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Research Aims

- Demonstrate linear-quadratic-Gaussian (LQG) control in tip/tilt with FAST
« Determine need for DM plant model in controller
- Build infrastructure for control experiments on UCSC SEAL testbed

The general principle of LQG control

- The star moves around based on physics (atmos-
phere, vibrations) + random noise
- Sensors give us information, but with different

random noise

- Combine them optimally: Kalman filtering
- Use this to predict and control the future states:
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Linear-Quadratic-Gaussian (LQG) control says this
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State-space model and simulations
We consider turbulence and vibrations by analyzing the open-loop PSD
- Fit autoregressive model to the linear trend (turbulence)
- Fit autoregressive models to the peaks (vibrations)
- Use sum of models for prediction/correction
Additional terms to model delay due to hardware
Simulated LQG control
Control residuals Transfer functions and rejection
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Results with Integrator Control

Tip position (DM units)

FAST integrator (gain = 0.1): closed-loop step response

FAST sine-wave disturbance and system response with integrator, gain = 0.1
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Experimental Procedure

Experiments on the Lab for Adaptive Optics SEAL testbed
Before each experiment:
- align optics: grid search across best-flats for contrast ratio
- make interaction/command matrices by applying Zernikes
- check linearity: apply disturbance x, observe y, compare toy = x
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Delays in the AO loop on SEAL, in #frames

Overall AO loop: 0.639 = 0.14 frames Measurement: 0.589 + 0.124 frames Controller: 0.05 = 0.024 frames

» Custom Python control
code supports arbitrary
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- Timing control with
multiprocessing + “spin- :

locks” for a constant
frame rate
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Results and Future Work

- Showed efficacy of LQG control for AO in simulation
- Developed real-time control infrastructure for SEAL
- Characterized loop response of focal plane WFS AO loop

- Ongoing work to show effectiveness of LQG on bench
and add in plant model

Future work: testing more computationally-intensive algorithms in the
same framework, removing bottlenecks in the AO loop to increase the
rate
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