



Lecture 20: Spin one-half systems 61

Physics 137A: Quantum Mechanics Fall 2019

Lecture 20: Spin one-half systems
Lecturer: Irfan Siddiqi 12 November Aditya Sengupta

We can interpret the wavefunction we got in the previous lecture as follows: |ψms(~r, t)|2 d3~r is the probability
of finding the particle at ~r within d3~r, with ms spin in the z direction. This is a joint discrete-continuous
distribution: if we want position independent of spin at ~r, we can write the probability as a sum,

P =

s∑
ms=−s

|ψms(~r, t)|
2
d3~r, (20.1)

and if we want spin independent of position, we can write it as an integral,

P =

∫
|ψms(~r, t)|

2
d3~r. (20.2)

20.1 Spin one-half systems

We’ll consider spin 1
2 particles in detail. This is a model that is accurate to electrons and protons, among

others. They are particles with s = 1
2 and ms ∈ {− 1

2 ,
1
2}, meaning a state is a combination of χ1/2,−1/2 and

χ1/2,1/2.

The action of each of the spin operators is as follows:

Ŝ2 |↑〉 =
3

4
~2 |↑〉 (20.3)

Ŝ2 |↓〉 =
3

4
~2 |↓〉 (20.4)

Ŝz |↑〉 =
~
2
|↑〉 (20.5)

Ŝz |↓〉 =
−~
2
|↓〉 (20.6)

These are eigenequations, but the ones for Ŝx and Ŝy are not. We can get them from the raising and lowering
operators:

Ŝ+ |↑〉 = 0 (20.7)

Ŝ+ |↓〉 = ~ |↑〉 (20.8)

Ŝ− |↑〉 = ~ |↓〉 (20.9)

Ŝ− |↓〉 = 0, (20.10)



and from there, we get Ŝx = Ŝ++Ŝ−
2 and Ŝy = Ŝ+−Ŝ−

2i . They act on the spin 1
2 basis as follows:

Ŝx |↑〉 =
~
2
|↓〉 (20.11)

Ŝx |↓〉 =
~
2
|↑〉 (20.12)

Ŝy |↑〉 =
i~
2
|↓〉 (20.13)

Ŝy |↓〉 =
−i~

2
|↑〉 (20.14)

In matrices, we choose a basis {|↑〉 , |↓〉}. With this choice, we can construct the Pauli spin matrices:

[Ŝz] =
~
2

[
1 0
0 −1

]
(20.15)

[Ŝy] =
~
2

[
0 −i
i 0

]
(20.16)

[Ŝx] =
~
2

[
0 1
1 0

]
(20.17)

[Ŝ2] =
3

4
~2

[
1 0
0 1

]
(20.18)

The relationship between these matrices can be explicitly found to be ŜiŜj =
i~εijk

2 Ŝk. The higher-

dimensional generalizations of these are called the Gell-Mann matrices. The spin matrices σx,y,z =
[Ŝx,y,z ]
~/2

all have a zero trace, a negative-unit determinant, and form a basis of SU(2) together with the identity.

20.2 Sum of angular momenta

We’ll now work with ~J = ~L+ ~S, the sum of orbital and spin angular momenta. ~J generates rotations:

Ûn(α) = e−i/~(αn̂·Ĵ) (20.19)

where α is the angle and n̂ is the axis.

We can combine the two angular momenta we’re interested in into a single ket |j1j2m1m2〉. We can put
further restrictions on this. Inn particular, since we’re taking Ĵ2 and Ĵz as our canonical observables, we can
describe a state either by a sum and lengths |jT ,mT , j1, j2〉 or by a sum and z projection |jT ,mT ,m1,m2〉.

We could take ~J2
T as an obsrevable, but we’ll see that doesn’t commute with Ĵ1z, Ĵ2z, so that isn’t a good

choice of basis.
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21.1 Adding angular momenta

Suppose we have two particles with momenta ~J1, ~J2. We can describe their state in a ket |j1j2m1m2〉. Their
momenta commute because they’re from different particles, so we can write the total angular momentum:

~J = ~J1 + ~J2 (21.1)

(21.2)

This allows us to write down ~J2 and ~Jz:

~J2 + ( ~J1 + ~J2)2 + ~J1
2

+ ~J2
2

+ 2 ~J1
~J2 (21.3)

~Jz = ~J1z + ~J2z (21.4)

These two should commute. We can get the eigenvalue for ~Jz:

~Jz |j1j2m1m2〉 = ( ~J1z + ~J2z) |j1j2m1m2〉 = (m1 +m2)~ |j1j2m1m2〉 (21.5)

However, when you write out the componentwise representation of ~J2, we get cross terms which don’t com-

mute with ~Jz. Therefore, we can’t measure ~J2, ~Jz, ~J1z, ~J2z all at once. But we can measure ~J2, ~Jz, ~J1
2
, ~J2

2
.

In ~J1 we have 2j1+1 states, and in ~J2 we have 2j2+1 states. Therefore, the total system has (2j1+1)(2j2+2)
states. The associated wavefunctions are denoted ψj1j1m1m2(1, 2). We can explicitly find the state by:

|j1j2jm〉 =
∑
m1m2

〈j1j2m1m2|jm〉 |j1j2m1m2〉 (21.6)

The operator we’re adjoining is given by the Clebsch-Gordon coefficients, which can be looked up.

Example 21.1. Consider the case j1 = 1, j2 = 3
2 . The allowed values of m1 are 1, 0,−1 and the

allowed values of m2 are 3
2 ,

1
2 ,−

1
2 ,−

3
2 . This lets us build a table of all the allowed

states:
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m1 m2 m j
1 3/2 5/2 5/2
0 3/2 3/2 5/2, 3/2
1 1/2
−1 3/2 1/2 5/2, 3/2, 1/2
0 1/2
1 −1/2
−1 −1/2 −1/2 5/2, 3/2, 1/2
0 −1/2
1 −3/2
−1 −1/2 −3/2 5/2, 3/2
−1 −3/2 −5/2 5/2

�

Let’s look at the case of a single particle, where we’re interested in its spin and angular momentum.

ψlmlsms = Ylml(θ, ϕ)χs,ms (21.7)

Suppose we take ~L+ ~S = ~J . Then j = |l − s|, |l − s|+ 1, . . . , l + s. Then we can measure J2, Jz, L
2, S2 and

we get

Yjmjls =
∑
mlms

〈lsmlms|jmj〉ψlsmlms (21.8)

For example, for spin one-half, we get

Y l+1/2,mj
l,1/2 = (21.9)

For two spin one-half particles, we start from just the addition of spins:

~S = ~S1 + ~S2 (21.10)

(21.11)

We say the combined eigenfunctions for particles i = 1, 2 are denoted by χ1/2,±1/2(i). Therefore, we can
take products of these, and they denote spin states:

↑↑ χ1/2,1/2(1)χ1/2,1/2(2),Ms = 1 (21.12)

↑↓ χ1/2,1/2(1)χ1/2,−1/2(2),Ms = 0 (21.13)

↓↑ χ1/2,−1/2(1)χ1/2,1/2(2),Ms = 0 (21.14)

↓↓ χ1/2,−1/2(1)χ1/2,−1/2(2),Ms = −1 (21.15)

For s = 0, we make a superposition of the two states having Ms = 0:



χ0,0 =
1√
2

[|updownarrows〉 − |downuparrows〉] (21.16)

This is antisymmetric with respect to particle exchange.

For s = 1, we have three possibilities:

χ1,1 = |↑↑〉 (21.17)

χ1,0 =
1√
2

(|↑↓〉+ |downuparrows〉) (21.18)

χ1,−1 |↓↓〉 (21.19)

This is a spin triplet.

21.2 3D Problems

Consider two particles of masses m1,m2. The Schrödinger equation for this system is

i~
∂

∂t
Ψ(~r1, ~r2, t) =

[
−~2

2m1
∇2
r1 −

~2

2m2
∇2
r2 + V̂ (~r1 − ~r2)

]
Ψ(~r1, ~r2, t) (21.20)

This is a seventh-order partial differential equation, so you should remember how to solve those from kinder-
garten.

We introduce relative coordinates ~r = ~r1 − ~r2 and ~R = m1 ~r1+m2 ~r2
m1+m2

, and masses M = m1 +m2, µ = m1m2

m1+m2
.

Then the Schrödinger equation becomes

i~
∂

∂t
Ψ(~R,~r, t) =

[
− ~2

2M
∇2
R −

~2

2µ
∇2
r + V (~r)

]
Ψ(~R,~r, t) (21.21)

As an ansatz, we say that ψ is separable:

Ψ(~R,~r, t) = Φ(~R)ψ(~r) exp[−i(ECM + E)t/~] (21.22)

This allows us to split the two-dimensional problem into two one-dimensional problems:

− ~2

2M
∇2
RΦ(~R) (21.23)[

− ~2

2µ
∇2
r + V (~r)

]
ψ(~r) = Eψ(~r) (21.24)
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22.1 General Setup

To find a 3D wavefunction, we solve Schrödinger’s equation in 3D, with separation:

Ψ(~r, t) = ψ(~r)f(t), (22.1)

where f(t) = e−i
E
~ t gives steady state eigenvalues.

For 3D problems, the general Hamiltonian is

Ĥ = − ~2

2m
~∇2 + V̂ (~r). (22.2)

22.2 Free Particle

~V = 0 and r = a is a known case (motion on a sphere), but now we’ll do V = 0 not on a sphere - a free
particle. The solution to this is 3D plane waves in spherical coordinates.

In Cartesian coordinates, separation of variables is sometimes possible. If (~r) = V1(x) + V2(y) + V3(z), then
we can write ψ(x, y, z) = X(x)Y (y)Z(z), solve each one separately according to a 1D problem, and combine
all their solutions with E = Ex + Ey + Ez.

For a free particle, ψ(x) = Aeikx +Be−ikx, and to account for 3D, we move to

ψ~k = Cei
~k·~r +De−i

~k·~r, (22.3)

with E = ~2

2m |~k|
2 and ~p = ~~k.

22.3 Infinite Square Well

Next, we consider a 3D infinite square well: again, we can separate this, and we get

ψnx,ny,nz =

√
8

L1L2L3
sin

(
nxπx

L1

)
sin

(
nyπy

L2

)
sin

(
nzπz

L3

)
, (22.4)
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with energy E = ~2π2

2m

(
n2
x

L2
1

+
n2
y

L2
2

+
n2
z

L2
3

)
.

When two or three of the lengths are equal, we get some degeneracy. For example, the lowest mode, (1, 1, 1)
has no degeneracy, but (2, 1, 1) and (2, 2, 1) are both triply degenerate.

22.4 3D SHO

The solution to this is given by

ψnxnynz =

(
3∏
i=1

(
αi√

π2nini!

)1/2

Hni(αixi)

)
e−

1
2

∑3
i=1 α

2
i r

2
i (22.5)

with energy

E =

3∑
i=1

~ωi
(
ni +

1

2

)
. (22.6)

If all the kis are equal, this simplifies to the isotropic oscillator. The ground state energy is 3
2~ω from (0, 0, 0),

after which we get the triply degenerate 5
2~ω from (1, 0, 0). After that, we get 7

2~ω from both (1, 1, 0) and
(2, 0, 0) so its degeneracy is 6.

22.5 Spherically Symmetric Potentials

This is the first step towards solving hydrogen! Consider a potential V (~r) = V (r).

Ĥ = − ~2

2m

(
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

)
+ V̂ (r). (22.7)

This can be more simply written as

Ĥ = − ~2

2m

(
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L̂2

~2r2

)
+ V (r). (22.8)

We know that [L̂i, L̂
2] = 0 and Ylm(θ, phi) are their commonn eigenfunctions. We also have that [V̂ (r), L̂i] =

0 since there is no angular dependence in V , and the potential commutes with L̂2 for the same rerason.
Therefore, we get

[Ĥ, L̂i] = [Ĥ, L̂2] = 0 (22.9)
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So we’ll use three quantities, and describe a state in a ket |Elm〉. Therefore, we’re looking for solutions of
the form

ΨElm = RElm(r)Ylm(θ, ϕ) (22.10)

Substituting into the Schrödinger equation, we get

ĤψElm =

(
− ~2

2m

(
d2

dr2
+

2

r

d

dr
+
l(l + 1)~2

2mr2
+ V̂ (r)

)
+ V̂ (r)

)
RElm(r) = ERElm(r). (22.11)

If we define U(r) = rR(r), this becomes a 1D problem:

− ~2

2m

d2

dr2
UElm(r) + Veff (r)UElm(r) (22.12)

where Veff (r) = V (r) + l(l+1)~2

2mr2 .

Now, let’s consider the free particle case again. In Cartesian coordinates we still have e±i
~k·~r with ~k2 = 2mE

~2

like we would expect, but the radial equation is now

(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
+ ~k2

)
RElm(r) = 0 (22.13)

Again, let U = rR, so

(
d2

dr2
− l(l + 1)

r2
+ k2

)
U = 0, (22.14)

and we can further require that R is finite at r = 0, so that U → 0 as r → 0, so l = 0 has U(r) ∼ sin(kr).
This means R(r) is a Bessel function!

If l 6= 0, let ρ = kr; then the differetial equation is

(
d2

dρ2
+

2

ρ

d

dρ

(
1− l(l + 1)

ρ2

))
Rl(ρ) = 0. (22.15)

The solutions to these are the spherical Bessel solutions, jl(ρ) =
(
π
2ρ

)1/2

Jl+ 1
2
(ρ) where the J... terms are

ordinary Bessel functions. Another set of solutions are the spherical Neumann functions:

nl(ρ) = (−1)l+1

(
π

2ρ

)1/2

J−l− 1
2
)ρ, (22.16)



but this does not meet the boundary conditions.

We can augment these radial solutions with the spherical harmonics to get a decomposition of a plane wave
into spherical coordinates:

ei
~k·~r =

∞∑
l=0

l∑
m=−l

clmjl(kr)Ylm(θ, φ). (22.17)

69



Lecture 23: Schrödinger’s Equation in 3D, continued 70

Physics 137A: Quantum Mechanics Fall 2019

Lecture 23: Schrödinger’s Equation in 3D, continued
Lecturer: Irfan Siddiqi 21 November Aditya Sengupta

23.1 Recap

Previously, we saw that using a central potential, we could reduce three-dimensional problems to one dimen-
sion:

Ĥ = − ~2

2m

(
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L̂2

~2r2

)
+ V̂ (r) (23.1)

If we take ψElm(~r) = RElm(r)Ylm(θ, ϕ), and further let U(r) = rR(r), this reduces to a one-dimensional
problem:

(
− ~2

2m

d2

dr2
+ Veff (r)

)
U(r) = EU(r) (23.2)

For example, if V (r) = 0, then ψElm(r) = Cjl(kr)Ylm(θ, ϕ) (where p = ~k).

23.2 Hydrogenic Atoms

M,+ze

−e

The potential associated with this atom is V (r) = −ze2
(4πε0)r . In center-of-mass coordinates, we can just solve

the 1D Schrödinger equation.

Ĥ =
p2

2µ
− ze2

(4πε0)r
, µ =

mM

m+M
(23.3)

By Taylor expansion, we can show that R(r) approahces some finite value as r → 0, i.e. R ∼ rl. Therefore,
U(r) ∼ rl+1 as r → 0.
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The Schrödinger equation is

d2

dr2
U(r) +

2µ

~2
(E − Veff (r))U(r) = 0 (23.4)

where

Veff (r) =
−ze2

(4πε0)r
+
l(l + 1)~2

2µr2
(23.5)

Let ρ =
(
−8µE
~2

)1/2

r. Further, we can define

λ =
ze2

(4πε0)~

(
−µ
2E

)1/2

= zα

(
−µc2

2E

)1/2

(23.6)

where α = e2

4πε0~c ≈
1

137 . This is the fine structure constant.

Using these definitions, we can rewrite the Schrödinger equation as follows:

(
d2

dρ2
− l(l + 1)

ρ2
+
λ

ρ
− 1

4

)
U(ρ) = 0 (23.7)

In the asymptotic limit ρ→∞, the two 1
ρl

terms drop out and we’re left with an exponential solution:

U(ρ) ∼ e−ρ/2 =⇒ U(ρ) = e−ρ/2f(ρ) (23.8)

where f(ρ) is something that grows slower than e−ρ/2 as ρ→∞. Substitute back, and we get

(
d2

dρ2
− d

dρ
− l(l + 1)

ρ2
+
λ

ρ

)
f(ρ) = 0 (23.9)

In the limit ρ → 0, we’ve seen that U ∼ ρl+1, so f(ρ) = ρl+1g(ρ). Now, all we know about g(ρ) is that it
fills in the gaps between these asymptotic limits. We expand it in a power series:

g(ρ) =

∞∑
k=0

ckρ
k; c0 6= 0 (23.10)(

ρ
d2

dρ2
+ (2l + 2− ρ)

d

dρ
+ (λ− l − 1)

)
g(ρ) = 0 (23.11)

∞∑
k=0

(
k(k − 1)ckρ

k−1(2l + 2− ρ)kckρ
k−1 + (λ− l − 1)ckρ

k
)

= 0 (23.12)
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Collecting terms, we get

∞∑
k=0

([k(k + 1) + (2l + 2)(k + 1)]ck+1 + (λ− l − 1− k)ck) ρk = 0 (23.13)

Requiring that each of these is 0 gives us a recurrence relation:

ck+1 =
k + l + 1− λ

(k + 1)(k + 2l + 2)
ck (23.14)

For large k, ck+1

ck
∼ 1

k . This is the same as the limiting behaviour for an exponential of the form ρpeρ, but

we can show that this isn’t its behaviour everywhere. Recall that U ∼ ρl+1e−ρ/2g(ρ). Since for the chosen
form of g(ρ) this diverges as ρ→∞, it must terminate at some point. g(ρ) must be a polynomial in ρ with
highest power nr. Therefore Cnr+1 = 0, meaning 0 = k + l + 1 − λ. Write nr instead of k; then we get
λ = nr + l + 1. λ can take on values 1, 2, 3, . . . . We refer to this as the principal quantum number. If we
redimension λ, we get

En =
−µ
2~2

(
ze2

4πε0

)
1

n2
=z=1

−13.6eV

n2
(23.15)

This reproduces the result we know from Bohr’s model! These are the eigenvalues of the Hamiltonian, and
we can also find the eigenfunctions.

For each energy En, l can take on the values 0, 1, . . . , n− 1. Further, there are 2l+ 1 values of m. Therefore
the total degeneracy is

n−1∑
l=0

(2l + 1) = n2 (23.16)



23.3 Eigenfunctions of bound states

We match the differential equation in g, given by 23.11, to the standard form of the Kumer-Laplace equation,

z
d2w

dz2
+ (c− z)dw

dz
− aw = 0 (23.17)

with z = ρ, w = g, a = l + 1− λ, c = 2l + 2. The solutions are confluent hypergeometric functions.

1F1(a, c, z) =
Γ(c)

Γ(a)
ezza−c (23.18)
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24.1 Laguerre Polynomials

Previously, we saw that we could model the hydrogen atom using a separable wavefunction:

ψ(~r, θ, ϕ) = R(r)Ylm(θ, ϕ) (24.1)

This gave us a single-variable version of the Schrödinger equation, using U(r) = rR(r):

(
− ~2

2m

(
d2

dr2
+

2

r

d

dr

)
+
l(l + 1)~2

2mr2
+ V (r)

)
R(r) = ER(r) (24.2)

If we put in the 1
r potential, we saw last time that if we used ρ =

(
−8µE
~2

)1/2

r then we could get confluent

hypergeometric functions solving this equation.

Note that 1F1 tends to an exponential, i.e. U → ∞ as rr → ∞. Therefore, in general, we keep a finite set
of terms, we get quantized energies, and associated Laguerre polynomials Lqp:

L2l+1
n+l (ρ) =

−[(n+ l)]2

(n− l − 1)!(2l + 1)!
1F1(l + 1− n, 2l + 2, ρ) (24.3)

This can be more simply expressed in terms of a generating function:

Lq(ρ) = eρ
dq

dρq
(ρqe−ρ) (24.4)

To get the associated Laguerre polynomial, we take an arbitrary-degree derivative of this:

Lpq(ρ) =
dp

dρp
Lq(ρ) (24.5)

This gives us all of the radial solutions,

Rnl(r) = Ne−ρ/2rholL2l+1
n+l (ρ) (24.6)

(24.7)
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where N = −
((

2z
naµ

)3
(n−l−1)!

2n((n+l)!)3

)1/2

The first solution to this is n = 1, l = 0:

R10(r) = 2

(
z

aµ

)3/2

e−(zr/aµ) (24.8)

and after that, n = 2, l = 0 gives us

R20(r) = 2

(
z

2aµ

)3/2(
1− zr

2aµ

)
e−zr/2aµ (24.9)

For n = 2, l = 1, we get

R21(r) =
1√
3

(
z

2aµ

)3/2(
zr

aµ

)
e−zr/2aµ (24.10)

24.2 Probability Densities

The probability density is proportional to |R(r)|2.

|ψnlm(r, θ, ϕ)|2 = |R(r)|2 · |Ylm(θ, ϕ)|2 (24.11)

Integrating the probabillity over 4πr2, we get that the pdf is proportional to r2R(r)2. We can compute this
pdf for some specific cases

r2R2
10

r/aµ

This is a normal distribution around the Bohr radius.

With R20, we get a bimodal distribution with a small peak around 1 and a larger peak between 2 and 10:
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r2R2
20

r/aµ

With R21, we go back to the normal distribution, but now centered around 5.

r2R2
21

r/aµ

24.3 Shells

We can connect this with the chemical view of energy levels and shells of electrons!

Shell Quantum Numbers (n, l, m) Spectral Notation ψ(r, θ, ϕ)

K 1, 0, 0 1s 1/
√
π(z/aµ)3/2e−zr/aµ

L 2, 0, 0 2s 2/
√
π(z/aµ)3/2

(
1− zr

2aµ

)
e−zr/2aµ

L 2, 1, 0 2p0
1

4
√

2π
(z/aµ)3/2(zr/aµ)e−zr/2aµ

L 2, 1, ± 1 2p±1 ∓ 1
8
√
π

(z/aµ)3/2(zr/aµ)e−zr/2aµ sin θe±iϕ

24.4 Observations

1. The s states, with l = 0, have spherical symmetry: Yl=0,m=0 = 1√
4π

. Thus

|ψn00(0)|2 =
1

4π
|Rn0(0)|2 =

z3

πa3
µn

3
(24.12)



2. Rnl(r) ∝ rl as r → 0.

3. r2|R(r)|2 has n− l maxima.

For the largest l, we only have one maximum. We can find this by taking a derivative of r2|R|2.

Rn,n−1(r) ∼ rn−1e−zr/naµ (24.13)

Taking the derivative and setting it to zero, we get

(
2nr2n−1 − 2zr2n

naµ

)
e−2zr/naµ (24.14)

Solving for n, we get r =
n2aµ
z . For z = 1, this matches the Bohr radii!
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25.1 First Order Perturbation Correction

Consider a time-independent Hamiltonian Ĥ = Ĥ0 + λĤ(1), where Ĥ0 is a standard solvable problem that
is being perturbed to first order by some Ĥ(1), scaled by λ� 1. We know that

Ĥ0ψ
(0)
n = E(0)

n ψ(0)
n (25.1)

and we’re looking for solutions of the form Ĥψn = Enψn. We assume this is non-degenerate and that the

perturbation is small enough that En is closest to E
(0)
n .

En =

∞∑
j=0

λjE(j)
n (25.2)

and the corresponding wavefunction,

ψn =

∞∑
j=0

λjψ(j)
n (25.3)

We substitute these into the usual eigenvalue equation:

(Ĥ0 + λĤ(1))
(
ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + . . .

)
=
(
E(0)
n + λE(1)

n + λ2E(2)
n + . . .

)(
ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + . . .

)
(25.4)

If we isolate all the terms that are constant in λ, we just get Ĥ0ψ
(0)
n = E

(0)
n ψ

(0)
n , and if we isoate all the

terms that are linear in λ, we get

Ĥ0ψ
(1)
n + Ĥ(1)ψ0

n = E(0)
n ψ(1)

n + E(1)
n ψ(0)

n (25.5)

We take an inner product of this with ψ
(0)
n to isolate E

(1)
n .

〈
ψ(0)
n |H0 − E(0)

n

∣∣∣ψ(1)
n

〉
+
〈
ψ0
n|H(1) − E(1)

n

∣∣∣ψ(0)
n

〉
= 0 (25.6)



Lecture 25: Fine Structure of Hydrogen 79

We split up the operator H0 − E(0)
n : we get

〈
ψ(0)
n |H0 − E(0)

n

∣∣∣ψ(1)
n

〉
=
〈
ψ(1)
n |H0

∣∣∣ψ(0)
n

〉∗
− E0

〈
ψ(1)
n

∣∣∣ψ(0)
n

〉∗
= 0 (25.7)

Therefore, we’re left with

〈
ψ(0)
n |H(1)

∣∣∣ψ(0)
n

〉
= E(1)

n (25.8)

We can find the wavefunction by

ψ(1)
n =

∑
l 6=n

〈
ψ

(0)
l |H(1)

∣∣∣ψ(0)
n

〉
E

(0)
n − E(0)

l

ψ
(0)
l (25.9)

25.2 Applying the perturbation model to hydrogen

Let’s start with the Bohr model of the hydrogen atom, and start adding correction terms.

Ĥ0 =
p2

2m
− ze2

(4πε0)r
(25.10)

To this, we add corrections H ′ = H ′1 +H ′2 +H ′3, due to special relativity, the spin orbit, and the spread of
the nucleus.

For H1, the total relativistic energy of a particle is
√
p2c2 +m2c4. The kinetic energy is this minus mc2,

and if we Taylor expand this, we get the correction

H ′1 = − p4

8m3c2
(25.11)

The spin orbit correction is

H ′2 =
1

2m2c2
1

r

dV

dr
~L · ~s (25.12)

The electron feels the ~E field from the nucleus, with magnitude ~E = e~r
4πε0r3 , and there’s an associated

magnetic field due to motion, given by ~B = (1/c2)(−~v× ~E). Therefore we get this perturbation from dotting

this ~B with the magnetic moment of the electron.

The third part is



H ′3 =
π~2

2m2c2

(
ze2

4πε0

)
δ(~r) (25.13)

Therefore, using the result we derived before for first-order corrections, we get

∆E1 =

〈
ψ

(0)
nlmlms

| −p
2

8m3c2

∣∣∣∣ψ(0)
nlmlms

〉
(25.14)

and similarly for the other two. Calculating things, we get

∆E1 = −E(0)
n

(zα)2

n2

(
3

4
− n

l + 1
2

)
(25.15)

∆E2 = −E(0)
n

(zα)2

2nl(l + 1/2)(l + 1)
·

{
l j = l + 1

2

l − 1 j = l − 1/2
(25.16)

∆E3 = −E(0)
n

(zα)2

n
for l = 0 (25.17)

Therefore,

En = E(0)
n

(
1 +

(zα)2

n2

(
n

j + 1/2
− 3

4

))
(25.18)
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26.1 Multiparticle Systems

Suppose we have a system of N particles, in which the ith particle is described by ~ri, ~pi, ~si. Denote these
by qi, representting a complete set of commuting observables. Denote the wavefunction of the ensemble by
ψ(q1, q2, . . . , qN ). This obeys the Schrödinger equation:

i~
∂

∂t
ψ(q1, q2, . . . , qN ) = Ĥψ(q1, q2, . . . , qN ) (26.1)

and for some time-independent potential V̂ , we can say that Ĥ = T̂ + V̂ . There exist some eigenvalues:

ĤψE = EψE (26.2)

Ĥ must be symmetric with respect to the exchange of two particles i and j. Let the operator p̂ij do this.
Then

[p̂ij , Ĥ] = 0 (26.3)

In general, an exact eigenfunction ψ(q1, q2, . . . , qN ) has no particular symmetry with respect to exchange of
i and j. Ttherefore, if ψ(q1, . . . , qN ) is an eigenfunction of Ĥ with E, then so is pij . Therefore

p̂ijψ(q1, . . . , qN ) = εpsi(q1, . . . , qN ) (26.4)

Further, we know that p̂2
ij = I, so ε = ±1: the exchange is either symmetric or antisymmetric. There are N !

permutations of q1, . . . , qN . If we want to define an arbitrary state caused by some rearrangement, we can
define the permutation operator P̂ through successive applications of pij . Since each of these commute with

Ĥ, we can say tthat [P̂ , Ĥ] = 0.

Note that not all N ! permutations P̂ commute with themselves, i.e. ψ(q1, . . . , qN ) is not an eigenfunction of
all N ! permutations P̂ . However, there are two states where this is the case: either when the permutation is
totally symmetric, i.e. P̂ψS = ψS , or when the permutation is totally anti-symmetric, i.e. P̂ψA = ψA with
an even number of swaps and P̂ψA = −ψA with an odd number of swaps.

ψS and ψA are sufficient to describe all particles. The symmetric wavefunction describes a boson, which has
zero or integer spin. This covers all mesons, photons, and vector bosons, as well as the Higgs boson. The
anti-symmetric wavefunction describes a fermion, which has half-odd integer spin. This covers all leptons
and baryons.



For two identical particles given by ψ(q1, q2), we can write

ψS(q1, q2) =
1√
2

(ψ(q1, q2) + ψ(q2, q1)) (26.5)

ψA(q1, q2) =
1√
2

(ψ(q1, q2)− ψ(q2, q1)) (26.6)

Consider the case of no interactions. There are local Hamiltonians ĥi, where

ĥiuλ(qi) = Eλuλ(qi) (26.7)

The solution is a product state:

ψ(q1, q2, . . . , qN ) = Uα(q1)Uβ(q2) . . . Uν(qN ) (26.8)

E = Eα + Eβ + · · ·+ Eν (26.9)

With N = 2, we can say

ψS(q1, q2) =
1√
2

(Uα(q1)Uβ(q2) + Uα(q2)Uβ(q1)) (26.10)

ψA(q1, q2) =
1√
2

(Uα(q1)Uβ(q2)− Uα(q1)Uβ(q2)) (26.11)

The particles are entangled, due to the states that are not product states, Uα(q2) and Uβ(q1). Neither
particle is in an energy eigenstate.

26.2 Pauli Exclusion Principle

For N particles that are totally antisymmetric, we write the wavefunction as a so-called Slater determinant:

ψ(q1, . . . , qN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
Uα(q1) Uβ(q1) . . . Uν(q1)
Uα(q2) Uβ(q2) Uν(q2)

...
. . .

...
Uα(qN ) Uβ(qN ) . . . Uν(qN )

∣∣∣∣∣∣∣∣∣ (26.12)

If two or more sets of quantum numbers α, β are identical, then ψ vanishes. Therefore, only one fermion is
allowed per sinngle quantum state. This is the Pauli exclusion principle.
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