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Lecture 1: Distances and gravitational free-fall 4

Stars and Planets I: Stellar Structure and Evolution Winter 2023

Lecture 1: Distances and gravitational free-fall
Lecturer: Ryan Foley 11 January Aditya Sengupta

Note: LATEX format adapted from template for lecture notes from CS 267, Applications of Parallel Computing, UC
Berkeley EECS department.

(the actual lecture 1 was on 9 January, but there’s no notes from that)

1.1 Why do stars matter?

We can list just a few reasons:

• Chemical enrichment: we can understand where elements come from, and from that how stars and
galaxies work, how planetary climates form, and so on.

• They’re the most fundamental extrasolar thing we can observe/the “building blocks of the Universe”.

• We can measure distances and get the distance ladder.

• They produce large amounts of dust.

We’ll start by talking about aspects of measuring stellar positions and motion: parallax, proper motion and
distance.

1.2 Parallax

Parallax is the relative angle to an object induced by a changing viewpoint, like what we can induce by
looking at something through just one eye, and then just the other. If we draw a diagram of the Earth-Sun-
object system, we can note that the object subtends an angle, call it p for parallax, relative to the Earth and
the Sun. We can use trigonometry to find the distance, using the small angle approximation because d≫ 1
AU:

d =
1AU
tan p

≈ 1

p
AU (1.1)

Radians are inconvenient when dealing with very small angles, so we convert to arcseconds and introduce
parsecs, defined as 1pc = 2.063× 105AU = 3.086× 1018cm.

d =
2.063× 105

p′′
AU =

1

p′′
pc (1.2)

Here, a star at 1 pc has a parallax angle of 1 arcsecond.
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We can’t make this measurement with just one position of the Earth, so we make them by waiting six months
and measuring from opposite positions of the Earth. That means we’re usually measuring 2p, because the
distance between opposite positions is 2 AU.

The distance to a star can be written in terms of the apparent magnitude (observed flux, depends on distance)
and absolute magnitude (intrinsic luminosity, doesn’t depend on distance).

d = 10
m−M+5

5 pc (1.3)

where m is the apparent magnitude and M is the absolute magnitude.

We define the distance modulus as

µ = m−M = 5 log d− 5 = 5 log
d

10pc . (1.4)

We can equivalently write

M = m− 5 log d+ 5 = m− 5 log
1

p′′
+ 5 = m+ 5 log p′′ + 5. (1.5)

All of these are log base 10.

1.3 Proper motion

Proper motion is the actual movement in the plane of the sky that we can see. If we don’t see the star in the
same place when we observe it over the span of a year, when the Earth is in the same place, it must have
inherently moved. If it moves a distance ∆d, that is the result of a velocity over time: ∆d = vθ∆t. What we
observe is an angular difference:

∆θ =
∆d

d
=
vθ
d
∆t. (1.6)

The proper motion is the change in this angle over time: µ = dθ
dt = vθ

d . (There’s a lot of µs in this class.)

We can relate proper motion to velocity as follows:

vθ[km/s] = 4.74
µ[arcsec/yr]

p′′
(1.7)

There’s also a radial component to velocity, which we can measure with spectra. The total velocity is
therefore

V =

(
V 2
r +

(
4.74

µ

p′′

))1/2

. (1.8)
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1.4 Gravitational free-fall

Suppose there’s a cloud of gas working under gravity and no other forces. Let the cloud have a radius R
and mass M . We want to think about a small parcel of gas that has mass m′ and at a radius r. The force of
gravity on this parcel is

Fg(r) =
Gm(r)m′

r2
(1.9)

where m(r) is the enclosed mass. We can sketch what m(r) should look like because we know it has to be
monotonically increasing, that m(0) = 0, and that m(R) =M . Gauss’ law tells us that at a radius r′, we can
ignore mass at r > r′. Since the force is a function of m(r), no mass can “get past” any other mass that’s
exterior to it, and so the enclosed mass at any given time is the enclosed mass at every time. (Remember this
only holds if you don’t have any forces except gravity!)

We can write down an acceleration,

a(r) =
Gm(r)

r2
=
Gm0

r2
(1.10)

where m0 is m(r) at t = 0. This is a positive inward acceleration that’s constant no matter what the time is.
This implies the cloud will collapse: everything falls into r = 0.

How long does collapse take? We’ll call this the free-fall time. Figuring this out from the acceleration is hard,
so we won’t do that. Instead, we’ll look at energy. Free-fall is taking gravitational potential energy and
changing it to kinetic energy.

|∆EK | = |∆Eg|. (1.11)

Assume the system starts at rest. We start with the gravitational potential energy at time zero: EK,0 = 0.
Look at a shell at r = r0: here, we have a potential energy Eg,0 = −Gm0m

′

r0
. At later times, this becomes

Eg =
Gm0m

′

r
− Gm0m

′

r0
(1.12)

as the particle falls in from r0 to r.

The kinetic energy at later times is

EK =
1

2
m′v2 =

1

2
m′
(
dr

dt

)2

. (1.13)

The energy balance at any given time is



1

2
m′
(
dr

dt

)2

=
Gm0m

′

r
− Gm0m

′

r0
(1.14)

1

2

(
dr

dt

)2

=
Gm0

r
− Gm0

r0
. (1.15)

We need to integrate this!

tff =

ˆ 0

r0

dt

dr
dr = −

ˆ 0

r0

(
2Gm0

r
− 2Gm0

r0

)−1/2

dr (1.16)

= −
ˆ 0

r0

(
2Gm0r0 − 2Gm0r

rr0

)−1/2

dr (1.17)

= −(2Gm0)
−1/2

ˆ 0

r0

(
r−1
0

1− r/r0
r/r0

)−1/2

dr. (1.18)

Substitute x = r
r0

and dx = dr
r0

to get

tff = (2Gm0)
−1/2

ˆ 1

0

r0

(
r−1
0

1− x
x

)
(1.19)

=

(
r30

2Gm0

)1/2 ˆ 1

0

(
x

1− x

)1/2

dx. (1.20)

This is a standard integral we can solve by setting x = sin2 θ, and it comes out to π
2 . This gives us

tff =
π

2

(
r30

2Gm0

)1/2

(1.21)
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Stars and Planets I: Stellar Structure and Evolution Winter 2023

Lecture 2: Stellar diagrams, hydrostatic balance
Lecturer: Ryan Foley 13 January Aditya Sengupta

2.1 H-R diagrams and CMDs

A Hertzsprung-Russell diagram plots log-luminosity as a function of log-effective temperature going left
(the temperature it’d have if it were radiating like a blackbody). For stars, the effective temperature is the
surface temperature. (get H-R diagram from phone)

A key feature of the H-R diagram is that we can observe that not all regions are filled up, and there’s physics
reasons that should be the case. Note that this is a snapshot in time: there’s regions in the diagram that
stars remain in for 10,000 years, but we’ll see far fewer of those compared to the main sequence or red giant
branch, where stars remain for millions of years.

A color-magnitude diagram plots magnitude against color, and it’s effectively the same thing as the H-R
diagram but with observable quantities. How we measure color is interesting: if you have a blackbody
peaking at some wavelength, the flux goes up as you reduce that wavelength at all wavelengths, not just the
peak. At low temperatures, B−V is large (e.g. for a red object: V has more flux, more negative magnitude,
and it gets subtracted, and red things are cooler because of Wien’s law), and at high temperatures, B − V is
small or even negative.

2.2 Gravitational free-fall

Last time, we saw that the gravitational free-fall time is given by

tff =
π

2

(
r30

2Gm0

)1/2

. (2.1)

If we say density is proportional to m/r3, we can say

tff =
π

2

(
3

8πGρ

)1/2

=

(
3π

32Gρ

)1/2

. (2.2)

Example 2.1. How much longer does it take for the Sun to collapse under only gravity than the
Earth?
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tff,⊙ =

(
3π

32Gρ⊙

)1/2

tff,⊕ =

(
3π

32Gρ⊕

)1/2

tff,⊙
tff,⊕

=

(
ρ⊕
ρ⊙

)1/2

Plug in ρ⊙ = 1.4g/cm3 and ρ⊕ = 5.5g/cm3, and we get tff,⊙
tff,⊕

≈ 2.
□

This is contrived, because neither the Sun nor the Earth will collapse like this. What stops this from
happening? There’s a bunch of pressures in each self-gravitating body keeping it intact: for the Sun, it’s
thermal pressure, and for the Earth, it’s electrostatics. Neutron stars and white dwarfs have degeneracy
pressures.

2.3 Hydrostatic balance

The Sun is not collapsing, so there must be other forces. When a gas collapses, pressure increases. What
does this mean for the overall force?

Take a cylinder with length scale dr, mass dm and area dA within a star at a radius r. This has a force Fg

and a pressure force from above Fp,a pulling it in, and a pressure force from below Fp,b pushing it out. This
means the pressure force from below has to be greater than the one from above.

Say there’s a pressure P at the bottom and P + dP at the top. The force due to gravity is Fg = Gm0dm
r2 .

The force due to pressure from below is Fp,b = PdA, and the force due to pressure from above is Fp,a =
(P + dP )dA =

(
P + dP

dr dr
)
dA. Therefore, the net pressure force is

Fp = Fp,a − Fp,b =

(
P +

dP

dr
dr − P

)
dA =

dP

dr
drdA. (2.3)

We can write dm = ρ(r)dV = ρ(r)drdA. The acceleration is

−d2r

dt2
=

(Fg + Fp)

dm
= ag +

dP

dr

drdA

ρ(r)drdA
= ag +

1

ρ(r)

dP

dr
. (2.4)

If we want to talk about hydrostatic balance, we should have an acceleration of 0.

0 = ag +
1

ρ(r)

dP

dr
(2.5)
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dP

dr
= −Gm(r)ρ(r)

r2
. (2.6)

This is the equation of hydrostatic balance. Hydrostatic equilibrium holds if we have hydrostatic balance at
all radii.

We integrate this equation over the radius of the star after multiplying by 4πr3.

ˆ R

0

4πr3
dP

dr
dr = −

ˆ R

0

Gm(r)

r
4πr2ρ(r)dr︸ ︷︷ ︸

dm

. (2.7)

The right-hand side is therefore

RHS = −
ˆ M

0

Gm(r)

r
dm.

This is the gravitational potential energy for the star, Eg .

For the left-hand side, we integrate by parts:

LHS =

ˆ R

0

4πr3
dP

dr
dr = P (r)4πr3

∣∣∣∣R
0

− 3

ˆ R

0

P (r)4πr2dr. (2.8)

Both the limits on the first term go to 0, because P (R) = 0, so we just have to look at the second term.

LHS = −3
ˆ R

0

P (r)4πr2dr = −3⟨P ⟩V (2.9)

where ⟨P ⟩ is the volume-averaged pressure.

Putting these sides together, we get

⟨P ⟩ = −1

3

Eg

V︸︷︷︸
potential energy density

. (2.10)

This is a virial theorem for stars.

This gives us an overall picture of the star, but we need to fill in some more details. What’s causing the
pressure force we assumed has to exist?

Inside a star, we have ions, consisting of electrons and nuclei, which exert “gas pressure” according to the
ideal gas law:



P = nekT +
∑

nikT (2.11)

We want to think about the number densities ni, ne. We can say

ni =
Xiρ

Aimp
(2.12)

where Xi is the mass fraction, Ai is the number of nucleons, and mp is the mass of a proton. We can write
down the ion pressure:

Pi =
kTρ

mp

∑ Xi

Ai
. (2.13)

Define µi ≡
∑ Xi

Ai
.

11
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Stars and Planets I: Stellar Structure and Evolution Winter 2023

Lecture 3: Mean molecular weights, atmospheres
Lecturer: Ryan Foley 18 January Aditya Sengupta

3.1 Mean molecular weights

Last time, we decomposed gas pressure into the pressure caused by ions and electrons. The pressure due
to ions can be written as

Pi =
kTρ

mp

1

µi
(3.1)

and due to electrons is

Pe = nekT =
∑

ZinikT (3.2)

where Zi is the number of protons. So rewriting gives us

Pe =
kTρ

mp

∑ ZiXi

Ai
=
kTρ

mp

1

µe
(3.3)

so overall, we get

P = Pi + Pe =
kTµ

mp

(
1

µi
+

1

µe

)
(3.4)

=
kTρ

mp

∑ (1 + Zi)Xi

Ai︸ ︷︷ ︸
µ

(3.5)

Here, µ is the mean molecular weight.

For pure hydrogen, the mean molecular weight is 1
2 , as we can verify by plugging in 1 electron, 1 nucleus,

and a weight of mp.

For helium, there are 3 particles (2 electrons, 1 nucleus) and the weight is 4mp.

For carbon, there are six electrons and one nucleus and the weight is 12mp, so µ ∼ 2. As you go higher and
higher up, µ gets closer to 2. So generically, we can treat just hydrogen, helium, and metals. We say the mass
fraction of hydrogen is X , that of helium is Y , and that of metals is Z. We must have that X + Y + Z = 1.
In terms of these, the mean molecular weight is
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µ =
4

8X + 3Y + 2Z
. (3.6)

We can combine these to eliminate Z and write

µ =
4

6X + Y + 2
. (3.7)

Let’s think about some scenarios here.

• If we have pure hydrogen, X = 1 and Y = Z = 0, we get µ = 4
6+2 = 1

2 , which is what we expected.
It’s impossible for µ to get smaller than this.

• The “cosmic mix”: this is a pretty good match for how stars form. This has X = 0.7 and Y = 0.3, and
µ = 0.64.

• Pure helium, like at the end of the main sequence, has X = 0, Y = 1, and µ = 4
3 .

If µ goes up, pressure goes down, and the star starts to contract. But this contraction makes T go up.

3.2 Isothermal atmospheres

In atmospheres, two equations govern the pressure structure:

dP

dz
= −ρg (3.8)

P =
ρkT

µmp
. (3.9)

Substituting in P to the derivative, and taking T constant, we get

kT

µmp

dρ

dz
= −ρg. (3.10)

The solution to this is an exponential:

ρ(z) = ρ(0) exp
(
−µmpgz

kT

)
∝ exp

(
− z

H

)
(3.11)

where H = kT
µmpg

is the scale height of the atmosphere. We can also think about this as the Boltzmann factor.
Looking at the numerator and denominator, we can also say it’s the thermal energy divided by the force of
gravity. If you go down by one scale height, you release kT of energy.



Let’s compare the scale height to the radius.

H

R
=

kTR

µmpGM
=

kT

GMµmp/R
=

thermal energy
gravitational potential energy . (3.12)

How thick the atmosphere is is telling us something about the relative strengths of thermal and gravitational
potential energies. Usually gravitational potential energy is larger; the Sun has H

R ∼
1

1000 . A low H
R implies

very sharp edges.

The column density is y(z) =
´∞
z
ρ(z′)dz′. The units are g/cm2. For Earth, the column density is about

1000g/cm2. This lets us integrate Equation 3.8:

ˆ ∞

z

dP = −
ˆ ∞

z

ρ(z)gdz (3.13)

P (∞)− P (z) = −g
ˆ ∞

z

ρ(z′)dz′ = −gy(z) (3.14)

P (z) = gy(z). (3.15)

So far we haven’t stipulated that the atmosphere should be isothermal, so adding in that constraint we get

y(z) =

ˆ ∞

z

ρ(z)e−(z′−z)/Hdz′ = ρ(z)H. (3.16)

This gives us P (z) = gHρ(z). We know that ρ(z) is exponential, so this tells us that the pressure fall-off is
proportional to the density fall-off and therefore is also exponentially decaying.

We can calculate the pressure from a non-relativistic gas. Suppose there’s a gas in a box with N particles,
each carrying velocity v⃗ and momentum p⃗ = mv⃗. The box is a cube of side l.

Consider a specific particle that is only moving along some plane. It bounces off the wall and transfers
some of its momentum. If it comes in with momentum px and leaves with px in the other direction, there’s
a momentum transfer of 2px to the wall. How often does this happen? It takes l

vx
to make it to the other

end of the box and do the same thing, so the time between collisions with the same wall is 2l
vx

.

The collision rate is vx
2l , and so the rate of momentum transfer is the product of these: 2pxvx

2l = pxvx
l , which

is a force on the wall. The pressure is P = F
A = pxvx

l3 .

The pressure on the wall is thereforePx,tot =
N⟨pxvx⟩

l3 . If the gas is isotropic, then ⟨pxvx⟩ = ⟨pyvy⟩ = ⟨pzvz⟩ =
1
3 ⟨p⃗ · v⃗⟩. If we say the number density is just n = N

l3 , then the total pressure is equal to

P =
n

3
⟨p⃗ · v⃗⟩. (3.17)

14
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4.1 Pressure from non-relativistic gas

Last time, we saw that the total pressure in a box was given by

Ptot =
n

3
⟨p⃗, v⃗⟩ (4.1)

and we can say p⃗ = mv⃗, so

Ptot =
n

3
⟨mv2⟩ = 2

3
n⟨1

2
mv2⟩ (4.2)

and we can say n⟨ 12mv
2⟩ is the kinetic energy density, i.e.

⟨P ⟩ = 2

3

EK

V
. (4.3)

We also saw that in hydrostatic equilibrium,

⟨P ⟩ = −1

3

Eg

V
. (4.4)

Setting these equal to each other, we can say that in the case of nonrelativistic gas in hydrostatic equilibrium,
−Eg = 2EK , or

0 = Eg + 2EK . (4.5)

We must also have that the total energy for the system isEtot = Eg+EK , which lets us find thatEtot = −EK

and Etot =
1
2Eg . If we have a tightly bound system, we should expect a very strongly negative Eg , which

means we have a very large EK : tightly bound systems are hot.

Stars change their state over millions/billions of years, so they can’t be in perfect hydrostatic equilibrium,
but these changes are small and accumulate over time. Any change in Eg will correspond to a change that’s
twice as large for EK .



4.2 Pressure from relativistic gas

A relativistic gas is made up of particles moving close to c. For instance, a star with enough photons
scattering around to create a pressure will naturally create a relativistic gas. Neutron stars and heavy white
dwarfs have relativistic gases.

In relativistic gases, the particle velocity v ≈ c, and the momentum p ≫ mc. The energy is given by
E2 = p2c2 +m2c4 ≈ p2c2, so we can take E = pc.

The pressure is

Ptot =
n

3
⟨p⃗ · v⃗⟩ = 1

3
n⟨pc⟩ = 1

3

EK

V
. (4.6)

Therefore, for relativistic gases, we have

0 = Eg + EK . (4.7)

This says the only way you can have hydrostatic equilibrium in a relativistic gas is for the binding energy
(the difference between the gravitational potential energy and the kinetic energy) to be exactly 0. So if you
give one of these stars any extra energy, it is no longer bound. Massive stars drive strong winds due to their
photon pressure.

4.3 Polytropes and adiabatic indices

Recall that the adiabatic index is given by γ = CP

CV
and is equal to 5

3 for a classical ideal gas and 4
3 for a

relativistic gas.

The equation of state is the relation between pressure and density. An incompressible fluid has P constant
with ρ, or rephrased slightly, P = Kρ0. Generally, you can describe a family of equations of state using

P = Kρ
n+1
n . (4.8)

Here, n is the polytropic index.

For situations where you can define the adiabatic index, we have

n =
1

γ − 1
. (4.9)

Finally, we need to specify a criterion for convection: this occurs when d log T
d logP > γ−1

γ . The quantity on the
left is independent of the base of the log we choose. Everything is adiabatic before this. As soon as you hit
this limit, convection starts and the gas expands if necessary. In practice, we check for when this becomes
an equality.

Under convection, a gas acts as an ideal gas.

16
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Generally, energy starts in the center and moves away from the center. There’s a lot of different ways of
talking about this. Note that we might talk about “cooling”, which refers to transporting energy away but not
necessarily to temperature going down. Also, the definition of “heat” isn’t necessarily heat as we understand
it day-to-day: heat is thermal energy. Heat transport refers to energy transport that’s transporting thermal
energy. Heating and cooling both refer to changing thermal energy, and you can balance these.

There’s three main ways we can transport energy inside a star:

1. Radiation (really the same as conduction)

2. Conduction

3. Convection

Conduction refers to heat transport particle-by-particle: there’s energy transport via collisions. You can do
this with electrons, protons, or anything else. Conduction is the bulk transport of material to transport heat.
It refers to moving heat by physically moving something hot somewhere else. Radiation is conduction with
photons.

Consider a gas with a temperature gradient. This is a requirement of energy transport: in thermal equilib-
rium, particles may run into each other but they won’t transfer any energy. There’s a collection of particles
with velocity v and a mean free path λ. Suppose this is isotropic and particles are only moving in one of the
Cartesian directions: ±x, y, z. So 1

6 of the particles are moving in +x. (If you averaged this over 3D space
it’d come out to the same thing).

The temperature of the gas is related to the thermal energy density, which we’ll call u(x). Set up a surface
at some particular x, below which the temperature is higher and above which it’s lower, so there’s transport
across it. Say the temperature is T (x). Consider particles moving through this surface from below. If a
particle lands exactly at the surface, on average it must have started from x− λ, and it’ll move to x+ λ. At
these points we have T (x ± λ), u(x ± λ). Let’s think about how much energy passes through a fixed area
in a fixed time, i.e. the energy flux, which we can call j(x). The energy transport through the surface from
below is proportional to u(x− λ).

j(x) = [u(x− λ)− u(x+ λ)]
λ

t
= [u(x− λ)− u(x+ λ)]λ

1

6

v

λ
(5.1)

where we have a characteristic timescale t. The inverse of this is 1
6
v
λ , where v = vth. This is the only

combination we know gives us a timescale, and it’s diminished by +x being one of six preferred directions.

We can Taylor expand u to get

j(x) ≈ 1

6
v

[(
u(x)− ldu

dx

)
−
(
u(x) + l

du

dx

)]
= −1

3
vl
du

dx
. (5.2)
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We can write the energy density gradient du
dx as

du

dx
=

du

dT

dT

dx
= C

dT

dx
(5.3)

where C is the heat capacity per volume. This is constant for a material and describes how the energy
density changes per change in the temperature.

We see that the flux density of heat j is proportional to dT
dx , so a steeper temperature gradient has more flux.

Further, it’s proportional to λ: if you go further between collisions, you go up the temperature gradient
more effectively. Finally, j ∝ C: if particles can hold more energy per volume, they can transport more
energy per volume too.

5.1 Conduction by charged particles

Consider electrons in a classical, thermalized ideal gas. The concentration of electrons is ne and the
temperature is T . We know the kinetic energy is EK = 3

2kT , so the corresponding energy density is
ue =

3
2nekT . We can find the heat capacity:

Ce =
due
dT

=
3

2
nek. (5.4)

We also have

ve =

(
3kT

me

)1/2

(5.5)

and the mean free path is λ = 1
niσ

. We use ni for ions and the cross-section for electron-ion interacions since
the gas is thermalized.

5.2 Radiative diffusion

This describes conduction by photons. We know from the theory of radiative processes that a gas of
thermalized photons has an energy density of

ur =
8π5k4

15h3c3︸ ︷︷ ︸
a

T 4. (5.6)

The heat capacity is



Cr =
dur
dT

= 4aT 3. (5.7)

We can consider v ∼ c, so

j(x) = −κr
dT

dx
, (5.8)

where κr = 4
3cλaT

3. In a plasma, photons diffusing comes from electron (Thompson) scattering, which has
a mean free path of

λ =
1

neσr
(5.9)

where σr is the Thompson cross-section.

In general, we can rewrite the MFP as λ = 1
ρκ , which lets us write

j(r) = −4ac

3

T 3

ρκ

dT

dr
. (5.10)

If we introduce the radiation pressure Pr = 1
3aT

4 and the electron pressure Pe = nekT , this lets us compare
the coefficients of radiative diffusion and electron conduction.

κr
κe

=
√
3z

(
mec

2

kT

)5/2
Pr

Pe
. (5.11)

For the Sun’s interior, κr

κe
∼ 2 × 105, so radiative diffusion dominates electron conduction as the dominant

form of energy transport. This is generally true for most stars.
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Last time, we saw that

j(r) = −4ac

3

T 3

ρκ

dT

dr
(6.1)

assuming electron scattering. In the interiors of stars, we care about two other types of interactions:

1. free-free absorption (free electron, free photon), aka inverse bremsstrahlung

2. bound-free absorption (bound electron, free photon), aka photoionization. This is the more important
effect.

The mean free path for these interactions is frequency dependent, so we need to write an energy density in
terms of frequency:

uνdν =
hν

e
hν
kT − 1

8π
ν2

c3
dν. (6.2)

The heat capacity is

Cνdν =
∂uν
∂T

dν; (6.3)

the thermal conductivity (which we integrate over all frequencies) is

κr =

ˆ ∞

0

1

3
clνCνdν (6.4)

and the mean free path is

λ =
3

4acT 3
κr =

3

4acT 3

ˆ ∞

0

1

3
clνCνdν, (6.5)

i.e.

λ =

´∞
0
lνCνdν

4aT 3
. (6.6)
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This is the Rosseland mean free path. This is a hard integral, so skipping over some details, we can relate
opacity to temperature and density:

κ ∝ ρT−7/2 (6.7)

which is Kramer’s law. The proportionality constant in CGS for free-free absorption gives us

κff = (0.64× 1023)ρT−7/2 cm2

g . (6.8)

The constant is what’s different between different types of interaction.

For Thompson scattering, we have

κT =
neσT
ρ

=
(1 +X)ρ

2mp

σT
ρ

=
(1 +X)σT

2mp
. (6.9)

In CGS, this averages out to κT ≈ 0.2(1 + X) cm2

g . When looking inside stars, we can compare these two
opacities to see which one dominates.

For instance, for a main-sequence core, we can take X = 0 and the central density is about 150g/cm3. Let’s
find the point at which κff = κT .

0.64× 1027ρT−7/2 = 0.2(1 +X) (6.10)

which gives us T = 2× 107K. The central temperature of the Sun is about 1.6× 107K, so electron scattering
as the dominant source of opacity is a fair assumption.

6.1 Main-sequence luminosity-mass relations

We know that L = 4πR2j = 4πR2 1
3C

1
neσT

d
dr

(
nT 4

)
. From here, we want to OOM and put L in terms of

things we can measure. We can do this using the virial theorem,

kT ∼ GMmp

R
=⇒ T ∼ M

R
. (6.11)

Dropping constants and taking d
dr ∼

1
R , we get

L ∼ R2R
3

M

1

R

(
M4

R4

)
(6.12)
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where we’ve taken ne ∼ M
R3 . This gives us L ∼ M3. We’ve found that L is explicitly independent of R. To

make this equivalence into an equality, we can put these in a ratio:

L

L⊙
=

(
M

M⊙

)3

(6.13)

6.2 Convection

This refers to energy transport through bulk motion of a fluid. It depends on density/buoyancy, and
the criterion depends on the temperature gradient of the fluid. Start with an ideal gas in a gravitational
field (Ryan: “sounds like a star”; Thummim: “new spherical cow unlocked”). We have the ideal gas law,
PV = NkT , and we can make it per-volume:

Pµmp = ρkT =⇒ ρ =
µmp

k

P

T
. (6.14)

Using the quotient rule, we have

∆ρ ∝ T∆P − P∆T
T 2

, (6.15)

so

∆ρ

ρ
=

(
∆P

T
− P∆T

T 2

)
T

P
=

∆P

P
− ∆T

T
. (6.16)

This tells us that any fractional change in density is accompanied by a fractional change in pressure and
temperature.

To find the convective criterion, we perturb a parcel of fluid. In the environment, we have a state (x, P, T, ρ)
and just above it a state (x+∆x, P +∆P, T +∆T, ρ+∆ρ). Within this, the fluid rises and has a new state
(x+∆x, P + δP, T + δT, ρ+ δρ); the δ states aren’t necessarily the same as the ∆ ones.

The blob will be buoyant if it’s less dense than its environment: δρ < ∆ρ. Let’s say the pressure responds
quickly so that δP = ∆P and let’s also say the temperature response is adiabatic, so we have P ∝ ργ . This
tells us that

δP ∝ γργ−1δρ (6.17)
δρ

ρ
=

1

ρ

δP

P
. (6.18)

We can rewrite the buoyancy condition as



δρ

ρ
<

∆ρ

ρ
(6.19)

1

γ

δP

P︸ ︷︷ ︸
Eq6.18

<
∆P

P
− ∆T

T︸ ︷︷ ︸
Eq6.16

. (6.20)

Math tells us that

∆T <
γ − 1

γ

T

P
∆P. (6.21)

Letting the changes be infinitesimal, we get

dT

dx
<
γ − 1

γ

T

P

dP

dx
. (6.22)

Rewriting dy/y = d ln y, we get the condition for convection,

d lnT

d lnP
>
γ − 1

γ
. (6.23)

Let’s further constrain this condition by plugging hydrostatic equilibrium back into this. We get

dT

dr
<

1− γ
γ

T

P
δρ =

1− γ
γ

T

P

Gmρ

r2
(6.24)

dT

dr
<

1− γ
γ

Gmµmp

kr2
. (6.25)

This tells us that convection is very good at transporting energy, but going super-convective, i.e. having
a temperature/pressure gradient that exceeds γ−1

γ , isn’t too helpful, and it’s more useful to reduce the
temperature gradient by expanding adiabatically.

The useful equation in deciding between these two is comparing the temperature/pressure gradient for
adiabatic expansion to that for convective motion. (why do these act against each other?)

∆T

T
=

[
∂ lnT

∂ lnP

∣∣∣∣
ad

− d lnT

d lnP

]
δP

P
(6.26)

= −d lnP

dr
dr. (6.27)

In the cores of massive stars, the gradient that dominates is ∇ = d lnT
d lnP . (what does this mean?)
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7.1 Heat capacities

When we cook in a pot, we heat the bottom and set up a temperature gradient from the bottom to the top via
conduction. The gradient gets steeper over time, and after a certain gradient, conduction isn’t as efficient as
convection. At this point, the bulk motion of water in the pot creates convective eddies that transport heat
more efficiently.

We can relate pressure and density in a fluid using the adiabatic index. The energy density of a fluid is

U =
3kT

2µmp
. (7.1)

Recall the first law of thermodynamics, dU = dQ − dW . For adiabatic expansion, we have dW = PdV .
Define

Cp =
dQ

dT

∣∣∣∣
P

, CV =
dQ

dT

∣∣∣∣
V

. (7.2)

The adiabatic index is γ = CP

CV
.

Let’s think about the first law of thermodynamics for constant volume. IfdV = 0, we havedU = dQ = CV dT .
For an ideal gas,

dU =
3

2

k

µmp
dT, (7.3)

i.e. CV = 3
2

k
µmp

.

Repeating this for constant pressure, we get

dU = dQ− PdV =
dQ

dT

∣∣∣∣
P

dT − P dV

dT

∣∣∣∣
P

dT. (7.4)

We can use the ideal gas law, PV = k
µmp

T =⇒ P dV
dT = k

µmp
. Plugging this back in, we get

3

2

k

µmp
dT =

(
Cp −

k

µmp

)
dT. (7.5)
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This gives us

Cp =
5

2

k

µmp
. (7.6)

This gives us the adiabatic index for a monatomic ideal gas, γ =
Cp

CV
= 5

3 . More generally, γ =
Cp

CV
= 1+s/2

s/2 ,
where s is the number of degrees of freedom. As s → ∞, γ → 1. With more degrees of freedom, dT

dr does
not have to be steep for convection to take place.

7.2 The action of convection

We’d like to try and define an equation of motion for the blob of gas we displaced to derive the convection
condition. Say the bubble moves from position 1 to position 2. If the star is a polytrope with adiabatic index
γ, we have

ρ2,b = ρ1,b

(
P2

P1

)1/γ

(7.7)

and the change in the star is

ρ2,⋆ = ρ1 +∆r
dρ

dr

∣∣∣∣
⋆

. (7.8)

We compare these to see if the bubble is buoyant. Let ∆ρ = ρ2,⋆− ρ2,b. If it’s positive, the bubble is buoyant
and keeps moving, so it’s unstable. If it’s negative, the bubble is stable so it’ll sink/go back to 1.

If we think about hydrostatic equilibrium, we can combine that with these conditions to get

∆ρ = ρ∆r

(
d ln ρ

dr
+
ρg

Pγ

)
. (7.9)

The acceleration is

a⃗ =
∆ρ

ρ
g = −∆r−g

(
d ln ρ

dr
+
ρg

Pγ

)
N2

BV

, (7.10)

where NBV is the Brunt-Väisälä frequency. If N2
BV > 0, we have simple harmonic oscillation.

When things are stable, we have a⃗ ≈ 0, so NBV is also close to 0:

∣∣∣∣d ln ρdr

∣∣∣∣ ∼ ∣∣∣∣ dρgdPγ

∣∣∣∣. (7.11)



This implies N2
BV ≈

g
H , where H = kT

mpg
is the scale height. So

N = g
(mp

kT

)1/2
≈ g

vth
. (7.12)

Near the center of a star, we have N2 ≈ g
R because the scale height is roughly R near the center. This gives

us N2 ≈ GM
R3 . This is the inverse-squared dynamical time of the star, so

N ≈ 1

tdyn
. (7.13)

The core oscillations of a star are inversely related to its dynamical time, as we might hope.
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8.1 Convection

Previously, we saw that the acceleration from convection goes as a = −N2
BV ∆r, where N2

BV , the Brunt-
Vaisala frequency (squared), is given by

N2
BV = −g

(
d ln ρ

dr
+
ρg

Pγ

)
. (8.1)

This acts like a simple harmonic oscillator. For the stable case, we said that N ∼ g
vth

, and for the center of
the star, we said N ∼ 1

tdyn
. In the unstable case, the equation of motion is

ẍ = x
1

τ2
, (8.2)

where τ is a timescale. This tells us that x(t) = x0e
t/τ , and v = ẋ(t) = x0

τ e
t/τ = x(t)

τ . Plugging in our
timescale and taking x = l for our specific situation, we get

v = l

√
g

(
d ln ρ

dr
+
ρg

Pγ

)
(8.3)

To proceed, consider the fractional change in density:

∆ρ

ρ

∣∣∣∣
l

= l

(
d ln ρ

dr
+
ρg

Pγ

)
. (8.4)

In terms of this, the velocity is

v = (gl)1/2
(
∆ρ

ρ

∣∣∣∣
l

)1/2

. (8.5)

If you increase the density gradient, the velocity will be faster due to greater buoyancy.

What if we move a scale height? Let l = H = kT
mpg

. The velocity is
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v =

(
kT

mp

)1/2

︸ ︷︷ ︸
cs

(
∆ρ

ρ

∣∣∣∣
H

)1/2

. (8.6)

The first term is the sound speed, and the second is the density gradient. That is, if you move a scale height,
you’re moving at the sound speed. This almost comes directly out of the definition of the sound speed.

Whenever ∆ρ
ρ ∼ 1, we’re moving really fast; convection is really efficient at moving energy around.

8.2 Energy generation

We’ve now got almost everything we need to set up a set of equations describing stellar structure in terms
of just mass, radius, and so on. The one missing element is energy generation. We won’t do nuclear fusion
just yet; we’ll start with luminosity and temperature.

Let the luminosity (energy per time) crossing a spherical surface of radius r interior to the star be L(r). Say
L = L(R); then on the plot ofL(r) against r, we have the points (0, 0) and (R,L). Since we’re pushing energy
outward, L(r) has to be strictly non-decreasing. If it’s ever flat, we can say there’s no energy generation in
that region (the outer region where this is the case is called the envelope.)

Consider ϵ(r), the power generated per unit volume at radius r. ϵ(R) = 0 because there’s no power being
generated at the surface. In the center, ϵ starts off high, and drops off to 0 at the start of the envelope. The
reason for this is at a given radius, the power added is ϵ(r)4πr2dr. So we have

dL = 4πr2ϵ(r)dr (8.7)
dL

dr
= 4πr2ϵ(r). (8.8)

When energy generation stops, we have ϵ(r0) = 0, so dL
dr

∣∣
r≥r0

= 0.

8.3 Equations of stellar structure

We can now build up a system. For radiative diffusion, we have

L(r) = 4πr2j(r) (8.9)
L(r)

4πr2
= −4ac

3

T 3(r)

ρ(r)κ(r)

dT

dr
(8.10)

dT

dr
= − 3

4ac

κ(r)ρ(r)

T 3(r)

L(r)

4πr2
. (8.11)

Now, we can talk about the first real stellar structure model, which is Eddington’s standard model. He made
this model without knowing about nuclear fusion, instead just working off knowledge of energy transport.
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We know stars are gas-pressure dominated; suppose the ideal gas law holds. Then

P (r) =
ρ(r)kT (r)

µmp
. (8.12)

To this we add hydrostatic equilibrium,

dP

dr
= −ρ(r)Gm(r)

r2
. (8.13)

This gets rid of one unknown but adds another in m(r), so we need to add in mass continuity:

m(r) =

ˆ r

0

ρ(r′)4πr′2dr′. (8.14)

We can also describe pressure in terms of density by a power law,

P (r) = Kρ
n+1
n (r). (8.15)

Here, K is a constant and n is the polytropic index. This equation is called a polytrope.

We can convert between the adiabatic and polytropic indices by n = 1
γ−1 and γ = n+1

n .

For Eddington’s model, we assume radiative transport to relate the density to the temperature.

j = −1

3
c

1

neσ

d

dr

(
aT 4

)
. (8.16)

We’ll assume the relevant cross-section is Thomson scattering, and κ = σT

mp
. From this, the luminosity is

L(r) = −4πr2 4
3

acT 3

ρ

1

κ

dT

dr
. (8.17)

We also know that the radiation pressure is equal toPrad = 1
3aT

4. So we can rewrite the luminosity equation
to be in terms of the pressure gradient:

L(r) = −4πr2 c
ρκ

d

dr
Prad. (8.18)

Now, using hydrostatic equilibrium, we can say



1

ρ

dP

dr
= −Gm(r)

r2
. (8.19)

Let −ρ(r)dr = dy, the column density. Then we get

L(r) = 4πr2
c

κ

d

dy
Prad, (8.20)

or

dPrad

dy
=
L(r)

4πr2
κ

c
(8.21)

and also

dP

dy
=
Gm(r)

r2
. (8.22)

We can take a ratio:

dP

dPrad
=

4πGm(r)c

κL(r)
=

4πGc

κ

M

L

m(r)

M

L

L(r)
. (8.23)

Here, M is the total mass and L is the surface luminosity. If we take m(r = R) =M and L(r = R) = L, we
get

LEdd =
4πGcM

κ
=

4πGcMmp

σT
. (8.24)
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9.1 Luminosity and pressure balance

Last time, we found the Eddington luminosity, where the total pressure was equal to the radiation pressure.
We can write down the Eddington luminosity in units:

LEdd = 1.2× 1038
erg
s

M

M⊙
= 3.13× 104L⊙

M

M⊙
. (9.1)

We see that L⊙
L⊙,Edd

∼ 10−4. We can combine this with a previously-known scaling relation, that L ∝M3, to
see that

L

LEdd
≈ 3× 10−5

(
M

M⊙

)2

. (9.2)

This is called the Eddington ratio. For M ≥ 100M⊙, we get L
LEdd

∼ 1, so the total pressure is comparable to
the radiation pressure, and as the photon pressure at the surface of the star is balancing out gravity, it’s easy
for individual particles to become unbound. Massive stars drive strong winds.

Define

η(r) =
m(r)

M

L

L(r)
. (9.3)

Assume that this is constant with radius. We can say

ˆ r

R

dP =
LEdd

L
η

ˆ r

R

dPrad. (9.4)

Integrating this, we get

P (r) =
LEdd

L
ηPrad. (9.5)

Using the ideal gas law and the definition of radiation pressure, we get
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ρ(r)kT (r)

µmp
=
LEdd

L
ηaT 4(r). (9.6)

This tells us that ρ(r) ∝ T 3(r), and if gas pressure is dominant,

P = Pgas ∝ ρ(r)T (r) ∝ ρ4/3(r). (9.7)

Let’s analyze a wider range of systems by introducing a parameter β such that Pgas = βP and Prad =
1−β
β Pgas. This lets us write temperature and pressure profiles in terms of density:

T (r) =

(
3k

aµmp

1− β
β

)1/3

ρ1/3(r) (9.8)

P (r) =

[(
K

µmp

)4
3

a

1− β
β4

]1/3
ρ4/3(r). (9.9)

Inverting this and applying some scaling relations, we get

1− β
β4

= 3× 10−3µ4

(
M

M⊙

)2

. (9.10)

To get a more concrete idea of this, let’s look at various values of µ2M/M⊙ and see what the corresponding
β is.

µ2M/M⊙ 1 2 5 10 50
β 0.997 0.9885 0.9412 0.8463 0.5

and for a normal star with µ = 0.6, we can compare the mass to the ratio of radiation to gas pressure:

M/M⊙ 2.8 14 138
Prad/Pgas 3× 10−3 0.062 1

138 solar masses is about the upper limit for how high a star’s mass can go.

Note that since LEdd ∝M and L ≤ LEdd, at very high masses, the L ∝M3 scaling relation falls off a bit and
becomes more like L ∝M .

9.2 Stellar structure equations

Now, we can put everything together and come up with a system of equations to solve!

This system is sufficient to describe a star, if you can solve it. We also need sufficient boundary conditions.
These are m(0) = 0, L(0) = 0, T (R), P (R).
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Hydrostatic equilibrium dP
dr = −Gm(r)ρ(r)

r2

Conservation of mass dm
dr = 4πr2ρ(r)

Energy transport, radiative diffusion dT
dr = − 3

4ac
κ(r)ρ(r)
T 3(r) ϵ(r)

Energy generation dL
dr = 4πr2ϵ(r)

Table 9.1: Equations of stellar structure

We’d like to figure out a constraint to put on T (R), P (R), but this isn’t that easy to do. We can rearrange
this to get

r2

ρ(r)

dP

dr
= −Gm(r), (9.11)

and take a derivative to get

d

dr

(
r2

ρ(r)

dP

dr

)
= −Gdm

dr
= −4πr2ρ(r) (9.12)

or

1

r2
d

dr

(
r2

ρ(r)

dP

dr

)
= −4πGρ(r). (9.13)

We enforce the polytrope equation, P = Kρ
n+1
n , and get rid of pressure:

1

r2
d

dr

(
r2

ρ

d

dr

(
Kρ

n+1
n

))
= −4πGρ(r). (9.14)

This is a second-order differential equation, so we need two boundary conditions; we say ρ(0) = ρc and
dρ
dr

∣∣∣
0
= 0. If we set ρc, we have all of ρ(r). As soon as we have the density profile, we also have the pressure

profile. From there, we can get to the temperature profile, and from that we can get everything.

We can solve this by making the substitution ρ = ρcθ
n, which implies P = Pcθ

n+1. The radius is r = αξ,

where α = K(n+1)ρ
n+1
n

c

4πG . Here, θ is the “polytropic temperature” and ξ is a radius-like variable.

The equation is

1

ξ2
d

dξ

(
ξ2

dθ

dξ

)
= −θn. (9.15)

On this, we impose the boundary conditions θ(0) = 1 and dθ
dξ

∣∣∣
0
= 0. We’re interested in (among other

things) the ξ1 such that θ(ξ1) = 0, as this is the surface of the star.

There are three analytic solutions to this equation:



• For n = 0, we have θ(ξ) = 1− ξ2

6 and ξ1 =
√
6.

• For n = 1, we have θ(ξ) = sin ξ
ξ and ξ1 = π.

• For n = 5, we have
(
1 + ξ2

3

)−1/2

and ξ1 =∞.

This is called the Lane-Emden equation. For any other n, there is no analytic solution, so we have to solve this
numerically.
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10.1 Lane-Emden continued

Last time, we saw the Lane-Emden equation. The n = 0 case has constant density, so it describes an
incompressible fluid, like water or rock, so it’s useful as a description for planet interiors. For n = 0, we also

have a pressure profile, P = Pcθ = Pc

(
1−

(
ξ
ξ1

)2)
. The pressure vanishes at the surface.

For n = 5, we plug into the equation,

θ =

(
1 +

ξ2

3

)−1/2

. (10.1)

For the inside of the parentheses to be infinite (θ = 0), we need ξ1 = ∞, so the radius is infinite. In fact,
for n ≥ 5, we always have an infinite radius. It’s noteworthy that n = 5 still has finite mass, but n > 5 has
infinite mass as well.

For stars, we’re interested in the cases we already talked about: an ideal classical gas, n = 1.5, and a
relativistic gas, n = 3. Notably, neither of these cases have analytic solutions. This is a big part of why stellar
structure has relied on computation for so long.

10.2 Scaling relations

We know from hydrostatic equilibrium that Pc ∝ M2

R4 , and that ρc ∝ ⟨ρ⟩ ∝ M
R3 . To this, let’s add in the

polytrope equation: P ∝ ρ1+ 1
n . We can combine these things and get a relation between mass and radius.

M2

R4
∝
(
M

R3

)n+1
n

(10.2)

M
n−1
n ∝ R

n−3
n (10.3)

or in terms of the adiabatic index,

M2−γ ∝ R4−3γ . (10.4)

If we have n = 3, this tells us something like “there is a mass limit for relativistic stars.”.
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10.3 Pre-main-sequence evolution

In the first week, we saw that the timescale for gas cloud collapse was given by

tff =

(
3π

32Gρ

)1/2

. (10.5)

Can we try and compute this in a more realistic situation, to predict when a star will evolve? We can do this
by looking at energies. For polytropes, we can compute

Eg = − 3

5− n
GM2

R
. (10.6)

For convenience, we’ll let n = 2. Compare this to

EK =
3

2

k

µmp
MT. (10.7)

We have collapse if Eg > EK , which we can rewrite in terms of a critical mass:

MJ =
3kT

2Gµmp
R. (10.8)

This is the Jeans mass. For M > MJ , the star will collapse.

We can write

MJ = 500M⊙

(
T

104

)3/2(
1

n

)1/2

. (10.9)

and there’s an equation that I didn’t get from there.

The virial theorem (for n = 0, to give us an upper limit) tells us that

Etot =
1

2
Eg =

3GM2

10R
. (10.10)

This gives us the timescale tKH = Etot

L . This is the Kelvin-Helmholtz timescale. This describes cooling: we’re
removing energy through luminosity (via photons), i.e. kinetic energy leaves and the temperature drops.

For the luminosity, we’ll do the easiest thing possible:



L = 4πR2σT 4
eff . (10.11)

The timescale for collapse is

tKH =
3GM2

10R

1

4πR2σT 4
eff

=
3GM2

40πR3σT 4
eff

. (10.12)

For the Sun, this is about 10 million years. But we know the Sun is older than that, and we knew this when
we first wrote these equations down. What’s powering the Sun?

Put a pin in that – we’ll finish up handling the Jeans mass first. Consider the radiative luminosity

Lrad = 4πR2ϵσT 4
eff . (10.13)

Other than photons, where does the star’s energy go? Some fraction of it will break up molecules.

We want to compare Lrad to the free-fall luminosity,

Lff =
Eg

tff
≈ G3/2

(
MJ

RJ

)5/2

. (10.14)

We can combine these to find that

M
5/2
J =

4π

G3/2
R

9/2
J ϵσT 4. (10.15)
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We’re used to the H-R diagram, where we plot luminosity against effective temperature (which increases
to the left). In a protostar, we start with dust as the dominant opacity source, but this gets destroyed at
Teff ∼ 1000 K. This causes the photosphere to recede inwards until we’ve hit a new opacity source. If we
have the same luminosity, but a much smaller radius, the effective temperature increases a lot. So once dust
is destroyed we go very far left on the H-R diagram very fast, until we reach a fully convective star.

What happens to the evolution of a protostar when it’s fully convective? First, here’s how we get to the fully
convective state. We get gas cloud collapse, and faster center collapse. This creates a strong dT

dR that leads to
the star becoming fully convective.

We say the surface is where τ = 2
3 . Here, Teff = T (R) and PPh = g

κ . Since this is a convective star, we also
have that T ∝ P 2/5, so filling in the proportionality using the photosphere as our known point, we get

Pc = 0.77
GM2

R4
(11.1)

Tc = 0.54
GMµmp

kR
(11.2)

and so

kTeff = 0.6
GMµmp

R

(
R2

Mκ

)2/5

. (11.3)

We’re almost done, but we need to understand the opacity source. This isn’t Thomson scattering, because
it’s too cold to have free electrons. Since the star is convective, we have γ = 5

3 and d lnT
d lnP = 0.4. Multiplying

across, we get

γd lnT = (γ − 1)d lnP (11.4)

and so

P 1−γT γ = K (11.5)

where K is the polytropic constant (and there’s some work left out here).

Therefore

P 1−γT γ =M2−γR3γ−4. (11.6)



Lecture 11: Fully convective stars, the Hayashi track 39

Taking logs, we get

logP =
2− γ
1− γ

logM +
3γ − 4

1− γ
logR− γ

1− γ
log T. (11.7)

How do we find the radius? We have the optical depth at the photosphere, so

2

3
=

ˆ ∞

R

κρdr = κ

ˆ ∞

R

ρdr (11.8)

if we assume κ is constant with radius. This isn’t a nice integral, but we can relate it to something else.

Going back to hydrostatic equilibrium, we get

dP

dr
= −ρg (11.9)

P (R) =

ˆ ∞

R

ρgdr ≈︸︷︷︸
mass above surface is negligible

GM

R2

ˆ ∞

R

ρdr (11.10)

and therefore

P (R) =
2GM

3κR2
. (11.11)

If we have an opacity relation κ = κ0P
aT b

eff, we get

P (R) =

(
2GM

3κ0R2
T−b

eff

) 1
1+a

. (11.12)

Now, we want to relate these to luminosity so we can figure out movement on the H-R diagram.

L = 4πR2σT 4
eff (11.13)

logR = logK ′ + 0.5 logL− 2 log Teff (11.14)

Let’s eliminate pressure and assume γ = 5
3 . We get

logK +
1

1 + a
(logM − 2 logR− b log Teff) = −

1

2
logM − 3

2
logR− 5

3
log Teff (11.15)

and doing even more math, we get



log Teff = A logL+B logM + C. (11.16)

for some constants A,B,C. We can substitute Equation 11.14 in to get A,B in terms of a, b:

A =
0.75a− 0.25

5.5a+ b+ 1.5
, B =

0.5a+ 1.5

5.5a+ b+ 1.5
. (11.17)

To keep going, we need to know the opacity source, which is H-: a proton with two bound electrons. The
ionization energy is 0.75 eV, a small fraction of the 13.6 eV ionization energy for neutral hydrogen. This has
an opacity that goes as κ = κ0P

aT bZc, where a ≈ 1, b ≈ 3, c ≈ 0.5. This yields A ≈ 0.05 and B ≈ 0.2. Now,
we have a relationship between luminosity and temperature for a given mass.

Teff = 4000Kµ 3
51m

7
51 l

1
102 . (11.18)

(Here, m is M/M⊙ and similarly for l.)

The exponent on l is really small in practical terms, so the effective temperature is basically fixed. So as you
collapse, luminosity goes down while temperature stays constant. This vertical line on the H-R diagram is
the Hayashi track.

The Hayashi forbidden zone is to the right of the Hayashi track: it’s not actually forbidden, but stars move
over it so fast that you’re unlikely to see any stars there.
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Last time, we found that for fully convective stars,

Teff ≈ 4000Kµ13/51m7/51l102. (12.1)

or alternatively

Teff ≈ 2500Km7/51r1/49. (12.2)

How do we get out of the Hayashi track? One way is to stop collapsing by starting fusion, and the other is to
stop being fully convective. If you stop being fully convective, you still get some movement in parallel with
the Hayashi track because gravitational collapse and increasing effective temperature still happen. This
happens along the Henyey track. Along either track, nuclear fusion has to start at some point. The curve on
the H-R diagram along which the stars reach the point where they have to start fusion is called the zero-age
main sequence (ZAMS).

If nucleons combine, their binding energy per nucleon goes up until they reach iron-56.

Luminosity is set by energy transport, which is set by the sources of energy. What could this source be for
the Sun? It can’t be gravitational collapse, because the timescale for that is too short.

tKH ≈
GM2

RL
≈ 107 years (12.3)

At the Big Bang, about 75% hydrogen and 25% helium-4 was created. Fusing this hydrogen into helium
provides enough energy to power a star for billions of years.

How does fusion work? First, we combine two protons into deuterium, a positron (to balance charge), and
an electron neutrino (to balance lepton number).

p + p −−→ D + e+ + νe

This is slow because it’s a weak interaction. Once we have deuterium, we fuse another proton:

p + D −−→ 3 He + γ

where we’ve released some energy γ. Finally, we fuse two helium-3s:

3 He + 3 He −−→ 4 He + 2 p
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This is the p-p chain. If you go through and count up how many of each thing you need, you find that overall
it fuses 4 protons to get helium-4.

We might ask: if it’s energetically favoured, why isn’t the entire universe iron? Or why doesn’t all hydrogen
instantly fuse to helium? The reason is electromagnetic forces. The strong nuclear force is much stronger
than anything else, but that only holds at small separations, around 1 fm. Above that, electromagnetism
dominates. We can get particles close to each other by heating them up.

The electrostatic energy is

V =
Z1Z2e

2

r
(12.4)

which we balance against ETh = kT . Using this conversion, we get 1 eV = 11,600 K. So near the surface of
the Sun, fusion isn’t possible. At the center, we have Tc ∼ 107 K, so kT ∼ 1 keV, but this still isn’t of the
order of the 1 MeV we need. We fix this with quantum tunneling.

Let’s review basic quantum mechanics! The Schrödinger equation tells us

[
− ℏ2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r) (12.5)

where m is the reduced mass m1m2

m1+m2
. If V ≈ 0 except at a potential barrier, we can solve this for the

wavefunction outside the barrier

E = −ℏ2k2

2m
;ψ = eikr (12.6)

and inside the barrier

ψ ≈ e±kr; |ψ(0)|2 = (e−k∆r)2|ψ∞|2. (12.7)

If ∆r increases, the probability we can tunnel through it goes down.

For our case, we have

−ℏ2k2

2mr
=
Z1Z2e

2

r
+ E. (12.8)

The probability of tunnelling is

P ≈
∣∣e−ki∆r

∣∣2 = exp

(
−2
ˆ
k(r)dr

)
. (12.9)



Solving this, we get that the wavenumber is

k =

(
2mr

ℏ2

)1/2[
Z1Z2e

2

r
− E

]1/2
(12.10)

=

(
2mrE

ℏ2

)1/2(rc
r
− 1
)1/2

(12.11)

where rc is the radius at which the Coulomb force is felt,

rc =
Z1Z2e

2

4πε0E
. (12.12)

We want to do the integral

I =

ˆ
kdr =

(
2mrE

ℏ2

)1/2 ˆ rc

rN

(rc
r
− 1
)1/2

dr. (12.13)

Here, rN is the radius of the nucleus. If we substitute x = r
rc

, we get

I =

(
2mrE

ℏ2

)1/2

rc

ˆ 1

rn
rc

≈0

(
1

x
− 1

)1/2

dx. (12.14)

Looking this up in an integral table, we get

I =
π

2
αZ1Z2

(
2mrc

2

E

)1/2

(12.15)

and so

P (0) = exp

(
−παZ1Z2

(
2mrc

2

E

)1/2
)
. (12.16)

If we increase the number of positive charges, either Z1 or Z2 goes up, so the probability goes down. The
Coulomb barrier is larger as more protons are present, so it’s harder to fuse.

If we rewrite this in terms of EG = (παZ1Z2)
2(2mrc

2) and E = −ℏ2k2

2m , we can say

P (0) = exp

(
−
(
EG

E

)1/2
)
. (12.17)
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Last time, we were looking at the probability of starting fusion using quantum tunnelling. For the p-p chain,
EG is about 494 keV, and the Sun’s thermal energy is kT ∼ 1 keV. So

P (0) = exp

(
−
(
494

1

)1/2
)

= exp(−22) = 2× 10−10. (13.1)

Another way to think about energy is in terms of velocity, E = 1
2mrv

2, where v is the relative velocity
between the two particles. In these terms, we have

P (0) = exp

(
−2π e

2Z1Z2

ℏv

)
(13.2)

or, in terms of the Coulomb energy ECoul =
e2Z1Z2

λ , where λ is the de Broglie wavelength,

P (0) ∝ exp

(
−ECoul(λ)

1
2mv

2

)
. (13.3)

Now, to get a reaction rate or a probability density over time, we need to think about time. We’ll get this
from nuclear cross-sections because that’ll give us known inputs to scattering theory. Nuclear cross-sections
measure how “sticky” particles are. We’ll ignore resonance for this class.

The only length scale we have to start estimating these is the de Broglie wavelength λ = h
p ≈ 10−10 cm. The

reaction rate depends on the energy of the system, for which we can use the center of mass energy,

ECOM =
1

2
mr|v⃗1 − v⃗2|2. (13.4)

So the cross-section is

σ(E) = 4πλ2K(E)P (0) (13.5)

which comes from the effective surface area, an energy-dependent constant, and the probability that the
wavefunctions actually overlap. (For now,E andEcon are the same.) Here,K(E) is a dimensionless constant.
We can rewrite the prefactor in terms of other known factors:

4πλ2 =
4π

k2
=

2πℏ
mrEcon

= 2000 barns keV

Ecom
. (13.6)
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If K(E) ∼ 1, then σ is large. We don’t actually have a way to analytically figure out K(E), but we can get it
from extrapolating from human scales and matching models of the Sun/other stars to observations.

Let’s try and get a reaction time. We can get this from t = 1
nσv by dimensional analysis/remembering fluids

class. Our reaction rate is the inverse of this, or 1
t = nσv. We want to figure out the rate per volume to put

it in the context of stellar cores. If we have species with concentrations n1, n2 reacting, we can say

rate
volume = R12 = n1n2σv. (13.7)

We can take a thermal average of σv:

⟨σv⟩ =
ˆ ∞

0

vrσ(vr)P (vr)dvr (13.8)

where P (vr)dvr represents the probability that two particles have a relative velocity between vr and vr+dvr.
We know this probability follows the Maxwell distribution:

P (vr)dvr =
( mr

2πkT

)3/2
exp

(
−mrv

2
r

2kT

)
d3vr (13.9)

so, substituting this in, we can say

⟨σv⟩ =
( mr

2πkT

)3/2 ˆ ∞

0

exp

(
−mrv

2
r

2kT

)
4πv2rdvrvrσ(vr). (13.10)

This is the third moment of a half-normal distribution, so it’s a known integral, but there’s another way to
simplify it. Make the substitution dE = mrvrdvr. We get

4πv3rdvr =
8π

m2
r

EdE. (13.11)

So the integral becomes

⟨σv⟩ =
( mr

2πkT

)3/2 ˆ ∞

0

8π

m2
r

EdE exp

(
− E

kT

)
1

E
S(E) exp

(
−
(
EG

E

)1/2
)
. (13.12)

Here, we’ve defined S(E) so that it plays the role of K(E) in the expansion of σ. We can rewrite this as

⟨σv⟩ = 1

(kT )3/2

(
8

πmr

)1/2 ˆ ∞

0

S(E) exp

(
− E

kT
−
(
EG

E

)1/2
)

︸ ︷︷ ︸
P (E)

dE. (13.13)
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We can understand some of the behaviour of this function by looking at P (E). At large energies, the − E
kT

dominates, so the overall curve looks like a decaying exponential. Physically, we can interpret this as our
particles following the thermal distribution. At small energies, the−

(
EG

E

)1/2 dominates, so the overall curve
looks like an increasing exponential. Physically, we can interpret this as there being a high probability of
tunnelling. If we multiply these two together, we get P (E), a function with a peak and some spread around
that peak.

Figure 13.1: Plots of exp(−x), exp
(
−
√
1/x
)

, and their product, to show it forms a peak with some spread

How do we find out what this peak is? We can take a derivative and set it to zero, and since exp is monotonic
we can just do this with the argument. We know P = exp(−f), where

f =
E

kT
+

(
EG

E

)1/2

. (13.14)

Taking a derivative, we get

∂f

∂E
=

1

kT
− 1

2

E
1/2
G

E3/2
. (13.15)

The peak energy is attained at E = E0 such that ∂f
∂E

∣∣∣
E=E0

= 0. This comes out to
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E0 =

(
EG(kT )

2

4

)1/3

. (13.16)

To find the spread of this peak, we Taylor expand f around it.

f(E) = f(E0) +
1

2
(E − E0)

2 ∂
2f

∂E2
+O

(
(E − E0)

4
)
. (13.17)

Substituting in gives us f(E0) = 3
(

EG

4kT

)1/3. We get

P = exp

(
−
(
3EG

4kT

)1/3
)
exp

(
−
(
E − E0

∆/2

)2
)
. (13.18)

We get

∆ = 1.83E
1/6
G (kT )5/6 (13.19)

so the peak is governed more heavily by the thermal energy than the Gamow energy.

We can plug in some typical numbers for the p-p and p-C reactions to get an idea of how large these peaks
are.

p + p p + 12 C
EG 494 keV 32.6 MeV
E0 4.5 keV

(
T

107 K
)2/3 18.2 keV

(
T

107 K
)2/3

∆
E0

(
T

107 K
)1/6 0.5

(
T

107 K
)2/3

Table 13.2: Gamow energy, peak energy, and spread for two reactions

We see that p + C has a smaller peak than p + p does.

Returning to ⟨σv⟩ and treating S(E) as a constant at around the energy of fusion,

⟨σv⟩ = 2.6
E

1/6
G

m
1/2
r

S(E0)

(kT )3/2
exp

(
−3
(
EG

4kT

)1/3
)
. (13.20)

The Gamow energy and S(E0) are constant for each type of reaction, so we can consider this to be just a
function of T .

We can plug this into the reaction rate to get a final result:

R12 ∝ n1n2S(E0) exp

(
−3
(
EG

4kT

)1/3
)

(13.21)



We can qualitatively interpret each term: the reaction rate goes up if there’s more of each reactant, if the
particles are more sticky, or if the Gamow energy “wins” over kT . How sensitive is this to temperature?

dR12

dT
≈
(
EG

4kT

)1/3
R12

T
. (13.22)

For p + d, we have T ∼ 2× 107 K, so

dRpd

dT
≈ 4.6

Rpd

T
=⇒ Rpd ∝ T 4.6. (13.23)

Detailed calculations show Rpd ≈ T 4, so these are highly dependent on temperature. We’ll deal with
reactions with proportionalities around T 20.
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Last time, we saw that reaction rates had the relationship

R12 ∝ n1n2S(E0) exp

(
−3
(
EG

4kT

)1/3
)

(14.1)

and

dR12

dT
≈
(
EG

4kT

)1/3
R12

T
. (14.2)

For p-d, we find that Rpd ∝ T 4.

Let’s think about how this relates to proton capture onto carbon. If we say R ∝ T ν , we’re interested in

νpC
νpd

=

(
EG,pC

4kT

)1/3
(

EG,pd

4kT

)1/3 =

(
EG,pC

EG,pD

)1/3

=

(
32.6

0.494

)1/3

≈ 661/3 ≈ 4. (14.3)

Therefore, Rpc ∝ T 17 (approximately 16 and more careful analysis finds 17.) This tells us that all fusion
reactions are very temperature-sensitive. This is because as you go up to heavier elements, the Gamow
energy keeps rising. At some level, we’re getting to a situation where to produce even close to the same
amount of luminosity for stars, the temperature remains roughly the same.

We need to push this back into an energy generation rate ϵ.

ϵ =
n1n2⟨σv⟩ENuc

ρ
. (14.4)

For p-p, we look at the rate-limiting step, i.e. the thing that happens slowest. This is because the timescale
is set by t = 1

nσv , so we’re interested in the slowest σv as what dominates this. For the p-p chain, this is p +
p −−→ d + e+ + νe where a weak interaction converts a proton to a neutron. The ϵ we get here is

ϵ = 2.8× 1030
S

Sstrong

ρ

T
2/3
7

exp

(
−15.70

T
1/3
7

)
(14.5)

where T7 = T
107 K . Here, S

Sstrong
∼ 10−25 is the weak interaction suppression factor, which we should

intuitively understand as accounting for the fact that protons don’t convert to neutrons very often.



Lecture 14: Nuclear fusion and halting collapse 50

When do we halt collapse? I don’t know because I’m very annoyed at my TeX distribution now.

L = 3× 1028
erg
s m1/2r4 (14.6)

where m =M/0.1M⊙ and similar for R.

We can now find the luminosity due to nuclear fusion:

LNuc =

ˆ
ϵdM ≈ ϵcMcore (14.7)

where ϵc is the energy rate in the core.

For p-p, S = 10−25Sstrong = 4× 10−22keV barn.

For fully convective stars on the Hayashi track,

Tc = 0.54
GMµmp

kR
(14.8)

so

Lnuc = 2× 1040
erg
s
m4/3

r7/3
exp

(
−17.35 r

1/3

m1/3

)
. (14.9)

When collapse is halted, L = Lnuc, so

1012m4/3r−7/3 exp
(
−17.35m−1/3r1/3

)
= m1/2r4. (14.10)

We can solve this and find that r ∼ 1 and m ≈ 3.

We can halt collapse when we have fusion from ∼ 0.3M⊙ in ∼ 0.1R⊙. At 0.1M⊙, we have T = 3.4× 106 K,
which is consistent with p-p.

Can the other steps in the p-p chain that aren’t rate-limiting also halt collapse? Let’s look at deuterium
burning to find out.

⟨σv⟩ = 2.6
E

1/6
G

mp

S(E0)

(kT )2/3
exp

(
−3
(
EG

4kT

)1/3
)

(14.11)

EG = (παZ1Z2)
2(2mrc

2) = 0.988MeV(Z1Z2)
2mr

mp
. (14.12)

Almost all fusion reactions have similar S, so is there anything else in here that might help us compete with
hydrogen burning? For the p + d −−→ 3 He + γ reaction, we have a reduced mass of 1mp×2mp

1mp+2mp
= 2

3mp, and



Z1 = Z2 = 1. We get that the Gamow energy is 655 keV, higher than the 494 for p-p, and the nuclear energy

we get is 5.5 MeV. We have ⟨σv⟩ = 8× 10−20cm3/s 1

T
2/3
7

exp

(
−17.24

T
1/3
7

)
. The timescale for deuterium burning

is

tD =
1

np⟨σv⟩
=

2× 10−5T
2/3
7

ρ
exp

(
17.24

T
1/3
7

)
. (14.13)

We use np here because the reaction is limited by when a deuterium atom will run into a proton.

For comparison, the collapse time is R
dR
dt

or Eg

L = 3GM2

7R
1
L . If we want to compare these, we’ll need more

information. We can use the scaling relations of the Hayashi track:

Teff ∝M7/51L1/102 ∝ 4000K
(
M

M⊙

)7/51

(14.14)

i.e.

L = 9× 1032
erg
s

(
R

R⊙

)2(
M

M⊙

)28/51

(14.15)

so the collapse time is

tcollapse = 1.8× 1015s
(
M

M⊙

)74/51≈3/2(
R

R⊙

)3

. (14.16)

We’re still not done because we need to relateM,R to ρ, T . We can do this using an n = 3
2 polytrope, which

gives us ρc = 6⟨ρ⟩ = 8.3
g

cm3

(
M
M⊙

)(
R
R⊙

)−1

. So we have a central temperature of

Tc = 0.54
GMmp

kR
= 7.4× 106K

(
M

M⊙

)(
R

R⊙

)−1

(14.17)

Now, we can set the two timescales equal. Let m =M/M⊙ and r = R/R⊙; then

1.8× 1015m3/2r3 =
2× 10−5

8.3m/r3
0.742/3

(m
r

)2/3
exp

(
17.24

0.741/3

( r
m

)1/3)
(14.18)

and so

r = m(2.53 + 0.096 lnm− 0.28 ln r)3. (14.19)

This happens at m ∼ 1, r ∼ 1 (no it doesn’t, unless they’re close to 1 in opposite directions; see the table
below) so generally we burn all deuterium about when we reach MS.
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m r Tc

105K 0.13 r
m tD (Myr)

0.03 0.43 5.2 1.86 7.5
0.1 1.17 6.3 1.53 1.7
0.3 2.86 7.7 1.24 0.5

Table 14.3: Deuterium-burning timescales for convective stars

Stars and Planets I: Stellar Structure and Evolution Winter 2023

Lecture 15: CNO luminosity, stellar structure, the Saha equation
Lecturer: Ryan Foley 22 February Aditya Sengupta

15.1 CNO luminosity

Last time, we saw that the CNO cycle’s rate-limiting step was proton capture onto 14-nitrogen. For this step,
the Gamow energy is 48.1 MeV. The rate is np⟨σv⟩pN and the energy generation in the core is is

ϵ = 28 MeV npn14⟨σv⟩
ρ

. (15.1)

Combining this with S = 2.75 keV barn and n14 = 10−3np, we get

ϵ = 2.5× 1025
erg
g · sρT

−2/3
7 exp

(
−72.19

T
1/3
7

)
. (15.2)

The luminosity provided by this is L =
´
ϵdM . If we have ϵ ∝ T ν , we can say

d ln exp(x) = d lnT ν

dx = T−ννT ν−1dT = ν
dT

T

ν =
dx

dT
T.

(15.3)

Taylor expanding around T7, we can say

ν =
dx

dT
T =

1

3

72.19

T
4/3
7

T ≈ 24T
−1/3
7 . (15.4)

Therefore ϵ ∝ exp(−72.19)T 24
7 and the luminosity generated by the CNO cycle is
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L =

ˆ
ϵdM = 5× 1058

erg
s
M2

R3
T

−2/3
7 exp(−72.19)T 24

7 ≈ 1026
M2

R3
T 23
7 . (15.5)

If we want to match the usual scaling relation for luminosity as a function of mass, we need

L = L⊙

(
M

M⊙

)3

(15.6)

3.9× 1033M3 = 1026
M2

R3
T 23
7 (15.7)

so we find that T7 ∼ 2.1 pretty much independent of mass. However, this depends on the Taylor expansion
we did around T7 ∼ 1, so we should re-expand around T7 = 2.

ν =
1

3

2−1/3 × 72.19

(T7/2)1/3
≈ 19

(
T7
2

)−1/3

(15.8)

3.9× 107 =M−1R−3

(
T7
2

)18

. (15.9)

We can eliminate R using hydrostatic balance:

3.9× 107 =M−1

(
GMµmp

kTc

)−3(
T7
2

)18

(15.10)

or

T7 = 1.83M4/21. (15.11)

It’s important to remember that this is only a statement about CNO.

The central temperature of CNO stars is roughly independent of mass.

On the main sequence, we can apply previously-known scaling relations and find that for CNO stars,
Teff ∝M0.34. This works for 1 ≲M/M⊙ ≲ 10.

15.2 The structure of massive stars

With this understanding of nuclear reactions, we can start to understand the structure of massive stars. For
CNO, ϵ is centrally located, meaning L(r) = L even for small radii. To figure out how that gets transported
outwards, we need to figure out where the star is convective, i.e. where d lnT

d lnP > 2
5 holds. For an ideal gas,

dP
dr = −ρg. We can write
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F (r) = −4

3

ac

κρ
T 3 dT

dr
(15.12)

=
4

3

acg

κ
T 3 dr

dP

dT

dr
(15.13)

=
4

3

acg

κ
P−1

tot T
4 P

dP

dT

T
(15.14)

=
4

3

acg

κ
P−1

tot T
4 d lnT

d lnP
. (15.15)

Therefore, using L(r) = 4πr2F (r) and g = Gm(r)
r2 ,

d lnT

d lnP
=
Ptot

aT 4

3

4

L(r)

LEdd

M

M(r)
. (15.16)

This becomes large at small r, so CNO stars have convective cores. How big is this convective core? We can
find scaling relations in terms of mass for each term:

Ptot

Prad
= 2600

(
M

M⊙

)−2

(15.17)

L

LEdd
= 4× 10−5

(
M

M⊙

)2

(15.18)

so

2

5
=

d lnT

d lnP
= 0.1

M

m(r)
(15.19)

i.e. m(r) = 1
4M .

If you generate all your energy in < 1
4M , you have a convective core. CNO stars have a convective core of

about 1
4M . Outside the core, radiative diffusion dominates, so there’s a radiative envelope.

M
M⊙

T7 qc =
Mconv
M qe =

Mconv,env
M

60 3.9 0.73 0
15 3.3 0.4 0
5 2.6 0.23 0

1.5 1.9 0.07 0
1.0 1.5 0 0.0035
0.6 0.9 0 0.7
0.3 1 1

Table 15.4: Convective core and envelope sizes for different stars

Roughly, at M > M⊙, we have the CNO cycle so there’s a convective core and no envelope, and at M < M⊙
we have the p-p chain so there’s no convective core and a convective envelope. As we get smaller, we go
towards being fully convective. This gives us three broad types of stars:



• ForM/M⊙ ≳ 1.5, the energy source is the CNO cycle. It has a convective core and a radiative envelope.

• For 0.5 ≲ M/M⊙ ≲ 1.5, the energy source is the p-p chain. It has a radiative core and a convective
envelope.

• For M/M⊙ ≲ 0.5, the energy source is the p-p chain. It is fully convective.

15.3 The Saha equation

When we look at a stellar spectrum, we see a blackbody with absorption features. We need to understand the
ionization states of elements in the star to understand those absorption features. Let’s start with hydrogen
– when is it ionized? Hydrogen’s ionization energy is 13.6 eV, which happens at about T ∼ 105 K.
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17.1 Excitation states

If we want to think about hydrogen in stars using traditional optical instrumentation, we want to look at the
lines of hydrogen at optical wavelengths, which are the Balmer lines. These are transitions from or to the
n = 2 state, and the energy difference from n = 1 to n = 2 is 10.2 eV. Therefore,

nn=2

nn=1
= exp

(
−10.2 eV

k
T

)
= 10−5 at T = 104K. (17.1)

The cross-section is σγ = 10−16cm2. For comparison, the Thomson cross-section is σT = 0.6 × 10−24cm2,
so there’s more scattering through this process even if there’s less abundance. The ratio of these cross-
sections is σγ/σT = 1.7× 108, and nH/np ≈ 0.1, so we can compare their activation energies to get a critical
temperature:

exp

(
−10.2eV

kT

)
> 6× 10−8 =⇒ T < 11100K. (17.2)

So we see Balmer lines for T ≲ 10, 000K and no Balmer lines above that.

17.2 Spectral sequences

The original spectral sequence came from the relative strength of Balmer lines: from the strongest to the
weakest Balmer lines, the sequence was ABFGKMO. Annie Jump Cannon discovered that the order in
temperature was OBAFGKM. Why is there this inversion? More specifically, why do the hotter stars not
appear to have hydrogen?

This was resolved using the Saha equation. Cecilia Payne-Gaposchkin determined that stars were composed
primarily of hydrogen. The reason O stars have nonexistent hydrogen lines is because its hydrogen is all
ionized. In the other direction, you have more hydrogen in the ground state and the opacity source switches
to molecular absorption.

There are gradients within each of these categories. You can define these as O1 through O10, followed by
B0 through B10, and so on. Increasing numbers are cooler. In recent years, we’ve added L, T, Y stars, which
are even colder. There are also luminosity classes from I to V. V is a dwarf and I is a supergiant.

Hotter stars are called “early-type” stars and cooler stars are called “late-type” stars. This originates from
when we thought luminosity came from Kelvin-Helmholtz contraction, but it doesn’t actually have anything
to do with age.
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Type Teff (K) M
M⊙

(ZAMS)
O3 52,000 120
O8 36,000 23
B0 30,000 17
B5 15,400 6
A0 9520 3
G0 6030 1.05
M0 3850 0.5

Table 17.5: Effective temperatures and ZAMS masses of stars of different types

17.3 H− opacity for cool stars

At low temperatures, hydrogen is neutral and alkali are ionized. This allows for the formation of H−, and
the second electron has E = 0.75 eV.

e– + H←−→ H– + γ

We can plug this into the Saha equation:

nH
nH−

=
no,e
ne

exp

(
−0.75

kT

)
. (17.3)

If all alkali metals are singly ionized, ne = nalk = 1013cm−3, which gives us

nH
nH−

= 10−8 exp

(
8700

T

)
. (17.4)

This is satisfied at T = 470K, but alkali atoms are ionized at 3000K, so this isn’t actually feasible. We can do
a more detailed calculation of where H− abundance and free-electron abundance overlap, and we find that
we actually get T ∼ 4000 K.

17.4 Evolution on the main sequence

How long does a star spend on the main sequence? We can get this from tMS = Enuc
L : energy divided by

energy per time. We can rewrite this:

tMS =
Enuc/mp

Eth/mp
tKH . (17.5)

SinceEnuc/mp ≫ Eth/mp, the main sequence timescale is much longer than the Kelvin-Helmholtz timescale.
Therefore, main sequence stars always have to be at hydrostatic equilibrium, because if they weren’t, that
would be a change on a timescale much shorter than the main sequence timescale we just calculated.



So what’s changing on the main sequence? We’re converting hydrogen to helium. This turns 8 particles
into 3, which changes the pressure.

P =
ρkT

µmp
=
ρkT

mp

(
2X +

3

4
Y

)
. (17.6)

For 25% helium (the cosmic mix), µ = 0.6, and for 100% helium, µ = 4
3 . So µ is changing by roughly a factor

of 2.

Throughout this, we must have that kT =
GMµmp

R . For CNO, T is about constant, so we can sayR ∝ µ. This
affects the luminosity:

L = 4πR2 c

3κρ

1

R
σT 4. (17.7)

Here, κ = 0.2(1 +X)cm2g−1. Therefore

L ∝ R2 1

1 +X

R3

M

1

R
T 4 (17.8)

=
1

1 +X

R4

M

M4µ4

R4
(17.9)

=M3 µ4

1 +X
. (17.10)

This reproduces the result we knew already, that L ∝M3, but with abundances taken into account.

If we could change a star entirely to helium, it’d be 43 times as luminous as one with the cosmic mix of
helium. In fact, helium only gets formed in the core, so luminosity increases but not this much.

CNO-burning stars move up and to the right (increased L, decreased Teff) on the H-R diagram. This
doesn’t hold for p-p stars. For these, we have Lnuc ∝ T 4−6. As µ increases, T does too, and L ∝ µ4M3 and
R ∝ µT−1. As µ goes up, R is constant. This produces movement along the zero-age main sequence.

Age dating in open clusters is easy and in globular clusters is hard.
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18.1 Central hydrogen depletion

As you burn through hydrogen, it all turns into helium, and in high-mass stars, this helium is well-mixed
on timescales much shorter than the burning. So high-mass stars run out of all of their hydrogen at once.
At this point, the core continues to collapse. This happens on a Kelvin-Helmholtz timescale, and eventually
hydrogen in the shell above the core will ignite. On the H-R diagram, this makes the star go through what’s
called the Henyey hook, where L increases slightly and Teff decreases significantly.

In low-mass stars, the same change happens but more gradually.

18.2 Transition to the red giant branch

We have an inert helium core that contracts, and so the temperature rises. The hydrogen-burning shell
equilibriates with the core, but the surface temperature remains low, so there’s a large temperature gradient.
Before convection starts, this gradient drives adiabatic expansion, so the envelope expands and the star
becomes redder.

Eventually, the surface gets cold enough that alkali metals start to recombine. At the star’s surface, we no
longer have H− opacity. So photons from further in that have been interacting with H− in the envelope no
longer have to do that, and so they escape fast. The surface is very efficient at removing energy from the
system. So we need to supply it with energy somehow. This is achieved by creating a convective layer just
below the surface.

The radius increases, and so does the luminosity. This means the convective layer grows, and eventually the
convective zone reaches all the way down to the shell. These become big stars with a tiny core, and they’re
almost fully convective but for the core. The radius is set by H− opacity. This is essentially the same as the
Hayashi track.

The transition from the main sequence to the red giant branch is very fast, so it’s very rare to find any stars
in the space between them (the Hertzsprung gap.)

18.3 The Schönberg-Chandrasekhar limit

This is not the same as the Chandrasekhar limit, but it also has to do with masses of degenerate objects.
The basic idea here is to say: once you’ve stopped hydrogen burning, your core is inert and has to be
thermally supported. The weight of the envelope is significant for this. There’s some maximum pressure
corresponding to some critical core radius after which thermal support falls off.

IfMc/M < 0.08, there’s a stable solution and the thermal pressure is sufficient. Above this, the core becomes
degenerate. For these, P = Kρ5/3, and a degenerate core is always sufficient to hold up the system.



For M > 6M⊙, we get that Mc/M > 0.08 at the end of hydrogen burning: the core is a substantial fraction
of the star. The core “discovers” a lack of pressure support and quickly contracts over a timescale of

tcontract =
GM2/R

L
≈ 106 years for 6M⊙, 3× 104 years for 30M⊙. (18.1)

For 2 < M
M⊙

< 6, we meet the condition Mc/M < 0.08 at TAMS, so the core is isothermal during shell
burning. For M

M⊙
< 2, the core becomes degenerate before the limit. Eventually, every star gets a degenerate

core, either one that’ll explode or one that’ll become a white dwarf.

The key thing for understanding our stars’ degeneracy condition is the virial theorem, T ∝ M/R, and
combining this with the definition of density, we can say

T ∝M2/3ρ1/3. (18.2)

The Fermi energy is proportional to n, which is proportional to ρ. With this in mind, we can think about the
temperature of the core as a function of the density of the core. On this plot, you can plot a line over which
EF ≈ kT . To its left the star is non-degenerate and to its right it’s degenerate. We’re interested in curves
that cross this line, where there’s helium burning to the left and hydrogen burning to the right.
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19.1 The red giant branch

The red giant branch is defined by shell hydrogen burning. Red giant stars have an inert helium core and
CNO burning. Their helium core mass grows and creates a big, puffy, convective envelope.

For a degenerate core, we know that Pc ∝ M2

R4 and Pdeg ∝ ρ5/3 = M5/3

R5 . Setting these equal, we get that
R ∝M−1/3. For a degenerate object like a white dwarf, this actually holds.

For a relativistic degenerate object, we have that Pdeg ∝ ρ4/3, so if we do the same calculation the radii
cancel. This means there’s a set maximum mass a relativistic degenerate object can have, the Chandrasekhar
mass. More massive degenerate stars have lower luminosities because their radii go down.

The shell temperature of a red giant is linked to the core temperature, which is in turn linked to the core
mass. So the luinosity is linked to the core mass and essentially unlinked from the envelope. This is very
different than the main sequence, where both the core and the envelope matter. Here, just the core tells
you everything you need: shell burning sets the overall temperature and core mass sets the radius, so the
luminosity is set by the core.

The shell must be geometrically thick in order to be thermally stable. We can see this in terms of the scale
height?

H =
kT

mpg
=

kTR2
c

mpGMc
∼ Rc (19.1)

Because the size of the shell is essentially Rc, the energy balance is set by

kTshell ≈
GMcmp

Rc
. (19.2)

The shell temperature is linked to the core mass. What we want is to study the star’s luminosity, which is
largely radiatively defined:

Lrad = 4πR2
cFrad = 4πR2

c

(
1

3

c

κρs

1

Rc
aT 4

s

)
(19.3)

=
4π

3

Rc

κρs
acT 4

s . (19.4)

We can see this is produced through nuclear fusion, so Lrad = Lnuc =
´
ϵdM = ϵCNO4πRcρs.
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So what sets ϵCNO? This is given by ϵCNO = ϵ0ρT
ν . Given this, we can find

ρs =

(
4

3

σT 4−ν
s

ϵ0R2
cκ

)1/3

. (19.5)

Then

L ∝ Rc

ρs
T 4
s ∝ Rc

(
R2

c

T 4−ν
s

)1/3

T 4
s = R5/3

c T (8+ν)/3
s . (19.6)

We want to eliminate temperature, which we can do using Ts ∝ Mc

Rc
. Substituting this in gives us

L ∝M3+ 4ν
9

c (19.7)

The luminosity of the red giant branch depends only on the core mass. The exponent in this relationship is
about 12 because ν is about 20.

If we trace out tracks on the H-R diagram, we can find that stars with different masses but the same core
mass end up at the same point. This is called “core convergence”. It mostly happens for M < 2M⊙ stars.

We can get some scaling relations:

Rc = 2× 109 cm
(

Mc

0.1M⊙

)−1/3

(19.8)

Ts = 2× 107 K
(

Mc

0.1M⊙

)4/3

(19.9)

L = L⊙

(
Mc

0.16M⊙

)7.3

. (19.10)

We can combine these to get a mass increase rate:

Ṁc =
L

Enuc/mp
= 6× 1014

g
s

(
Mc

0.16M⊙

)6.3

. (19.11)

The core grows faster at higher masses. So there are fewer stars at higher L because the higher the core
mass gets, the faster you grow.

What’s the timescale for this change?

t =
Mc

Ṁc

= 1010 years
(

Mc

0.16M⊙

)−6.3

. (19.12)



For Mc = 0.25M⊙ this is 109 years, and for Mc = 0.4M⊙ this is 53× 106 years.

The helium core gets denser (ρ ∝ M2) and hotter until helium burning stars. The red giant branch stops
at this point. This occurs when Mc ∼ 0.42M⊙. At this point, L = 103.3L⊙. Since we know this luminosity
pretty precisely, we can use the tip of the red giant branch (TRGB) as a standard candle to measure distances.

For M < 2M⊙, this is the end of the RGB. For M > 2M⊙, the core collapses when Mc/M < 0.08 and this is
before TRGB, so we’re never that luminous.

We created a degenerate object with a helium core. If we remove the envelope, we have a helium white
dwarf. A low-mass single star has tMS > 1

H0
, so we can’t create white dwarfs. We can get helium white

dwarfs in binaries and speed this up with mass transfer. We often see helium white dwarf companions, and
we often see helium white dwarf companions to neutron stars.

19.2 Helium burning

At the end of the RGB, the core is helium-4 and residuals of CNO, mostly nitrogen-14. The problem is
beryllium-8 is unstable, with a half-life of about 10−15s. If you can fuse two helium-4s, it’ll just decay right
back. Helium-4 is very stable and it’s hard to energetically get past.

At high temperatures, we can have small amounts of beryllium-8. The Gamow energy is

EG = (4πα)2mrc
2 (19.13)

mr =
mαmα

2mα
=

1

2
mα (19.14)

This gives us EG = 31.4 MeV.

E0 =

(
EG(kT )

2

4

)1/3

= 83 keVT 2/3
8 . (19.15)

At T ∼ 108 K, KE is comparable to...something.
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20.1 Helium burning

We want to apply the Saha equation to helium burning. We have

µα + µα = µ8Be (20.1)

µα = nαc
2 − kT ln

(
gnQ,α

nα

)
(20.2)

µ8Be = m8Bec
2 − kT ln

(
gnQ,8Be

n8Be

)
(20.3)

Therefore we get

n8Be
n2α

=

(
2h2

2πmαkT

)3/2

exp

(
− (m8Be − 2mα)c

2

kT

)
(20.4)

Taking ρ = 104 g/cm3 (for pure helium, like RGB cores), we can find that nα = ρ
4mp

and we can solve for the
relative concentrations of helium and beryllium. At T8 = 2, we get n8Be

nα
= 10−8, which isn’t sufficient. But

the energy released by fusing helium-4 and beryllium-8 is almost exactly the energy needed to reach the O+

excited state of carbon-12, which we’ll refer to as 12C∗.

The energy difference between 4He + 8Be and 12C∗ is only 280 keV.

To get to the ground state of carbon-12, we can release a photon, but this process is slow relative to strong
decay. But if this photon is emitted, carbon-12 is very stable/low energy, so it doesn’t decay and it’s taken
out of the chain. So we get the triple alpha process,

4 He + 4 He + 4 He←−→ 12 C*

We can apply the Saha equation here as well.

n12C∗

nα
5.2× 10−10

(
ρ

105g/cm3

)
T−3
8 exp

(
−44

T8

)
. (20.5)

The −44 comes from balancing the energies of carbon and helium with te 280 keV. After this, we undergo
decay,



12 C* −−→ 12 C.

This has a decay time of τ = 1.8× 10−13s. This step releases 7.64 MeV, so it provides

ϵ = 5.3× 1021erg/g/s
(

ρ

105g/cm3

)2

T−3
8 exp

(
−44

T8

)
. (20.6)

We can also consider alpha capture onto carbon:

12C + α −−→ 16O + γ

This has a similar required temperature as triple-alpha. Not all of the carbon burns, though; we get a mix
of carbon and oxygen. We can keep going:

16 O + α −−→ 20 Ne + γ
20 Ne + α −−→ 24 Mg + γ

But these require higher temperatures.

Reaction EG (MeV) E0(T = 2T8) (keV) exp
(
−( EG

4kT )
1/3
)

3α (He+He/Be+He) 31/168 132/231 10−16 / 10−26

12 C + α 424 315 10−24

16 O + α 800 390 10−37

20 Ne + α 1300 460 10−44

Table 20.6: Reaction energies for α capture reactions

20.2 Helium core flash

For M < 2M⊙, helium ignites when Mc ∼ 0.45M⊙. This leads to core degeneracy and thermonuclear
runaway. As T increases, ρ remains constant until degeneracy is lifted. If Mc = 0.45M⊙, we get R = 109 cm
and Eg = 3 × 1049 erg. Triple-alpha can provide more than enough energy for this: we only need to burn
5% of the core to unbind it.

However, this doesn’t happen because the burning happens slowly enough that the core doesn’t unbind.
For Type Ia supernovae and C/O white dwarfs, we need to burn 50% to unbind. A helium flash is a local
runaway process whereas Type Ia supernovae is a global runaway process.

A helium flash causes temperature to drop off more drastically with increasing radius. Stars move straight
up on the H-R diagram in what’s called the horizontal branch.

66



Lecture 21: The asymptotic giant branch 67

Stars and Planets I: Stellar Structure and Evolution Winter 2023

Lecture 21: The asymptotic giant branch
Lecturer: Ryan Foley 8 March Aditya Sengupta

When you’ve gone through the main sequence (core hydrogen burning), the red giant branch (shell hydrogen
burning), and the horizontal branch/red clump (core helium burning), we’re left with a carbon and oxygen
core, and a hydrogen shell right above. We then go through shell hydrogen burning again, creating helium
that also burns. This happens in successive cycles: we burn hydrogen till there’s enough helium, then
helium burning turns off the hydrogen burning, and when we’re out of helium we go back to hydrogen.
This creates the asymptotic giant branch. At the end of the AGB, we have a carbon/oxygen core, a helium
shell, and a hydrogen shell around that.

The helium shell burns completely when it’s thin. This creates a temperature perturbation and we want it
not to change the pressure.

dP

dr
= −ρGm(r)

r2
(21.1)

∆P

R
≈ Pc

R
∝ M2

R4
(21.2)

and since we have T ∝ M
R , we can say Pc ∝ T 4

M2 . For a geometrically thin shell, rshell ≪ r and mshell ≪ m(r),
so

P = −GMc

R2
c

ˆ ∞

Rc

ρ(r)dr. (21.3)

We can write down an equation for energy balance, assuming everything physical (T , P , etc.) is constant in
the shell:

Cp
dT

dr
= ϵ3α −

acT 4

3κy2
= ϵ3α − ϵcool. (21.4)

Note that we can consider an appreciably-sized dT
dr while still assuming the shell is approximately isothermal,

because the shell is sufficiently small that the gradient doesn’t have sufficient space to act over.

Substituting in known power-laws for triple-alpha and cooling, we get

Cp
dT

dr
= ϵ0

(
T

T0

)ν

− ϵ′0
(
T

T0

)4

. (21.5)

This is unstable if ν ≫ 4. For triple-alpha, ν = 44
T8

, so it’s thermally unstable. Therefore, we see a helium
shell flash.



The timescale of each hydrogen and helium burning cycle is small, about 105 years, and it gets shorter the
longer the process runs. In this process, we “dredge up” core carbon and oxygen from the core and since
the envelope is convective it may reach the surface.

For stars withMZAMS ≲ 6M⊙, we can’t ignite carbon and we end up with a white dwarf. White dwarfs can’t
have masses greater than 1.4 M⊙. Where did the mass go? We need significant mass loss - how much?

Let’s say we have a luminosity of L = 6× 104L⊙. The timescale of mass loss is

τ =
MC/O

ṀC/O

= 4× 106 years (21.6)

AGB star surfaces are cold and can form molecules. We have carbon and oxygen. If there’s equal carbon
and oxygen, we can produce CO. If O > C, there’s leftover O; if C > 0 we get graphite. This creates dust,
which in turn creates high opacity and strong winds. Most ISM dust comes from AGB winds.

For M < 2M⊙, MC,He ∼ 0.45M⊙. We find that there’s a peak at around 0.6M⊙, and a slight bump at 1.2M⊙
which we think is due to WD-WD mergers.

In the final stages of an AGB star, we blow off the last bits of the envelope and produce a planetary nebula
(which has nothing to do with planets). At the center of a planetary nebula, there’s a hot compact object but
it’s less luminous, which creates a turnoff to the white dwarf region of the H-R diagram.

How do white dwarfs cool, if they start on the AGB/as planetary nebulae where they’re very hot? We start
at T ∼ 108 K, which is set by hydrogen/helium burning, and we cool as energy diffuses out. Applying
some scaling relations,

R ∝M−1/3 (21.7)
L ∝ R2T 4

eff ∝M−2/3T 4
eff. (21.8)

Over time the white dwarfs cool by a known cooling law.

How about higher-mass stars? Over about 6M⊙, we form magnesium by

12C + 12C −−→ 24 Mg + γ.

Magnesium-24 decays into neon-20 + α, sodium-23 + a proton, or magnesium-23 + a neutron. This requires
T ≳ 7 × 108 K. Here, neutrino cooling becomes important. We do pair creation (?) and occasionally this
decays into neutrinos.
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I think I was sick
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Last time, we wrote down this table:

Element 15M⊙, 104L⊙, neutrino lum / photon lum Time (years) 25M⊙
e

Table 23.7: <caption>

Neutrino luminosity is very bright for very short times. The typical supernova rate in any given galaxy is
about one a century.

The dynamical timescales of massive stars are about 4 seconds, much shorter than the neutrino-burning
timescale. So we’re still in hydrostatic equilibrium. However, these timescales are shorter than the timescale
for reaching thermal equilibrium. We need to track T closely, as it’s possible to reach all burning stages at
once. In order going from the inside out, we have Si, O, Ne, C, He, H burning.

There’s some reactions that basically mean we keep adding 2 protons at a time via alpha capture, and
eventually we get to nickel-56. The Saha equation for this step is (something).

Silicon burning is easy once we hit T ≳ 5× 109 K. What about nickel burning?

Nickel-56 is radioactive and decays through the weak process. The way this works is:

56 Ni −−→ 54Co + γ + νe
56 Co −−→ 52Fe + γ + νe.

The half-life of the first reaction is about 6 days, and that of the second is about 77.1 days. At the core
of the star, atoms are ionized and there are free electrons everywhere. The density is so high that decays
happen very fast. We have a degenerate iron core, and as silicon burning continues we keep adding mass.
Eventually, we hit the Chandrasekhar mass. For iron cores, this is 1.26M⊙.

The pressure for non-relativistic degenerate objects is equal to P = 2
5neEF = 2

5ne
p2
f

2me
, i.e.

P = n5/3e

(
3h3

8π

)2/3
1

5me
. (23.1)

We also know that the gas is fully ionized, so ρ = Ampni, so

P =

(
ρ

µemp

)5/3(
3h3

8π

)2/3
1

5me
. (23.2)

(something about central density)



If we assume ρ ≈ M
R3 and µe = 2,

R = 2× 109cm
(

M

0.1M⊙

)−1/3
ne
nH?

(23.3)

doing more proportionality things, we can say

MCh = 1.456

(
2

µe

)2

M⊙. (23.4)
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At the end of a star’s life, mass increases and temperature increases, so the star becomes relativistic. Neutrino
cooling implies core contraction, which leads to the temperature going up. Iron dissociates:

γ + 56 Fe←−→ 13α + 4 n

For this reaction, we have Q = (13mα + 4mn −m56Fe) = 124 MeV.

Going through the Saha equation, we have

ρ196 = 9.5× 1065T 24
10 exp

(
−144

T10

)
. (24.1)

The combination of these shows that the temperature dependence is pretty small:

ρ9 T10
0.1 0.78
1 0.95
10 1.2

Table 24.8: Temperature dependence of ρ9

So for all of these we have T ∼ 1010 K and kT = 1 MeV. We get an energy loss of about 2 MeV per nucleon.
Further contraction beyond what’s caused by this energy limit causes (something).

Breaking up of αs requires 7 MeV per nucleon, which implies R ≈ 100 km. We still have electrons and
protons in hydrostatic equilibrium.

As EFF increases, these react according to

e– + p −−→ n + νe.

This happens if EF > (mn − mp)c
2 = 1.3 MeV, which we know is about where we reach. MCh =

1.26M⊙

(
µFe

µe

)
. This drops below the mass of the iron core at some point, and the core collapses. This

continues until there’s other pressure support, from neutron degeneracy pressure. This happens in 0.1
seconds. Almost the entire gravitational energy, EG = GM2

R = 1053 erg, gets released as neutrinos.

At this point, the rest of the star “discovers” that there is no pressure support, so it undergoes a shock. All
the energy in this shock will be used up in breaking up iron, so the prompt shock stalls at R = 108cm. The
proto-neutron star is hot so there’s material right above heat, meaning that there’s convection.

Neutrino timescales: (something)

SN 1987A is a core-collapse supernova, and we detected 24 neutrinos from it. This flux was one-sixth of
EG because we were detecting only one of the six neutrino flavors. We were able to measure an effective
temperature of Teff = 5× 1010K.
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